
 

  

 

 

 

 

 

 

 

 
 
 

 
Introduction 
 

Carcinogenicity is among the toxicological endpoints that pose 
the highest public concern. The standard bioassays in rodents used to 
assess the carcinogenic potency of chemicals are time-consuming, 
costly and require the sacrifice of a large number of animals. Cancer 
bioassays should be reduced according to the EU regulation REACH 
(Registration, Evaluation, Authorisation and restriction of Chemicals) 
[1], while the Seventh Amendment to the EU cosmetics directive will 
ban the bioassay for cosmetic ingredients from 2013 [2].  

For these reasons, there is a need for alternative methods for 
carcinogenicity testing. Quantitative structure activity relationship 
(QSAR) methods can contribute to reduction of the animal studies. 
To be accepted for regulatory use, the QSAR model should follow 
the five OECD principles [3]. The fifth principle is that the models 
should have a mechanistic interpretation, if possible. The goal of 
mechanistic interpretation of QSAR models is to find relationship 
between descriptors and the endpoint and to incorporate mechanistic 
understanding and/or biological information.  

It is a challenge to represent a mechanistic interpretation for 
models for prediction of carcinogenic potency for different classes of 
chemicals (so called non-congeneric chemicals) as they are comprised 
of a wide diversity of molecular structures related to variety of 
biological mechanisms.  

Both the statistically based and knowledge-based methods are 
used in carcinogenicity models for prediction of non-congeneric 
chemicals [4-7]. The statistically-based methods (MultiCASE, 
Leadscope, TOPKAT, LAZAR and CAESAR systems) rely on 
techniques such as multivariate analysis, rule-induction, artificial 
intelligence, cluster analysis, pattern recognition, etc.). They deal with  

  
 
 
 
 
 

 
 

limited or no prior chemical or biological classification according to 
mechanism of carcinogenicity [8]. The knowledge-based (or rule-
based) methods (HazardExpert, OncoLogic, Toxtree, and DEREK 
systems) include toxicological knowledge, expert judgment and fuzzy 
logic taking into consideration toxicokinetics, toxicodynamics and 
metabolism related to processes with cellular macromolecules or 
receptors. Each of the above mentioned approaches has the potentials 
and limitations described in the literature [7]. The knowledge-based 
approaches provide opportunity to gain insight into the mechanism 
underlying the carcinogenicity. The main advantage of statistically-
based models is higher accuracy of prediction. 

In this study we have combined QSAR (statistically-based) with 
SAR (knowledge-based) approaches. The QSAR model provided 
information about an association between chemical features 
(expressed as chemical descriptors) and the endpoint being predicted 
(carcinogenicity in our case) while knowledge-based Toxtree expert 
system [9] was employed as a supporting tool in interpretation of 
obtained results in terms of possible mechanism of carcinogenic 
activity of studied chemicals (encoded in the carcinogenic SAs). The 
mechanistic basis of the QSAR model was determined a posteriori 
(after the modelling), by interpretation of the final set of training 
structures and descriptors belonging to topological, electro-
topological, and hydrogen bonding descriptors, which express 
different aspects of shape and size of molecules, contain encoded 
information about electronic interactions of the atoms and comprise 
features of electrostatic interaction between molecules.  

We have considered counter propagation artificial neural network 
(CP ANN)  model for prediction of carcinogenicity containing 
twelve Dragon descriptors which from statistical point of view was 
correlated to carcinogenicity and showed good recall ability and 
acceptable accuracy of prediction (69%) as was reported in the article 
[10]. Then we implemented selected descriptors correlated with 
carcinogenicity for prediction of SAs for carcinogenicity. The 
inherent to CP ANN mapping technique (Kohonen maps) was 
applied to see the distribution of chemicals, individual descriptors (in 
weight level maps), carcinogenic potency (Yes/No) and SAs for 
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carcinogenicity in the same 2D space. The integration of the CP 
ANN mapping technique with the decision tree based Toxtree 
module for carcinogenicity enables to get mechanistic interpretation 
of a CP ANN QSAR model. The correlation between statistically 
selected descriptors and the carcinogenic potency as well as the 
possible mechanism of carcinogenic action (encoded in SAs for 
carcinogenicity) was studied in this paper. 

