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Bilayer graphene twisted by a small angle shows a significant
charge modulation away from neutrality, as the charge in the
narrow bands near the Dirac point is mostly localized in a frac-
tion of the Moiré unit cell. The resulting electrostatic potential
leads to a filling-dependent change in the low-energy bands,
of a magnitude comparable to or larger than the bandwidth.
These modifications can be expressed in terms of new electron–
electron interactions, which, when expressed in a local basis,
describe electron-assisted hopping terms. These interactions favor
superconductivity at certain fillings.
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The discovery of strong repulsive interactions and supercon-
ductivity in twisted graphene bilayers (1–3) [see also previous

experimental results (4, 5) and recent work (6, 7)] has led
to an increased interest in the role of the electron–electron
interaction in these systems. Previously, extensive experimen-
tal studies had been carried out in graphene superlattices on
a boron nitride (BN) substrate; for example, refs. 8–11. The
mismatch in lattice spacing between graphene and BN limits
the maximum wavelength of the Moiré lattice. As the lattice
constant in the two graphene layers in a twisted bilayer is the
same, the periodicity of the Moiré structure diverges at small
twist angles (12–16). For sufficiently small angles, almost flat
bands arise near the charge-neutrality point (14, 17). The effects
of the intrinsically small interaction effects in graphene are
expected to be enhanced for those “magic” angles where the
width of the low-energy bands is smallest. Novel magnetic phases
become possible when the lowest band is half filled (18). Layer-
dependent strains can also lead to Moiré structures and narrow
bands (19, 20).

In the following, we consider the effect of the long-range
Coulomb interaction on the bands nearest to the neutrality
point, as a function of their filling. The occupation of the
low-energy bands in a twisted bilayer graphene leads to inho-
mogeneous electrostatic potentials of order e2/(εLM ), where
LM is the length of the Moiré lattice unit, and ε is the dielec-
tric constant of the environment. We expect this interaction to
be comparable, or larger, than the bandwidth, and thus it will
give rise to a significant distortion of the bands. We analyze
the screening of the Coulomb interaction within the Hartree–
Fock approximation. As this is a variational method, it can be
reliably used to treat screening effects, even when the inter-
action energy is comparable to the kinetic and crystal field
contributions.

We find that the electrostatic potential due to the inhomo-
geneous charge distribution in the Moiré unit cell gives rise
to significant distortions in the band. Using general proper-
ties of the Wannier functions which describe this band (21–23),
we identify local, filling-dependent couplings which change the
band dispersion away from the neutrality point. Finally, we
discuss the relation between these interactions, which can be
defined as electron-assisted hopping terms, and superconduc-
tivity. Our work presents a rather different angle and thus
complements the extensive corpus of work on the role of local
interactions (24–33). We will not consider the role of lattice

relaxation (34), since this is a complex problem and will be
discussed separately. We also do not address the role of the
electron–phonon interaction on superconductivity; see refs. 35
and 36.

Estimates of the Electron–Electron Interactions
We evaluate electron–electron interactions in the low-energy
bands of a twisted Moiré bilayer with twist angle θ to lead-
ing powers in d/LM , where d ≈ 2.4 Å is the lattice unit of
graphene, and LM = d/(2 sin(θ/2))≈ d/θ is the Moiré lattice
unit. The charge distribution of the states in the bands near
the neutrality point is mostly concentrated in regions with
AA stacking. This inhomogeneous charge leads to electrostatic
potentials of strength VCoulomb∼ e2/(εLM ). For an angle of the
order θ∼ 1◦, ε≈ 4, and a Moiré pattern of wavelength LM ∼
10− 20 nm, we obtain a Coulomb potential in the order of
50 meV.

The overlapping π orbitals of the carbon atoms also gener-
ate an intraatomic Hubbard interaction, U ∼ e2/d , which pre-
vents double occupancy. This potential, when projected onto
wavefunctions of extensions similar to LM , generates an effec-
tive interaction Ueff∼ (UN−2

M )NM , where NM ≈ (LM /d)2 is the
number of atoms within the Moiré lattice unit, and the factor
N−2

M originates from the normalization of the wavefunctions.
As a result, Ueff∼ (e2d)/L2

M ∼ 10−2×VCoulomb∼ 1 meV. Thus,
the intraatomic Hubbard term is comparable to the electron
bandwidth W at the magic angles where W ∼ 2− 10 meV, and
the long-range Coulomb interaction can be larger. In the fol-
lowing, we only consider the effect of the long-range part of
the Coulomb interaction. A detailed analysis of the short-range
Hubbard repulsion can be found in ref. 18.

