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Chemical reactions and experimental conditions are fundamental information for chemical
research and pharmaceutical applications. However, the latest information of chemical
reactions is usually embedded in the free text of patents. The rapidly accumulating
chemical patents urge automatic tools based on natural language processing (NLP)
techniques for efficient and accurate information extraction. This work describes the
participation of the Melax Tech team in the CLEF 2020—ChEMU Task of Chemical
Reaction Extraction from Patent. The task consisted of two subtasks: (1) named entity
recognition to identify compounds and different semantic roles in the chemical reaction
and (2) event extraction to identify event triggers of chemical reaction and their relations
with the semantic roles recognized in subtask 1. To build an end-to-end system with high
performance, multiple strategies tailored to chemical patents were applied and evaluated,
ranging from optimizing the tokenization, pre-training patent language models based on
self-supervision, to domain knowledge-based rules. Our hybrid approaches combining
different strategies achieved state-of-the-art results in both subtasks, with the top-ranked
F1 of 0.957 for entity recognition and the top-ranked F1 of 0.9536 for event extraction,
indicating that the proposed approaches are promising.

Keywords: named entity recognition, relation extraction, chemical reaction, chemical patent, tokenization for
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INTRODUCTION

New compound discovery plays a vital role in the chemical and pharmaceutical industry (Akhondi
et al., 2019). Characteristics of compounds, such as their reactions and experimental conditions, are
fundamental information for chemical research and applications (Akhondi et al., 2014). The latest
information of chemical reactions is usually present in patents and is embedded in free text (Senger
et al., 2015). The rapidly accumulating chemical patents urge automatic tools based on natural
language processing (NLP) techniques for efficient and accurate information extraction (Muresan
et al., 2011).

However, current NLP works in the biomedical domain mainly focus on chemical information
extraction from biomedical literature, clinical text, or drug labels (Swain and Cole, 2016; Lowe, 2012;
Wei et al., 2015; Xu et al., 2017). Plenty of shared tasks were organized, providing benchmark
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datasets, attracting active participations, and promoting state-of-
the-art method and system development with community efforts
(Wei et al., 2015; Xu et al., 2017). For example, the BioCreative V
challenge was to identify chemical-induced disorders from
biomedical literature (Wei et al., 2015); the task in N2C2 2018
extracts medicines, their attributes, and their adverse events from
clinical text (Wei et al., 2019); TAC 2017 (Xu et al., 2017) and
FDA 2019 (Bayer et al., 2020) also organized similar challenges to
extract medical information from drug labels. As a unique genre
different from other resources, patents have more timeliness, as
an important knowledge source for new discoveries of chemical
compounds (He et al., 2020). Despite increasing attention being
paid to information extraction from chemical patents in recent
years (Zhai et al., 2019; Hemati and Mehler, 2019), only one
shared task in BioCreative V was organized to extract chemical
and protein information from patent abstracts (Krallinger et al.,
2015a). Lack of benchmark data with annotations of detailed
information critical for new chemical compound discovery
hinders the development of NLP-based information extraction
systems that can be applied in a real-world setting.

Fortunately, the CLEF 2020—ChEMUTask takes the initiative
to promote the chemical reaction extraction from patents by
providing benchmark annotation datasets. Two important
subtasks are set up in this challenge: chemical named entity
recognition (NER) and chemical reaction event extraction. In
particular, the annotation scheme of this benchmark data extends
from previous challenges of chemical information extraction1514

to recognize multiple semantic roles of chemical substances in the
reaction. Moreover, keyword event triggers and their relations
with each semantic role are also annotated and provided for this
task. The CLEF 2020—ChEMU Task will greatly facilitate the
development of automatic NLP tools for chemical reaction in
patents with community efforts (Nguyen et al., 2020; He et al.,
2020).

At present, it is well acknowledged that deep learning-based
algorithms have achieved state-of-the-art performances on
various tasks of biomedical information extraction, which
especially benefit from language models pre-trained on large-
scale unlabeled text (Lee et al., 2020). Representative pre-trained
language models include BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), Electra BERT (Clark et al., 2020), and others
built from open domain text and BioBERT (Lee et al., 2020),
Clinic BERT (Alsentzer et al., 2019), and others built from fine-
tuning BERT on large-scale biomedical text. These works lay a
solid foundation of applying NLP to chemical patents. However,
there are still some challenges in building high-performance
systems for extracting information from chemical patents.