 
Data and Methods 
 

The 805 chemicals extracted from initial dataset of 1481 
chemicals (taken from Distributed Structure-Searchable Toxicity 
(DSSTox) Public Database Network 
http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html) were used for 
modelling. The carcinogenic potency for rats was selected as a 
response (see article [10]). The information about structural alerts for 
carcinogenicity and type of alert (genotoxic alert (GA), non-genotoxic 
(nGA) alert or no alert (NA)) for each chemical in the dataset was 
taken out from the Toxtree expert system.  

The diversity of dataset with indication of proportion of P- 
positive (carcinogen) and NP- non positive (non-carcinogen) 
chemicals for rats for chemicals with NA, GA, nGA is presented in 
Figure 1 and in Table S1 in Supplement Material section. 

 

 
 
 
 
 
 

 
One should keep in mind that carcinogenic potency of chemicals 

in Toxtree knowledge-based system is based on observations in 
humans collected through epidemiological studies and on studies in 
animals while in CP ANN model we considered carcinogenic potency 
for rats.  

The list of 33 SAs for carcinogenicity  is reported by Benigni and 
Bossa [9] in the Toxtree rulebase. Carcinogenic SAs are functional 
groups or molecular substructures that were mechanistically and/or 
statistically associated with induction of cancer. In a broad sense the 
set of chemicals characterised by the same SA could compose a family 
of compounds with the same mechanism of action. A recent review 
[11] represents the information about chemical classes with 
recognized mechanistic link to carcinogenicity, coded as SA in the 
Toxtree 2.1.0 software. The list of SAs used in CP ANN model with 
indication of the number of chemicals in the dataset corresponding to 
particular SA is represented in Table 1. This table also contains the 

number of carcinogens (P) and non-carcinogens (NP) for each group 
of chemicals with a particular SA. 

 

 

 

Figure 1. The proportion of P and NP chemicals for rats for chemicals 
with GA, nGA, (GA+nGA) and NA. Abbreviations: P- positive (carcinogen); 
NP- non positive (non-carcinogen); NA- no alert; GA- genotoxic  alert; 
nGA- non genotoxic alert. 
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The DRAGON professional 5.4 program [12] has been 
employed for the calculation of 835 Dragon descriptors. Different 
descriptors represent different ways or perspectives to view a 
molecule, taking into account the mono-dimensional (e.g. the simple 
counts of atoms and groups), bi-dimensional (e.g. the topological 
graph) or three-dimensional (e.g. the minimum energy conformation) 
features. Thus, descriptors express different aspects of the shape and 
size of molecules, encode information about topological environment 
and electronic interactions of the atom and reflect the electrostatic 

interaction between molecules. The “Handbook of Molecular 
Descriptors” by Todeschini and Consonni [13] provides an 
encyclopaedic reference to molecular descriptors that are suitable for 
(Q)SAR studies. 

The subset of twelve Dragon descriptors was identified using a 
statistical analysis (cross correlation matrix, multicolinearity and fisher 
ratio techniques). These Dragon descriptors maximally explain the 
variance in observed carcinogenic potency (property or activity of 
interest).  Twelve Dragon descriptors selected for modeling are 
represented in Table 2. 

 

 
Hereby, the molecular descriptors provide the information to 

generate the mechanistic interpretation of the underlying structure-
activity or property relationship because they represent the relevant 
features of molecular structure that affect the observed properties 
(carcinogenicity) of a studied molecule.  
 

The CPANN method was used in modelling, it belongs to self 
organizing map technique that is often used to analyse the data in 
multi-dimensional space. The basis of this technique is a non-linear 
projection from multi-dimensional space onto a two-dimensional 
map. The topology preserving projection is achieved via non-linear 
algorithm known as training. The fundamental property of the trained 
network is close vicinity of similar objects. Therefore, it is expected 
that chemicals with similar structure will form the clusters, which is 
the case of examination.  