Significance

For small twist angles, bilayer graphene forms long-wave-
length Moiré patterns. For specific, so-called magic, angles of
the order of 1 degree, very narrow bands have been seen that
lead to superconductivity. The underlying mechanisms have
since been discussed in a variety of theoretical approaches.
We show that the modulation of the charge density signif-
icantly modifies the electronic structure. These changes can
make an important contribution to superconductivity through
electron-assisted hopping.
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Band Structure and Charge Distribution
For small twist angles, the wavelength of the Moiré superlattice is
much larger than the graphene unit cell. It therefore makes sense
to analyze the band structure by using the continuum approxima-
tion; refs. 12–14 and 16. We specifically use the parametrization
of ref. 22 for a Moiré pattern with a twist angle θ≈ 1.05◦. Numer-
ical values are given in SI Appendix, section 2. The bands and the
charge density at high symmetry points in the Brillouin zone are
shown in Fig. 1. As extensively discussed in the literature, the
charge density associated with states at the edges of the Brillouin
zone, the K and M points, is concentrated in regions with AA
stacking. On the other hand, at the center of the Brillouin zone,
the Γ point, the charge density vanishes in these AA regions and
is much more homogeneously distributed throughout the rest of
the Moiré cell. This asymmetry between charge densities in dif-
ferent regions of the Brillouin zone has been pointed out in ref.
37. As the bands in the two valleys are related by time-reversal
symmetry, we will consider in most of the following analysis a
single valley, taking into account the fourfold spin and valley
degeneracy when necessary.

Hartree Potential
The Hamiltonian of twisted bilayer graphene breaks electron-
hole symmetry, and charge inhomogeneities exist, even at half
filling. These fluctuations are expected to be small, as, for low
twist angles, the Moiré pattern can be decomposed into regions
with AA, AB and BA stacking, which are locally neutral. In the
following, we neglect these charge inhomogeneities. The charge
distribution which arises away from the neutrality point in inho-
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Fig. 1. (A) Low-energy bands of a twisted bilayer with twist angle θ= 1.05◦

plotted over the full Brillouin zone (see also Fig. 2). (B) Charge densities of
states at the Γ point in the Brillouin Zone (t for top layer; b for bottom). (C)
The charge density at the K point summed over the two degenerate states.
(Scale bars: 1 nm.)

mogeneous, and it is peaked in the AA regions, so that a change
in the occupancy of these bands will lead to charge fluctuations
with the periodicity of the Moiré unit cell, LM , as confirmed
by numerical calculations described below. Fluctuations of the
charge density and electrostatic potential are dominated by the
first star of reciprocal lattice vectors, the six points with |G|=
(4π)/(

√
3LM ).

If we consider partially filled conduction bands, their con-
tribution to the charge density can be parameterized by a
dimensionless number, ρG , a complex quantity which encodes
the symmetric (real) and antisymmetric (imaginary) parts of the
charge density. From the value of ρG , we can easily find the elec-
trostatic potential in Fourier space, vG =V0 = vCoulomb(G)ρG ,
and vCoulomb(G) = (2πe2)/(ε|G|). The amplitude of the fluctua-
tions of the potential in real space are given by V = (2πe2ρG)/

(εΩ|G|), where Ω =L2
M

√
3/2 is the area of the Moiré unit

cell. We finally obtain V = (e2ρG)/(εLM ). In the following, we
neglect the dependence of ρG on sublattice and layer, as both
the density and the potential vary over length scales of order
LM . The value of ρG depends on the extent of the wavefunc-
tions in momentum space, and it is bounded by |ρG |< 4, as it
is a cross-product of amplitudes times a spin-layer degeneracy
factor 4,

ρG = ρ̄G + δρG = ρ̄G + 4
∑

k

∑
G′

a∗k+G+G′ak+G′ . [1]

Here, ρ̄G is a constant which takes into account the contribution
to the total density from all of the bands not included in the cal-
culation. We fix its value by imposing a homogeneous state at
charge neutrality, ρG(n0) = 0, where n0 is the density at half fill-
ing. The coefficient ak+G is the amplitude that the wavefunction
of band state k is represented by a Bloch state with momentum
k + G, and a sum over sublattice and layer indices is omitted. The
wavefunctions of the lowest bands in twisted bilayer graphene
are delocalized in momentum space, and we find 0.4. |δρG |. 4.
In all cases considered, Im(ρG). 0.1Re(ρG). This imaginary
part arises from the small breaking of the symmetry between
the AA and the AB and BA regions in the Hamiltonian (22).
We therefore describe the Hartree potential in terms of its real
part only.