Poor Output From Tokenization
Most previous works directly applied the original tokenizer
WordPiece in BERT to preprocess the text input (Summary of
the tokenizers, 2021), which was built on open text and not
sufficient to interpret and represent mentions of biomedical
concepts such as chemicals and numeric values. Mentions of
such concepts have unique patterns and are common as semantic
roles in chemical reactions, such as chemicals, temperatures, and
percentages. However, few efforts have beenmade to optimize the

output from tokenization, which plays an essential role in
accurate extraction of elements in chemical reactions.

Lack of Patent Language Models
The advantages of a pre-trained language model rely on the
distributional semantic representation automatically learned to
feature different genres of text. However, the existing biomedical
language models mainly use biomedical literature or clinical text
for pre-training,1721 rather than patents, for chemical information
extraction.

Uncovered Domain Knowledge
The current frameworks of language models are built on
sentences, which are not sufficient to cover the long-distance
patterns in documents, especially the domain knowledge related
to the logical organization of patent structure (USPTO, 2021).

To address the above challenges and build a high-performance
end-to-end system for extracting chemical reactions from
patents, we participated in both subtasks in CLEF
2020—ChEMU and developed hybrid approaches that
combined multiple strategies for performance enhancement.
Our approaches achieved top rank in both subtasks, indicating
that the proposed approaches are promising (He et al., 2020; He
et al., 2021; Zhang and Zhang, 2020). The major contributions of
this work are threefold, as summarized below:

1. We examined the output from tokenization and its effects on
information extraction carefully and then tuned the tokenizer
to get a more appropriate input for training deep learning
models, which improved the performance significantly.

2. Pre-trained language models were built for chemical patents in
a self-supervision way by fine-tuning BioBERT using the
training and development data of ChEMU and chemical
patents collected externally. Word2vec embeddings of
chemical patents provided in the ChEMU Task (He et al.,
2020), and the two pre-trained language models were
compared for performance improvement.

3. Domain knowledge-based patterns were further summarized,
and pattern-based rules were added into the NLP pipeline to
further boost the performance.

MATERIALS AND METHODS

Materials
Annotations of Chemical Reaction
The chemical reaction corpus provided by the CLEF
2020—ChEMU Task contained 1,500 selected patent snippets
(He et al., 2020). It was split into training data, development data,
and test data with a ratio of 0.6/0.15/0.25 (He et al., 2020). For
subtask 1, it was annotated with 10 entity-type labels describing
different semantic roles in chemical reaction, including
EXAMPLE_LABEL, STARTING_MATERIAL, REAGENT_
CATALYST, REACTION_PRODUCT, SOLVENT, TIME,
TEMPERATURE, YIELD_PERCENT, YIELD_OTHER, and
OTHER_COMPOUND. For subtask 2, the event trigger words
(such as “addition” and “stirring”) were annotated, which were
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further split into labels of “REACTION_SETUP” and
“WORK_UP.” Their relations with different semantic roles
were also annotated. Following the semantic proposition
definition, the Arg1 type was used to mark the relation
between event trigger words and compounds. ArgM
represented the auxiliary role of the event and was used to
mark the relation between the trigger word and the
temperature, time, or output entity (He et al., 2020). Some
annotation examples of chemical reactions are displayed in
Figure 1.

External Dataset of Chemical Patents
A set of additional patent snippets with chemical reactions was also
collected by searching the Google Patent portal. First, we used generic
keywords to form the initial query “(chemical) AND (compound)
AND [(reaction) OR (synthesis)].” The IPC subclasses (Akhondi
et al., 2019)most frequently occurred with chemical compounds, and
reactions were used to further limit the scope of patents—A61K,
A61B, C07D, A61F, A61M, and C12N (https://www.wipo.int/
classifications/ipc/en/). In addition, following the data source
constraints in ChEMU 2020, the patent language was restricted to
English, and the patent sourceswere restricted to the EuropeanPatent
Office and the United States Patent and Trademark Office. Once the
patents were retrieved, they were manually reviewed. Some common
keywords such as “step,” “example,” “yield,” and “stirred” were used
to quickly locate text describing chemical reaction processes. The text
snippets were then manually reviewed to maintain correct
boundaries. The text snippets in the training and development
data were also compared with the newly collected ones to ensure
no redundant text was saved. The total number of text snippets with
chemical reactions in each relevant patent varied from 1 or 2 to more
than 300. In the end, about 20,000 snippets of chemical reactionswere
collected. This dataset was used as an argument for the training and

development data of ChEMU 2020, to generate language models of
chemical patents.