The architecture of CPANN is shown in Figure 2. The network 
constructed of neurons has two layers: input layer (Kohonen layer) 
containing encoded information of structure expressed as descriptors 
values and output layer (response). Both layers of neurons are placed 
exactly one above the other and the output layer has exactly the same 
layout of neurons as the input one [14]. The input layer has a number 
of levels (weights of the input neurons corresponding to the number 
of descriptors, i.e. the dimension of input vector X), while the output 
layer has as many  levels as the target vectors have responses. 

Kohonen maps enable visualisation of the distribution of 
chemicals (in the top map) and distribution of descriptors values (in 
weight levels maps). CP ANN, in turn, is a generalization of self 
organizing map. Additionally, it takes into account the property 
(output) values [15, 16] and is encompassed in the output layer. The 
learning in the input layer in the CPANN is the same as in Kohonen 
neural network, i.e., the similarity among input variables determines 
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the arrangement of objects in the input layer map. When the 
arrangement is set the positions of objects are projected to the output 
where the weights are modified in a way that the weights on projected 
positions are getting similar to the values of corresponding objects.  

The two kinds of models have been examined in the study: the 
model for prediction of carcinogenic class (model_cancer_class) and 
model for prediction of SAs for carcinogenicity (model_cancer_SA). 
It should be noted that input Kohonen layer is the same for both 
models while responses are different (see Figure 2).  

In Figure 2 the inputs x1, x2, x3,..., xn are vector components 
representing chemical structure which corresponds to descriptors 
calculated for all chemicals used in training dataset. In the other 
words, x1i, x2i, x3i,..., xni can be represented as a matrix of descriptor 1, 
2, 3..., n values for all of 644 chemicals (i=1,…, 644) in training 
dataset, respectively. The distribution of chemicals and their clusters 
in 2D space is examined in the Kohonen top map. Weight levels 1, 2, 
3,..., n are the maps with distribution of particular descriptors 1, 2, 
3,..., n, correspondingly. Output variables are expressed in the output 
layer as a carcinogenicity class (class 2 was marked as carcinogen and 
class 1 as non-carcinogen) in models for prediction of carcinogenicity 
and as particular SAs for carcinogenicity in the models for prediction 
of SAs. 

In the study the following 2D maps were used to analyse the 
similarities in non-congeneric set of substances: Kohonen top map 
(distribution of chemicals), weight levels maps (distribution of 
individual descriptors) (Figure 2 (a)), corresponding response surface 
output layer maps with distribution of carcinogenicity class 
(carcinogens/non carcinogens) in model for prediction of 
carcinogenicity (Figure 2 (b)), and distribution of SAs for 
carcinogenicity in model for prediction of SAs (Figure 2 (c)).  

 
Results and Discussions  

Special features of the CP ANN model for prediction of carcinogenic 
class 

In the first part of study we represented the CP ANN model for 
prediction of carcinogenic class (carcinogen (2) and non-carcinogen 
(1)) (model_cancer_class). We examined model based on twelve 
Dragon descriptors with 35x35 dimensional artificial neural network 
(ANN) and trained for 200 epochs (see paper [10]).  

For the model validity a wide series of statistical checks have been 
used. Models yielded the accuracy of training set (644compounds) 
equal to 89%; the accuracy of the test set (161compounds) was 69%. 
The accuracy of the leave 20% out cross validation for the training set 
was equal to 62% . To verify if the models perform correctly on new 
compounds the external validation was carried out. The external test 
set was composed of 738 compounds. We obtained accuracy of 
external validation equal to 60.0%. 

The relationships between carcinogenic class, structure of 
chemicals and applied descriptors were in focus of our investigations.   

Because of the diversity of the molecules studied in this work, the 
carcinogenic property of the compounds is related to the molecular 
structure in a complex way. The descriptors used in the study encode 
different aspects of the molecular structure. We have used the CP 
ANN and combined the mapping capability of a Kohonen network 
with a supervised learning strategy. We examined the pattern levels in 
the weights of trained network which provide the researcher with a 
deeper knowledge about mechanistic background related to the effect 
of individual variables visualized and estimated from the formed 
clusters.   