We approximate the fully self-consistent Hartree potential by
describing it in terms of the six shortest reciprocal lattice vec-
tors. Our calculations indicate that the next set of higher Fourier
components are an order of magnitude smaller. The amplitude
of the Hartree potential, VH , determines the parameters of the
Hamiltonian. As function of these parameters and the filling,
n , we determine the charge density, ρG . The self-consistency
equation for the Hartree potential can be written as

VH (n) =
2πe2

ε|G| ρG(VH ,n)≡V0ρG(VH ,n), [2]

where n is the band filling.
In Fig. 2A, we show the density of states for the original

problem and also for a Hartree potential of amplitude VH =
1 meV. The Hartree potential distorts the bands considerably.
The Fourier transform of the charge as function of band filling,
shown in Fig. 2B, looks very similar for both cases—the dif-
ference is just in a normalization factor, and we only give the
example for VH = 0.

As we increase the Hartree potential, the energies at the K ,K ′

and M points are raised in comparison with those at the Γ
point, and the upper band becomes flatter (as can be seen in SI
Appendix, Fig. S2, this effect is largely described by first-order
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Fig. 2. (A) Dependence of the density of states on the value of the Hartree
potential for a twisted bilayer graphene with a twist angle θ= 1.05◦.
The blue line is for VH = 0 and the red one for VH = 1 meV. The verti-
cal scale is truncated: The red peak extends more than twice as high as
shown. The dotted lines are the Fermi energies at neutrality. (B) Fourier
transform of the charge density in the lowest state above the Fermi
energy, with the dominant peak at zero momentum suppressed. The
area of the circles is equal to the magnitude of the Fourier components
for each of the two layers. The momentum distribution is concentrated
at the six lowest wavevectors, Gi . (C) The value of the charge density
at wavevector G1 as a function of the filling relative to charge neu-
trality. The blue line gives the real part, and the yellow line gives the
imaginary part.

perturbation theory). We show a selection of bands for a few
choices of the Hartree potential in Fig. 3. The Hartree poten-
tial is determined by the dimensionless parameter ρG , which by
definition vanishes at the neutrality point. Its value shows an
approximately linear a dependence on the fractional band filling,
n , ρG ≈A(VH )(n −n0(VH )), as can be seen in Fig. 4.

For ε= 4 and LM ≈ d/θ≈ 13 nm, we obtain V0≈ 28 meV.
Using this value, the solution to Eq. 2 is shown in SI Appendix,
Fig. S5. The value of VH (n) grows approximately linearly
with n . The value of VH (n) changes from 0 at the neutrality
point, to VH (4)≈ 22 meV when all of the low-energy bands are
occupied.

Exchange Potential
We now consider the Fock part of the Hartree–Fock approx-
imation. Exchange coupling takes place between states in the
same valley with identical spin. The exchange potential plays
an important role in monolayer graphene, as it is the origin of
the renormalization of the Fermi velocity (38, 39). Unlike the
case of the Hartree term considered above, the effect of the
exchange potential will lead to nontrivial changes in the bands
at the neutrality point. The small value of the Fermi velocity, ṽF ,
in twisted bilayer graphene implies that the effective fine struc-
ture constant associated with the Dirac cones, α= e2/(ε~ṽF ) is
very large, α∼ 102. The renormalization of ṽF has a small value
for the high-energy cutoff, which is of the order of the bandwidth
W . The renormalization of ṽF depends logarithmically on W
and linearly on α, so that the corrections to ṽF will be important.
The main effect will be a depletion of the density of states at the
Dirac point.