Information Extraction
The major workflow of building information extraction systems
for chemical reactions in patents is illustrated in Figure 2. The
workflow consists of four steps:

(1) Text preprocessing: As a fundamental step in the pipeline,
patent text was preprocessed to split sentences and tokens in each
sentence. The sentence segmentationmodule and tokenizer in the
CLAMP (Clinical Language Annotation, Modeling, and
Processing Toolkit) toolkit were used in this step. The
tokenizer was customized for chemical patent specifically.

(2) Pre-training of patent language models: Once processed,
the patent text would be formatted as input to fine-tune the
BioBERT language model generated from biomedical literature
for patent text. Through this self-supervision, a patent language
model was produced (named Patent_BioBERT).

(3) Model training for NER: After Patent_BioBERT was
generated, it was further fine-tuned on the training and
development data under the supervised learning framework to
build models for NER. Mentions of semantic roles and event
triggers of chemical reactions were considered as named entities
and recognized by the trained models.

(4) Model training for relation extraction: Similarly,
Patent_BioBERT was fine-tuned to build binary-classification
models, which identified relations between semantic roles and
event triggers.

(5) Rule-based postprocessing: Patterns not covered by the
deep learning models, especially those within long distances, were
summarized and tested carefully in a postprocessing step to
further improve the performances.

Details of each step in the workflow are described as follows.

FIGURE 1 | Examples of chemical reaction elements and relations annotated in patents.
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Pre-Processing
In this step, patent text was segmented into sentences through
detecting sentence boundaries. Tokens in each sentence were also
identified and separated by a tokenizer based on lexicons and
regular expressions. Modules of sentence segmentation and
tokenization in the CLAMP software (Soysal et al., 2018) were
applied in this study. The sentence segmentation function in
CLAMPwas implemented using rules. It was designed specifically
for biomedical text.

Notably, the tokenizer in CLAMP, a rule-based tool designed
for biomedical text, was applied and revised to optimize the
tokenization output. Our deep learning models using the default
WordPiece tokenizer yielded modest NER performances. A
careful observation showed that WordPiece could not split text
with punctuations properly, especially for long-string mentions
of chemical structures, as well as numerical expressions (e.g.,
“6.5 mg” and “2%”). To address this problem, we tried to simplify
the tokenization process by taking every punctuation as a
separator of tokens. For example, the sentence “7-Bromo-4-
(pyridin-2-yl)-3,4-dihydro-2H-benzo(b) (1,4)oxazine (1)” will
be tokenized into “7/-/Bromo/-/4/-/(/pyridine/-/2/-/yl/)/-/3/
,/4/-/dihydro/-/2H/-/benzo/(/b/)//(/1/,/4/)/oxazine//(/1/)/” (the
symbol “/” is used to separate tokens in this example). For
this, we revised the tokenizer in CLAMP and applied it to
each sentence first. After that, the WordPiece tokenizer would
work on the input sentences and generate sub-words wherever
necessary to be in line with the vocabulary. Therefore, a two-stage
tokenization was implemented. Our assumption was that this
process would produce tokens in a more consistent way, and it
would be more convenient for the deep learning algorithms to use
context information for boundary detection. As shown in the
later sections of Results and Discussion, this strategy worked and
improved the NER performance significantly.

Pre-training Language Model on Patents
Diverse expressions of chemical reaction information in the free
text make them very sparse to be represented and modeled
(Camacho-Collados and Pilehvar, 2018). The semantic
distributed representations (i.e., multidimensional vectors of

float values) of text generated by deep neural networks, or
deep learning methods, alleviated the sparseness challenge by
dramatically reducing the dimensions of language representation
vectors using a nonlinear space (Camacho-Collados and Pilehvar,
2018). Specifically, language models pre-trained on large-scale
unlabeled datasets embed linguistic and domain knowledge that
can be transferred to downstream tasks, such as NER and relation
extraction (Liu et al., 2016). BioBERT (Lee et al., 2020), a pre-
trained biomedical language model (a bidirectional encoder
representation for biomedical text), was used as the basis for
training a language model of patents. Based on BERT (Devlin
et al., 2018), a language model pre-trained on large-scale open
text, BioBERT was further refined on using the biomedical
literature in PubMed and PMC. Consequently, BioBERT
outperforms BERT on a series of benchmark tasks for
biomedical NER and relation extraction (Lee et al., 2020). For
this study, BioBERT was retrained using text files provided by
CLEF 2020—ChEMU and external text of chemical reactions
manually collected from Google Patent Search to adapt the
language model to patent data. For convenience, the pre-
trained language model is named Patent_BioBERT.