The present paper resumes and upgrades the mechanistic 
interpretation of model using twelve Dragon descriptors reported in 
the paper [10].  We have considered the top map of Kohonen layer 
(with distribution of chemicals), weight level maps of descriptors 
variables and output layer corresponding to the carcinogenic class to 
show connection between the structure features of chemicals, 
individual descriptors and corresponding carcinogenic class.   
 
The correlation between carcinogenic potency, nitroso compounds 
and Dragon descriptors  

We investigated the distribution of carcinogens and non-
carcinogens in the output layer of model_cancer_class and have found 
in the left bottom section of the map (Figure 3a) an area populated 
with a majority of carcinogens (2). Firstly, we considered an output 
layer of the model which represents the map 35*35 in the x and y 
direction. Green small squares (1) in the output layer (Figure 3a) are 
non-carcinogens, while brown small squares (2) are carcinogens.  

Figure 3d shows the fragment of the bottom left section of this 
map 35x35 of model_cancer_class (see red rectangle) with 
coordinates (nx from 1 to 15 and ny  from 1 to 10) labelled with ID 
of chemicals occupying individual neurons with indication of  SAs for 
carcinogenicity. Additionally, the weight maps of Dragon descriptors 
and D12 (N-078-  Ar-N=X / X-N=X) and D9 (nRNNOx-  
Number of N-nitroso groups (aliphatic)) are shown in Figure 3b and 
Figure 3c, respectively. The weight maps illustrate the distribution of 
values of particular descriptor (D12 or D9  in our case) over the 
35*35 map. The red, yellow and then light green color corresponds to 
the highest values, while dark blue relates to the smallest values. 
The majority of chemicals located in selected area (red rectangle) 
contains SA21 and are carcinogens. Thus, Figure 3 demonstrates the 
correlation between carcinogenic potency related to chemicals 
contained the structural alert for carcinogenicity SA21 (alkyl and aryl 
N-nitroso groups) and consequently with the Dragon descriptors 
D12 (N-078-  Ar-N=X / X-N=X) and D9 (nRNNOx-  Number 
of N-nitroso groups (aliphatic)). 
 

 

 
 
 
 
 
 

 
 

Figure 2. The architecture of CPANN. (a) input Kohonen layer; (b) output 
layer for model for prediction of carcinogenicity; (c) output layer for 
model for prediction of SAs for carcinogenicity 
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Indeed, the descriptors identify the certain structural features or 
particularities. Descriptor D9 corresponds to Functional group counts 
(number of N-nitroso groups (aliphatic) while D12 relates to Atom-
centred fragments (Ar-N=X / X-N=X).   

Thus, we have found the relationship between descriptors 
containing features for nitro compounds that gave ability to neural 
network to organize those families of chemicals in topologically near 
locations (neurons). The majority of chemicals from this class are 
carcinogens, i.e. possessed the same biological activity. Obviously, the 
nitro SAs are important for carcinogenic activity which is in good 
agreement with the selection of Dragon D9 and D12 descriptors that 
resulted from our modelling methodology (see article [10]). 
 
The study of influential zones of Dragon descriptors  

The following part of our study was dedicated to research of 
influential zones of descriptors (areas with the largest values) and 
their correlation with structure of chemicals located in those areas. 
Analysing the individual descriptors layers in Self-Organizing Maps 
one recognized the importance and role of individual descriptors in a 

studied model. The results of our investigations are represented in the 
supplementary material section in Tables S1- S9.  

After careful consideration of data represented in Tables S1- S9 
we have found that influential zones of some of Dragon descriptors 
like D2 (D/Dr06- distance/detour ring index of order 6) (Figure 
S2), D7 (GGI2- topological charge index of order 2) (Figure S4), 
D10 (nPO4- Number of phosphates/thiophosphates) (Figure S7), 
D11 (N-067- Al2-NH) (Figure S8) have small limited area (see 
Figure 4) corresponding to non-carcinogens. The influential areas of 
descriptors D2, D7, D10 and D11 do not match up with influential 
areas of descriptors D9 and D12 (see Figure 3) related to location of 
carcinogens. Possibly the descriptors D2, D7, D10 and D11 might 
have features explained the non-carcinogenic properties while 
descriptors like D9 and D12 correspond to carcinogenic property of 
compounds. 