Besides the renormalization of the Fermi velocity, the ex-
change potential leads to an overall widening of the bands. We
can estimate this effect by considering the shift of the states at
the band edges, located at the Γ point. As the Coulomb poten-
tial is singular at zero momentum, the leading contribution to
the shift of the states at the Γ point comes from the interaction
with occupied states with similar momenta. The occupied states
at the bottom of the band have a similar internal structure to
the neighboring ones, differing only in the crystal momentum. If
we assume that this approximation is valid up to some cutoff in
momentum space at a distance Λ from the Γ point, the energy
shift has the value

δεexΓ ≈−
1

4π2

∫ Λ

2π
e2

εk
kdk =−e2Λ

2πε
. [3]

Assuming that Λ.L−1
M , we find that the shift of the lower Γ

state and the bandwidth scale as δεΓ≈ e2/(εLM ). We have ana-
lyzed numerically the decay of the overlap S = |〈φΓ|φk〉|2 as a
function of the distance between k and Γ. Results are shown in
SI Appendix, Fig. S1. They show that Λ≈ 0.1× (4π)/(3LM ). We
thus obtain

δεexΓ ≈−0.1
2e2

3εLM
. [4]

This energy is an approximation for the increase in bandwidth.
As the unoccupied state at the top of the conduction band has an
internal structure which is orthogonal to the states at the lower Γ
point, it will not experience a significant exchange shift.

Fig. 3. Bands calculated for different electrostatic potentials. The blue lines
are the bands at charge neutrality; the green lines are at VH =−0.5 meV;
and the orange, red, and dark-red lines are at VH = 0.5, 1, and 2 meV,
respectively.
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Fig. 4. Dependence of the real part of ρG on band filling for a twisted
bilayer graphene with Hartree potentials described by different values of
the amplitude VH. The band filling is normalized such that n0 corresponds to
the half-filled case, and n− n0 = 4 to the case where the four upper bands
are filled. We use values of VH from 0 to 24 meV.

Description of Electrostatic Effects in Terms of Local
Interactions
The Hartree potential significantly distorts the lowest band in a
twisted bilayer graphene, but it leaves the bands which lie fur-
ther away from the Dirac point mostly unchanged. Hence, it
can be expected that the Hartree potential does not significantly
alter the Wannier wavefunctions for these bands. These Wannier
functions have been extensively discussed (e.g., refs. 21–23). For
a given valley, the two Wannier wavefunctions can be approxi-
mated by functions centered in the AB and BA regions of the
Moiré pattern. These regions form a honeycomb lattice. Each
Wannier function has a three-lobe structure with lobes peaked
at the AA regions. The Hartree potential can be projected onto
these wavefunctions, and it can be written in terms of diagonal
and off-diagonal matrix elements. Each Wannier function is a
four-component spinor, with weight on both sublattices in each
of the two layers; that is,

|m〉=
∑
iS ,iV

αiS ,iV
m |iS , iV 〉 , [5]

where {iS , iV } label the sublattice and valley degrees of freedom.
Each of the components has a different symmetry around the
AA lobes, with angular momentum `=−1, 0, 0, 1; ref. 22. The
Hartree potential is diagonal in sublattice, layer, and spin space.
The matrix elements 〈m|VH |m〉 where m,n = 1, . . . , 6 label the
six sites around a given AA region, can be written as

〈m|VH |n〉=
∑(

αiS ,iV
m

)∗
αiS ,jV
n 〈iS , iV |V̂H |iS , iV 〉. [6]

The functions m,n belong either to the Ā or the B̄ sublattice
in the emergent honeycomb lattice with the Moiré pattern as
a building block. We choose the sites m = 1, 3, 5 to belong to
the Ā sublattice, and the sites m = 2, 4, 6 to belong to the B̄
sublattice. The angular momentum of the different components
of each Wannier function determines the phase of the ampli-
tudes αiS ,iV

m in Eq. 6. Matrix elements between functions which
belong to different sublattices require the evaluation of inte-
grals between states with angular momentum `=±1 and states
with `= 0. The phases shown in ref. 22 suggest that these ele-
ments vanish. The remaining matrix elements describe a second
nearest-neighbor hopping term in the Moiré lattice. Hence, we

can add the Hartree potential to the simplified two-parameter
tight binding model described in ref. 22 to obtain

Hlocal =H0 +HH = t1
∑
〈i,j〉

c†i cj + it2
∑
〈〈i,j〉〉

c†i cj

+ V̄H

∑
〈〈i,j〉〉,{i,j}∈{Ā,B̄}

c†i cj + h.c., [7]

where t1 and t2 are real-valued tight binding parameters, V̄H

parameterizes the Hartree potential, and 〈i , j 〉 and 〈〈i , j 〉〉 are
first and second nearest neighbors. This Hamiltonian ignores a
number of the hopping terms considered in refs. 21–23, but the
terms included are sufficient for a discussion focused on the role
of the Hartree potential. Results for different values of V̄H are
shown in Fig. 5. The bands are in reasonable agreement with the
bands obtained using the continuum model, shown in Fig. 3.