Subtask 1—NER
Semantic roles in chemical reactions are recognized using a
hybrid method. First, Patent_BioBERT was fine-tuned using
the Bi-LSTM-CRF (Bi-directional Long–Short-Term-Memory
Conditional-Random-Field) algorithm. Next, based on
annotated guidelines and manual observations on the training
and development datasets, several pattern-based rules were
designed and used in the postprocessing steps:

1. Rules were defined to distinguish between
REACTION_COMPOUND and OTHER_COMPOUND
based on context. Take the text in Figure 3 as an example.
The first two chemical entities were labeled
OTHER_COMPOUND because they were directly related
to the entire process of “EXAMPLE 48”
(i.e., REACTION_COMPOUND), while the main topic of
the text snippet was to describe the first substep in the

FIGURE 2 | Workflow of building information extraction systems for chemical reactions in patents.
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chemical reaction process—“48.1.” In contrast, the last
chemical entity was labeled REACTION_COMPOUND
because it was the target chemical in substep “48.1.”

2. The words “example,” “step,” “intermediate,” “core,” and
“reference example”; brackets; square brackets; and curly
brackets were removed from the EXAMPLE_LABEL type
entity (e.g., Example 95).

3. The words “compound,” “example,” and “immediate” were
removed from chemical entities in numerical patterns or
patterns with mixed number and letter (e.g., compound 1-
0003, Example 56A).

Subtask 2—Event Extraction
This subtask contains two steps. For the step of event trigger
detection, it was also a NER task and was addressed with a similar
approach as in subtask 1. For the relation extraction task, given
the entities annotated in sentences, it can be transformed into a
classification problem. A classifier can be built to determine
categories of all possible candidate relation pairs (e1, e2),
where entities e1 and e2 are from the same sentence. We
generated candidate pairs by pairing each event trigger and
semantic role. In order to represent a candidate event trigger
and semantic role pair in an input sentence, we used the semantic
type of an entity to replace the entity itself. The mentions of
entities are directly generalized by their semantic types in the
sentences. A linear classification layer was added on top of the
Patent_BioBERT model to predict the label of a candidate pair in
sentential context. As mentioned above, Patent_BioBERT was
essentially built on the basis of BERT. In detail, BERT adds a
classification token (CLS) at the beginning of a sentence input,
whose output vector was used for classification. As typical with
BERT, we used a (CLS) vector as input to the linear layer for
classification. Then a softmax layer was added to output labels for
the sentence.

In addition, some event triggers and their associated
semantic roles appeared in different sentences or in
different clauses in long compound sentences. Their
relations were not identified using deep learning-based
models. Therefore, postprocessing rules were designed
based on the patterns observed in the training data and
applied to recover some of these false-negative relations:

1. In the preprocessing stage, sentences/clauses containing “sat.
aq.” (sat. aq. stands for saturate aqueous) were mistakenly
segmented into two parts. For example, the clause “the residue
was dissolved in EtOAc and washed with sat. aq. NH4Cl” was
segmented into two parts—“the residue was dissolved in
EtOAc and washed with sat. aq.” and “NH4Cl.” Such
segments were merged to restore the correct clause, and
then a relation was created between the nearest event
trigger and the chemical behind “sat. aq.” Namely, a
relation was created between “dissolved” and “NH4Cl” in
the example sentence.

2. Some yield amount and percentage information were
described in a separate sentence such as “Yield: 15 mg (25%
of theory).” Relations were created to link them to the event
trigger in the previous sentence, such as “purified” in “The
mixture is purified by RP-HPLC (modifier: ammonium
hydroxide).”

Subtask 2—End-to-End Extraction of Chemical
Reaction
Overall, a typical cascade or pipeline model was built for the end-
to-end system, in which semantic roles and event triggers were
first recognized together in a NER model; their relations were
then classified in a relation extraction model.