In contrast, the Dragon descriptors like D1 (PW5- Path/walk 5 - 
Randic shape index) (Figure S1), D3 (MATS2p- Moran 
autocorrelation - lag 2 / weighted by atomic polarizabilities) (Figure 
S3), D5 (ESpm11x- Spectral moment 11 from edge adj. matrix 
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Figure 3. (a) The output layer of model for prediction of carcinogenicity with distribution of carcinogens (2) and non-carcinogens (1); (b) weight map of 
Dragon descriptor D12 (N-078- Ar-N=X / X-N=X); (c) weight map of Dragon descriptor D9 (nRNNOx- number of N-nitroso groups (aliphatic)); (d) a fragment of 
the bottom left section of the top map (35x35) with coordinates (nx from 1 to 15 and  ny  from 1 to 10) labelled with ID of chemicals occupying individual 
neurons with indication of SA for carcinogenicity. Note: Fragment (d) corresponds to clusters marked as red rectangle in (a), (b) and (c). 
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weighted by edge degrees) and D6 (ESpm09d- Spectral moment 09 
from edge adj. matrix weighted by dipole moments) (Figure S5) have 
influential zone spread over whole map (see Figure 5). This 
phenomenon probably is the evidence that these descriptors have 
features that affect the majority of chemicals in the dataset and their 
properties.  

The Dragon descriptors D4 and D7 (Figure S4), D5 and D6 
(Figure S5) and D12 and D9 (Figure S9) have influential zones in the 
similar locations. 

Several descriptors were found to have overlapping influential 
zones for the same chemicals. Figure S4 demonstrates this 
phenomenon. Beta-Cyclodextrin; (CASRN 7585-39-9) and 
Vinblastine; (CASRN 865-21-4) were found in the influential zones 
of Dragon descriptors D4 and D7 (Figure S4). Beta-Cyclodextrin; 
(CASRN 7585-39-9) is also located in the influential zone of 
Dragon descriptor D2 (Figure S2). It means that descriptors selected 
for characterization of carcinogenicity have similar features. In the 
second example two non-genotoxic halogenated cycloalkanes 
chemicals with SA_20 (Mirex, photo-  (CASRN 39801-14-4) and 
Chlordecone (kepone) (CASRN 143-50-0)) were found in 
influential zones of Dragon descriptors D1 (Figure S1), D5 and D6 
(Figure S5). 

 

 
 
 
 

 

 
How CP ANN algorithm create clusters of chemicals containing 
particular SA for carcinogenicity 

In the first part of the study we described the CP ANN model for 
prediction of carcinogenic class (model_cancer_class). Model for 
prediction of SA for carcinogenicity (model_cancer_SA) represented 
in the second part of the study was based on the same input data (the 
numeric representation of the twelve Dragon descriptors). 35x35 
dimensional ANN was trained for 200 epochs.  

Firstly, we considered an output layer of the model which 
represents the map 35*35 with destribution chemicals containing a 
particular SA.  The numbers (1-10) in top map relate to chemicals 
containing the following SAs: 1- SA7, 2-SA8, 3-SA13, 4-
(SA13+SA27), 5-SA21, 6-SA27, 7-(SA27+SA28), 8-SA28, 9- 
SA_X  (X-others SA), 10-NA. SAs are marked with different colour. 
For example, 5-SA21 corresponds to green colour, 8-SA28 
corresponds to orange colour, and 6-SA27 corresponds to yellow 
colour and so on (see Figure 6).  

 

 
 
 

 

 
In this study the largest groups of chemicals with the following 
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distribution of values of particular SA over the 35*35 map. The 
highest values correspond to red, yellow and then to light green color, 
while dark blue relate to the smallest values. 