The description of the Hartree potential in terms of effec-
tive hopping parameters allows us to define an Wannier-based
model for the long-range Coulomb interaction in graphene. The
occupation of Wannier functions leads to charge accumulation
at the AA sites. The strength of the potential at a given site
is proportional to the occupancy of the six Wannier functions
centered at the neighboring AB and BA sites. The ensuing
potential leads both to a change in the on-site energies and
to the creation of effective couplings between Wannier orbitals
which are second nearest neighbors in the honeycomb lattice,
but overlap in the same AA region. We obtain the effective
Hamiltonian

Hint =
∑
m

[
VH1

( ∑
i=1,...,6

c†i,mci,m

)2

+VH2

 ∑
i′=1,...,6

c†i′,mci′,m

 ∑
〈〈i,j〉〉

c†i,mcj ,m

, [8]

where the sum over the m index implies a sum over the centers
of the hexagons in the honeycomb lattice, which define the AA
sites. The first term inHint describes the local repulsion between
charges placed at the AA sites, and it has been discussed in ref.
32. The second term in Hint describes a hopping which depends
on the charge state at the AA regions. The description of the
Hartree potential depends only on the Coulomb interaction,
parameterized by e2/(εLM ). Hence, we expect that both terms

Fig. 5. Band structure of a simple tight binding model based on the
Wannier functions of twisted bilayer graphene, including the electrostatic
potential. Black lines, bands at charge neutrality; red and blue lines, bands
as function of increasing Hartree potential.
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Fig. 6. Self-consistent Fermi surface for different band fillings. The gray
areas denote the filled states. The function g(k) in SI Appendix, Eq. S2
is negative in the blue region, where superconductivity is favored. n = 1
(A), n = 1.5 (B), n = 2 (C), n = 2.5 (D), n = 3 (E), and n = 3.5 (F). The mag-
nitude of n gives the fraction of bands filled. The value n = 0 denotes
the neutrality point, and n = 4 describes four filled bands. The Fermi sur-
faces are calculated by using the full continuum Hamiltonian, including the
Hartree term.

in Hint scale as VH1,VH2∝ e2/(εLM ). The relation between
VH1 and VH2 can be inferred from the band structures shown
in Fig. 3. The Hartree potential used to calculate the bands, VH ,
gives the scale of the on-site term inHint in Eq. 8, parameterized
by VH1, while the relative shift between the Γ and K points is due
to the assisted hopping term, VH2. The difference in the Hartree
potential between the AB and AA regions in the Moiré cell is
9VH , which gives an upper bound to the on-site energy described
by VH1,VH1 . (9VH )/3 (note that the weight of a Wannier on
a given AA region is 1/3). On the other hand, the shift of the K
point with respect to the Γ point induced by the hopping term in
Eq. 8 is εK − εΓ = 9VH2. From the results in Fig. 3, we conclude
that VH2∼VH1.

Electron-Assisted Hopping and Superconductivity
The existence of assisted hopping terms (40) in the effective
Hamiltonian of twisted bilayer graphene seems natural, as dif-
ferent Wannier functions overlap at regions where charging
effects are maximal (21–23). The effect of assisted hopping
interactions in high-Tc superconductivity has been studied in
refs. 41 and 42. The most likely instability favored by such an
interaction is superconductivity, since (i) the effective interac-
tion is attractive for some range of fillings, and (ii) an assisted
hopping term does not lead to many of the other typical
broken-symmetry phases, such as a magnetic state, or a charge-
density wave.