Evaluation
Precision, recall, and F1 were used for performance evaluation, as
defined in Eqs 1–3. Both exact and inexact (relax) matching
results are reported. The primary evaluation metric was the F1
score of exact matching (He et al., 2020).

precision � true positives

true positives + false positives
(1)

recall � true positives

true positives + false negatives
(2)

F1 � 2 × precision × recall

precision + recall
(3)

To determine which existing pre-trained language model
should be fine-tuned and generate the patent language model,
a pilot study was first conducted to compare the performances of

FIGURE 3 | An example of a text snippet with hierarchical steps of chemical reactions.
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different pre-trained language models, including BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), Electra BERT (Clark
et al., 2020), BioBERT (Lee et al., 2020), and Clinic BERT
(Alsentzer et al., 2019). Models of NER and relation extraction
were trained and tested on a small set of data, by fine-tuning
different pre-trained language models. Based on our pilot
experiments on 500 named entities, the NER F1s of 10-fold
cross validation using BERT, RoBERTa, Electra BERT, and
Clinic BERT were lower than that of BioBERT by 0.56, 0.59,
0.75, and 0.61, respectively. Experimental results demonstrated
that fine-tuning BioBERT obtained the optimal performance.
Therefore, in the rest of the work, we mainly used BioBERT as the
basis to train the language models of chemical patents.

We used 10-fold cross-validation on the merged training and
development datasets to optimize parameters for the models. The
final set of hyperparameters and values used in the study are
dropout_rate 0.2, max_seq_length 310, hidden_dim 128, learning
rate 5e−5, and batch size 24. Based on this, we implemented three
approaches for comparison:

1. Fine-tuning: Among the 10 models generated in the 10-fold
cross-validation by fine-tuning Patent_BioBERT, the model
with the highest performance on onefold was selected and
used for submission.

2. Ensemble of output results from 10models generated from the
cross-validation using majority voting.

3. Merge-data: fine-tuning Patent_BioBERT using the merged
training and development datasets.

Since the gold-standard annotations on the test dataset were
not released, the performances of semantic role recognition and
event recognition on the development data were reported for a
detailed investigation.

In addition, we also checked the contribution from different
strategies by implementing them incrementally into the model
training process. Since the two-step tokenization mainly
influenced the NER performance, the following were carried out:

1. BioBERT: BioBERT was fine-tuned for information
WordPiece, following the original tokenizer in BERT.

2. Step tokenization for chemical patents: as mentioned before,
we implemented an additional tokenizer to handle chemical
patent text before feeding it into BioBERT, where it was
further processed by WordPiece so that it can be aligned
with the built-in vocabulary.

3. Postprocessing with pattern-based rules: once predictions are
obtained from deep learning models, pattern-based rules are
applied to postprocess and modify the predicted labels.

The above three steps construct a complete pipeline for
information extraction. The following three strategies were
further implemented to improve the performance:

4. Features of Word2Vec embeddings trained on a collection of
84K chemical patents shared from the ChEMU (He et al.,
2020) were added, by concatenating them directly after
embeddings generated from BioBERT.

5. Patent_BioBERT-ChEMU pre-trained on the training/
development data: The BioBERT was replaced with
Patent_BioBERT as the pre-trained language model, which
is fine-tuned for models of information extraction.

6. Patent_BioBERT-External pre-trained on the training/
development data and external patent data with chemical
reactions: another version of Patent_BioBERT pre-trained
with additional external text of chemical reactions was fine-
tuned for models of information extraction.

RESULTS

Performances on the test dataset for each task are listed in Tables
1–3. Performances of the three approaches (Fine-tuning,
Ensemble, and Merge-data) are reported for NER—recognition
for semantic roles and event triggers in Table 1 and for event
extraction in Table 2. The Fine-tuning approach outperforms the
other two with the highest F1 of 0.957 for NER and the highest F1
of 0.9536 for event extraction. Therefore, only the Fine-tuning
approach was used for building the end-to-end system, and its
performance is reported in Table 3, with an F1 of 0.9174. The
performances are top ranked based on the official evaluation in
ChEMU (Nguyen et al., 2020).

Interestingly, NER performances of the exact and relaxed
matching criteria did not have sharp differences (Table 1),
validating the effect of adding an additional tokenization step
specifically for chemical patents in the preprocessing stage.

TABLE 1 | Performances of semantic role extraction for chemical reaction. Both
exact and relaxed matching results are reported.

Method Exact Relax

Precision Recall F1 Precision Recall F1

Fine-tuning 0.9571 0.957 0.957 0.969 0.9687 0.9688
Ensemble 0.9587 0.9529 0.9558 0.9697 0.9637 0.9667
Merge-data 0.9572 0.951 0.9541 0.9688 0.9624 0.9656

TABLE 2 | Performances of event extraction for chemical reaction. Both exact and
relaxed matching results are reported.