We have noticed that the following groups of chemicals generate 
one cluster: 5-SA_21 (nitro compounds) (Figure 6a) and 4- (SA13 
+SA27) (hydrazine and nitro-aromatic) (Figure 6d). Two clusters are 
visible in the case of 7-(SA_27+SA_28) (nitro-aromatic, primary 

aromatic amines) (Figure 6c), while others groups of chemicals 
marked as 1, 2, 3, 6, 8, 9 and 10 are scattered in the whole map. The 
chemicals with SA 8- SA_28 (Figure 6b) have several clusters spread 
over the map.  

As the distribution of chemicals in the Kohonen map caused by 
similarity in their activity we have considered the mechanism of action 
for groups of chemicals marked as 5, 4, 7 and 8 (see Figure 6). 

 

 
 
 
 
 
 

 
Mechanism of action intrinsic to studied groups of chemicals   

Thus, the N-Nitroso compounds (5) containing SA_21 belongs 
to alkylating, indirect acting agent. The mechanism of action intrinsic 
to N-Nitroso compounds containing SA_21 reported in papers [11, 
17]. We can conclude that chemicals containing the SA21 possess the 
similar activity. Indeed, N-nitrosamines and N-nitrosamides represent 
a well established class of chemical carcinogens as was reported in 
paper [11]. 
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and hydrazines- chemicals). The hydrazines (chemicals containing 
SA13) belong to alkylating, indirect acting agent while nitroaromatic 
compounds (containing SA27) belong to aminoaryl DNA-adducts 

forming, indirect acting agents. The structures of studied compounds 
(12 chemicals) are represented in Table S2 in Supplement material 
section. It should be noticed that only one chemical from this dataset 
is non-carcinogen (C.I. Pigment red 23 (CASRN 6471-49-4)). This 
compound has molecular weight (MW) equal to 486. The chemicals 
with very high MW and size have little chance to be absorbed in 
significant amounts and therefore are non-active. The rest of the 
chemicals are carcinogens and have MW between 200 and 300. The 
detailed explanation of mechanism of action intrinsic to chemicals 
contained SA27 and SA13 is reported in paper [11].    

Thus, the Dragon descriptors represent such features that 
organize the group of chemicals (with SA13+SA27) in clear visible 
cluster in Kohonen map which is the evidence of similarity. Indeed, 
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almost all chemicals (one exception) are active (carcinogens). Table 
S2 demonstrates that 12 chemicals presented in this list have similar 
structure and as a result possess the same activity.  

The cluster marked with number (7) corresponds to compounds 
containing two SAs: SA_27: Nitro-aromatic + SA_28: primary 
aromatic amine, hydroxyl amine and its derived esters (14 chemicals) 
(Figure 6c). Both classes of chemicals belong to aminoaryl DNA-
adducts forming, indirect acting agents. Clusters of chemicals 
containing those two alerts (SA27 + SA28) (see Table S3) are placed 
in the closest neurons because of similarity due to similar structure 
and presence of the same groups responsible for the similar mode of 
action or biological activity. It is interesting that all chemicals in this 
cluster are positive by results of mutagenicity tests (Salmonella 
typhimurium TA98 strain).   

The chemicals marked with number (8) correspond to 
compounds containing SA28 (primary aromatic amine, hydroxyl 
amine and its derived esters). These 52 chemicals are spread over the 
Kohonen map due to big diversity of structures and presence of many 
others functional groups (see Table S4 in the Supplement Material 
Section).  

As for distribution of chemicals marked as NA (no alert) one can 
see that chemicals are distributed over the map and difficult to 
separate individual clusters (see weight level map of NA in the Figure 
6e).  

How CP ANN algorithm separates carcinogens (P) and non-
carcinogens (NP) inside group of chemicals containing a particular 
SA 

The intrinsic to CP ANN Kohonen mapping technique enables 
to see the distribution of carcinogens (P) and non-carcinogens (NP) 
for rats inside different families of chemicals with particular SA for 
carcinogenicity. Figure 7 demonstrates the output layer of CP ANN 
model for prediction of SAs for carcinogenicity complemented with 
the weight maps  illustrating the distribution of carcinogens (P) and 
non-carcinogens (NP) for chemicals containing the following 
individual SAs: SA_27 (b, c),  SA_21 (d, e),  and SA_27+SA_28 (f, 
g). 