Method Exact Relax

Precision Recall F1 Precision Recall F1

Fine-tuning 0.9568 0.9504 0.9536 0.958 0.9516 0.9548
Ensemble 0.9619 0.9402 0.9509 0.9632 0.9414 0.9522
Merge-data 0.9522 0.9437 0.9479 0.9534 0.9449 0.9491

TABLE 3 | Performances of end-to-end systems for chemical reaction extraction.
Both exact and relaxed matching results are reported.

Method Exact Relax

Precision Recall F1 Precision Recall F1

Fine-tuning 0.9201 0.9147 0.9174 0.9319 0.9261 0.9290
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However, the ensemble systems and systems built on the merged
data of training and development sets yielded lower performances
than the system fine-tuned on a 90%–10% split of the gold
standard data. Especially, the Merge-data systems got the
lowest performances among all three approaches. One
potential reason was that the hyperparameters used in the
Fine-tuning model were not the optimal set for the merged data.

Moreover, the detailed performances of the Fine-tuning method
on the development set are reported.Table 4 lists the performances
of each entity type (i.e., semantic roles and event triggers) and the
overall performances. The overall F1 is 0.942 for NER. All the entity
types yielded F1 scores above 90%. The lowest F1 scores were
produced by the REACTION_PRODUCT (0.902) and the
STARTING_MATERIAL (0.911). Both were frequently misclassified
as OTHER_COMPOUND. Some STARTING_MATERIAL were also
confused with REAGENT_CATALYST. As for the event triggers,
REACTION_STEP obtained an F1 of 0.948, and WORKUP
obtained an F1 of 0.931. They were often confused with each
other when there was no clear transition from the reaction
processing step to the later workup step. In the future, if semi-
structures would be applied in patent writing with subsection
headers like “Reaction:” and “Workup:,” these two processes could be
differentiated straightforwardly. Interestingly, performances of the
exact and relaxed matching criteria did not have sharp differences,
which indicated that limited boundary errors occurred in the NER
step. This validated that the preprocessing modules in CLAMP could
efficiently segment sentences and split tokens.

Table 5 lists the performances of each event type and the overall
performance. The overall F1 is 0.953 for event extraction. Some rare
events had lower performances, such as the ARG1 relation between
REACTION_STEP and OTHER_COMPOUND (0.767) and
between WORKUP and SOLVENT (0.333). Some events were
described across sentences and were not covered by the current
models, such as the ARGM relation between WORKUP and
YIELD_OTHER and between WORKUP and YIELD_PERCENT.

Table 6 lists the performances of semantic role recognition on the
development and test data by implementing different methods

incrementally. The performance change by adding each additional
strategy is also reported. Starting from the baseline of fine-tuning on
BioBERT (development: 0.8942, test: 0.9136), an additional step of
tokenization yielded the highest performance improvement
(development: 4.05%, test: 3.86%). Notably, applying language
model features yielded different effects on the development and
test data: (1) concatenating the Word2Vec embeddings pre-
trained on chemical patents got an improvement of only 0.10%
on the development data, while an improvement of 0.58% was
obtained on the test data; (2) replacing BioBERT with
Patent_BioBERT pre-trained on the training and development
data (Patent_BioBERT-ChEMU) yielded an improvement of
0.47% on the development data. In contrast, the test performance
dropped by 0.30%; (3) replacing BioBERTwith Patent_BioBERTpre-
trained on the training and development data and the externally
collected patent data (Patent_BioBERT_External) dropped the
performance on the development data by 0.32%. On the contrary,
the test performance increased by 0.37%.

Based on the experimental results, the Word2Vec embeddings
and the language model of Patent_BioBERT_External, which were
built on large collections of chemical patents had stronger
generalizability on the test data. In contrast, Patent_BioBERT-
ChEMU was overfitted on the development data which affected
the generalizability on the test data. However, since we could only
select the best models based on the development data during the
participation of ChEMU, all submissions to the task were based on
the language model of Patent_BioBERT-ChEMU, which actually
yielded a lower performance on the test data.

DISCUSSION

Novel compound discovery is vital in the chemical and
pharmaceutical industry. Chemical reaction is essential to the

TABLE 4 | Performances on NER of semantic roles and event triggers on the
development set are reported. The fine-tuning method was used in the
experiment. Event triggers are italic.