Location of P and NP chemicals differs in the Kohonen maps due 
to different activity of considered chemicals. It should be highlighted 
that carcinogenic potency of chemicals in Toxtree knowledge-based 
system is based on observations in humans collected through 
epidemiological studies and on studies in animals while in CP ANN 
model we considered carcinogenic potency for rats. This is why we 
used SA for carcinogenicity only for explanation of possible 
mechanism of carcinogenic activity in broad sense. Determination of 
the differences inside the congeneric chemicals (with particular SA for 
carcinogenicity) using Kohonen mapping is very important for 
evaluation of safety of chemicals. 

 

 
 
 
 

 
Conclusion 
  

Mechanistic insight into CP ANN models was demonstrated 
using the inherent mapping technique (i.e. Kohonen maps) which 
enables the visualization of the following features in 2D space: the 
carcinogenic potency; the distribution of descriptors in individual 

layers; and the distribution of congeneric groups of chemicals with 
indication of specific carcinogenic SAs with indication of broad 
mechanisms of action.  

We have examined statistically selected twelve Dragon descriptors 
which are correlated with carcinogenicity. These descriptors express 
structural and electronic features such as molecular shape (linear, 
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Figure 7. (a) the output layer of CP ANN model for prediction of SAs for carcinogenicity complemented with the weight maps  illustrating the distribution of 
carcinogens (P) and non-carcinogens (NP) for chamicals containing the following individual SAs: SA_27 (b, c),  SA_21 (d, e) , and SA_27+28 (f, g). 
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branched, cyclic, and polycyclic), bond length, taking into account 
electronic surrounding of molecular.  

It was shown the correlation between carcinogenic potency related 
to chemicals contained the structural alert for carcinogenicity SA21 
(alkyl and aryl N-nitroso groups) and consequently with the Dragon 
descriptors D12 (N-078-  Ar-N=X / X-N=X) and D9 (nRNNOx-  
Number of N-nitroso groups (aliphatic)). Thus,  the functional group 
counts descriptor D9 and atom-centred fragments descriptor D12 
match up with structural alert for carcinogenicity SA21-(alkyl and 
aryl N-nitroso groups) and consequently correlated with carcinogenic 
activity of chemicals. 

In turn, the functional group counts (fragment –based) descriptor 
like D10 (nPO4- Number of phosphates/thiophosphates) 
demonstrated the ability to characterize the lack of carcinogenicity 
(for example in case of phosphates/thiophosphates). 

The influential zone of non-fragment count descriptors like D2 
(D/Dr06- distance/detour ring index of order 6), D7 (GGI2- 
topological charge index of order 2), and D11 (N-067- Al2-NH) 
related to non-carcinogens. These descriptors might have features 
explained the non-carcinogenic properties. They match neither the 
SAs for carcinogenicity nor the location of carcinogens related to 
descriptors like D9 and D12 correlated with carcinogenicity. 

The non-fragment descriptors like D1 (PW5- Path/walk 5 - 
Randic shape index), D3 (MATS2p- Moran autocorrelation - lag 2 / 
weighted by atomic polarizabilities), D5 (ESpm11x- Spectral moment 
11 from edge adj. matrix weighted by edge degrees) and D6 
(ESpm09d- Spectral moment 09 from edge adj. matrix weighted by 
dipole moments) have influential zone spread over the whole map. 
One would not expect to be able to locate specific regions where these 
descriptors are very important. These descriptors have features that 
affect the majority of chemicals and their properties in the dataset.  
It was demonstrated how the Kohonen mapping technique enables to 
separate chemicals within a family of chemicals with particlular SA by 
their activity (by mechanism of action) as well as by their carcinogenic 
activity (carcinogens and non-carcinogens) 

It was illustrated that inside a family of chemicals they can be 
spread over the Kohonen map and have several clusters due to big 
diversity of structures and presence of many others functional groups 
which causes the differences in their activity. 

The QSAR and SAR approaches have been integrated to receive 
more comprehensive data for risk assessment. 
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