Entity type Exact

Precision Recall F1

EXAMPLE_LABEL 0.979 0.986 0.982
REACTION_PRODUCT 0.899 0.904 0.902
STARTING_MATERIAL 0.896 0.926 0.911
YIELD_OTHER 0.99 0.965 0.977
YIELD_PERCENT 0.972 1 0.986
REAGENT_CATALYST 0.938 0.905 0.921
SOLVENT 0.963 0.93 0.946
TEMPERATURE 0.935 0.96 0.947
OTHER_COMPOUND 0.947 0.939 0.943
TIME 0.983 0.991 0.987
REACTION_STEP 0.952 0.944 0.948
WORKUP 0.931 0.93 0.931
Overall_Semantic_Role 0.949 0.937 0.943
Overall 0.943 0.941 0.942

TABLE 5 | Performances on each relation type and the overall performance on the
development set are reported. The fine-tuning method was used in the
experiment.

Relation type Exact

Precision Recall F1

ARG1|REACTION_STEP|OTHER_COMPOUND 0.733 0.805 0.767
ARG1|REACTION_STEP|REACTION_PRODUCT 0.985 0.948 0.966
ARG1|REACTION_STEP|REAGENT_CATALYST 0.979 0.965 0.972
ARG1|REACTION_STEP|SOLVENT 0.975 0.9522 0.968
ARG1|REACTION_STEP|STARTING_MATERIAL 0.957 0.916 0.936
ARG1|WORKUP|OTHER_COMPOUND 0.965 0.961 0.963
ARG1|WORKUP|REACTION_PRODUCT 0 0 0
ARG1|WORKUP|SOLVENT 0.2 1 0.333
ARG1|WORKUP|STARTING_MATERIAL 0 0 0
ARGM|REACTION_STEP|TEMPERATURE 0.957 0.928 0.942
ARGM|REACTION_STEP|TIME 0.978 0.926 0.952
ARGM|REACTION_STEP|YIELD_OTHER 0.984 0.942 0.962
ARGM|REACTION_STEP|YIELD_PERCENT 0.982 0.943 0.962
ARGM|WORKUP|TEMPERATURE 0.893 0.909 0.901
ARGM|WORKUP|TIME 0.7 1 0.824
ARGM|WORKUP|YIELD_OTHER 0 0 0
ARGM|WORKUP|YIELD_PERCENT 0 0 0
Overall 0.963 0.944 0.953
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rigorous understanding of compound for further research and
applications. Our participation in the CLEF 2020—ChEMU Task
answers the urgent call for high-quality information extraction
tools for chemical reaction information in patents. Evaluation
based on the open test dataset demonstrated that the proposed
hybrid approaches are promising, with top ranks in the two
subtasks. Valuable lessons are also learned in this process:

A detailed error analysis was conducted for future system
improvement. One major type of errors was the confusion
between STARTING_MATERIAL and OTHER_COMPOUND,
REAGENT_CATALYST and STARTING_MATERIAL, or
REAGENT_CATALYST and SOLVENT. Information
structures in sentences and context were not sufficient to
differentiate these semantic types. Another major error was
related to the event trigger recognition. Many false-positive
event triggers were recognized, and REACTION_STEP and
WORKUP were often confused with each other, especially for
words frequently present in different contexts (e.g., added and
stirring). Failing to recognize named entities correctly also
affected the next relation extraction step. As for relation
extraction, the majority of errors were caused by long-distance
relations in intra- or inter-sentences.

The motivation behind the three implemented approaches is
that it is interesting to examine if there is a space of performance
improvement if majority voting or a larger training dataset is
used. The three methods shared the same set of hyperparameters.
However, the same set of hyperparameters, based on our current
interpretation, is a curse to the final performances. The Ensemble
andMerge-data approaches did not generate better performances
as originally expected. More investigations need to be conducted
for both, with an additional validation set for fine-tuning. Yet, the
sensitivity of the hyperparameters in deep learning models is a
long-standing problem that needs even more efforts to be
alleviated.

Chemical tokenization has been an issue for long, and many
efforts in the community were made to improve it, generating
dedicated tokenizers such as Chemtok, Oscar4, and
Umlsgenechem. In a previous work of chemical NER in
patents, Zhai et al. (2019) made a comparison and
demonstrated that chemical-specific tokenizers have a positive
impact on NER performance. As mentioned previously in the
method section, we also customized the tokenizer in CLAMP for
chemicals and numerical values in patent text in this study.
However, instead of focusing on exhaustively enumerating and
capturing their structures in the tokenizer, we used punctuation

as a separator to split the entire mention string into the smallest
tokens, so that the tokenization results can be consistent for
chemicals and numeric values. Our assumption was that the
boundaries of NEs would be recognized automatically in a data-
driven way, which was validated in the experimental results in
Table 6. For illustration, the results of using CLAMP, Chemtok
(Akkasi et al., 2016), Oscar4 (Jessop et al., 2011), and
Umlsgenechem (NBIC, 2021) were shown in Table 7. As can
be seen, the four tokenizers generated different results for the
same chemical. Moreover, Umlsgenechem mistakenly removed
the punctuation “%” in the percentage “58%” of yield material,
and Chemtok identified the equation “J � 8.42 Hz” as a whole. In
the next step, it is worth studying the performance of these
tokenizers on patent datasets in different chemical subdomains
(Zhai et al., 2019; Zhang et al., 2016; Krallinger et al., 2015b).

Comparisons between the performances with and without
postprocessing rules showed that the applied rules contribute
only modest improvements to the overall performances. When
the postprocessing rules were applied after the fine-tuning
method, the exact-match F1s of NER, event extraction, and
the end-to-end system were increased by 0.26% (0.9347 vs.
0.9373), 0.08% (0.9526 vs. 0.9534), and 0.24% (0.8946 vs.
0.8970) on the development set, respectively. In addition, the
NER, event extraction, and end-to-end F1s were increased by
0.24% (0.9522 vs. 0.9546), 0.07% (0.9529 vs. 0.9536), and 0.22%
(0.9152 vs. 0.9174) on the test set, respectively. Although rules
were applied to fix errors from model predictions, they also
brought false-positive instances. The precision and recall were
examined carefully and balanced for each rule; only rules that
could improve the performance with high confidences were kept
in the system.

The experimental results demonstrated the fundamental
importance of tokenization in the preprocessing step in
adaptation to the unique characteristics in chemical patent
text. Self-supervision based on larger-scale data achieved a
stronger generalizability power of the pre-trained language
models. Besides, more investigations are needed for heuristics
and knowledge-based improvement.

Limitations and Future Work
Although the proposed approaches obtained promising
performances of chemical reaction extraction, there are several
limitations. First, the number of documents used for experiments
is limited, with a total of 180 patents for training, development,
and testing. In addition, as the ChEMU organizers have noticed,

TABLE 6 | Performances of semantic role recognition by adding different strategies incrementally. Exact matching results of the development and test data using the fine-
tuning method are reported.

Model Development Test

Precision Recall F1 Precision Recall F1

BioBERT 0.8402 0.9556 0.8942 0.8587 0.9760 0.9136
+2Step_Tokenization 0.9364 0.9330 0.9347 (+4.05%) 0.9514 0.9530 0.9522 (+3.86%)
+Rule 0.9394 0.9351 0.9373 (+0.26%) 0.9539 0.9554 0.9546 (+0.24%)
+Word2Vec 0.9373 0.9394 0.9383 (+0.10%) 0.95984 0.9609 0.9604 (+0.58%)
+Patent_BioBERT-ChEMU 0.9491 0.9370 0.9430 (+0.47%) 0.9645 0.9517 0.9574 (−0.30%)
+Patent_BioBERT_External 0.9413 0.9383 0.9398 (−0.32%) 0.9616 0.9605 0.9611 (+0.37%)
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there is a high degree of overlap between patents for training,
development, and test sets. The expansion of the dataset,
especially for open testing, will give a more comprehensive
understanding of how the model performs in a more realistic
setting and how to further improve the model. Next, domain
knowledge of different semantic roles and their relations was not
leveraged in the current study, such as lexicons of
REAGENT_CATALYST and SOLVENT. This may potentially
resolve the confusion among different semantic labels. Moreover,
dependency syntactic information was not applied in the current
approaches, such as conjunctive structures and header-dependent
patterns. Such information was proven to be effective for relation
extraction and would be integrated into the deep learning models
to further improve the performance. In addition to tokenization,
other basic building blocks of the pre-trained language model,
such as vocabulary and representation of out-of-vocabulary
tokens, will also be customized for chemical patents in the future.

CONCLUSION

This work describes the participation of the Melax Tech team on the
CLEF 2020—ChEMU Task of Chemical Reaction Extraction from
Patent. We developed hybrid approaches combining tailored
preprocessing, deep learning models, and pattern-based rules for
this task. Our approaches achieved state-of-the-art results in both
subtasks, indicating that the proposed approaches are promising.
Further improvement will also be conducted in the near future by
integrating domain knowledge and syntactic features into the current

framework. Data augmentation will also be investigated for
annotation enrichment in a cost-saving way, to further improve
the system generalizability.
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