We analyze the effect on superconductivity of the interac-
tion term in Eq. 8 using the Bogoliubov–de Gennes approx-
imation. For simplicity, we consider here only superconduct-
ing states with spin zero and invariant under time-reversal
symmetry. The competition between the repulsion described
by the term proportional to VH1 and the assisted hopping
term, VH2, can lead to many other superconducting phases.
The local description derived from Eq. 8 is not strictly nec-
essary for this step; SI Appendix, section 5. The electron and
hole Hamiltonians are described in momentum space by two
2× 2 matrices, one for electrons with a given spin and val-
ley index and another for holes with opposite spin and val-
ley index. The mean field decoupling of the interaction term
leads to

HB-dG = (Hmf − εFIσ) τz + ∆1(k)VH1Iστx

+
[
∆2(k)

(
1 + e ik·ã1 + e ik·ã2

)
+∆3(k)

(
e ik·(−ã1−ã2) + e ik·(−ã1+ã2) + e ik·(ã1−ã2)

)]
×VH1σx τx + ∆4(k)VH2Iστx + ∆5(k)VH2σx τx .

[9]

Here, Iσ and σx are the identity matrix and a Pauli matrix in
sublattice space, τx and τz operate on the electron hole index,
and εF is the Fermi energy. The vectors ãi are the lattice vec-
tors of the honeycomb lattice. The values of ∆1(k), . . . , ∆5(k)
have to be determined self-consistently; SI Appendix, section 6,
Eq. S1.

The existence of superconductivity is determined by the func-
tions f (k) and in g(k) defined in SI Appendix, section 6, Eq.
S2. The function f (k) is always positive. The terms in Eq. 9
proportional to VH1 describe a repulsive interaction which can-
not lead to superconductivity in an isotropic s-wave-like channel.
This repulsive interaction is somewhat underestimated, as inter-
actions over length scales longer than LM are ignored (see,
however, the estimate of the screening length in SI Appendix,
section 5). On the other hand, the function g(k) is positive near
the Γ point and negative in a large region near the edges of
the Brillouin zone. If g(k)< 0, superconductivity becomes pos-
sible. Fermi surfaces for different fillings are shown in Fig. 6
and compared with the region in the Brillouin zone, where
g(k)< 0.

The results in Fig. 6 show that, typically, there are two pockets
at the Fermi surface and that, for a large range of fillings, super-
conductivity is possible in one pocket but not in the other.
As a result, the superconducting state will show two different
gaps, or a gap-less pocket coexisting with a gapped one. The
order of magnitude of the higher superconducting gap will be
∆sc ∼We−(WLM ε)/e

2

, where W is the bandwidth. Repulsive
interactions at the atomic scale not considered here, such as an
on-site Hubbard term, can suppress the superconducting phase
at integer fillings (18).

Conclusions
The occupation of the low-energy bands in a twisted bilayer
graphene leads to inhomogeneous electrostatic potentials of
magnitude of order of e2/(εLM ), where LM is the Moiré unit
length. This estimate is comparable, or larger, than the width of
the band.

Electrostatic effects, induced by charging the system away
from the neutrality point, distort the bands significantly. The
states at the edges of the Brillouin zone, at K and M ,
are shifted with respect to the states near the center of the
Brillouin zone, the point Γ. The exchange term, on the other
hand, leads to an increase in the bandwidth, approximately a
fraction of e2/(εLM ).

The band distortion induced by the electrostatic potential
can be described in terms of induced assisted hopping cou-
plings. These terms fit naturally with the complex overlapping
Wannier functions which give a local description of twisted
bilayer graphene. Assisted hopping interactions favor generally
superconductivity, and we explicitly show that s-wave pairing is
possible at certain fillings.

Note. After the submission of this manuscript, ref. 40 was posted,
also analyzing assisted hopping terms in graphene.

ACKNOWLEDGMENTS. We thank E. Bascones, M. J. Calderón, V. T. Phong,
B. Amorim, R. Miranda, and A. K. Geim for useful conversations. This
work was supported by the European Commission under Graphene Flagship
Contract CNECTICT-604391.

13178 | www.pnas.org/cgi/doi/10.1073/pnas.1810947115 Guinea and Walet

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810947115/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1810947115


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S
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32. Xu XY, Law KT, Lee PA (2018) Kekulé valence bond order in an extended Hubbard
model on the honeycomb lattice with possible applications to twisted bilayer
graphene. Phys Rev B 98:121406.

33. Thomson A, Chatterjee S, Sachdev S, Scheurer MS (2018) Triangular antiferro-
magnetism on the honeycomb lattice of twisted bilayer graphene. Phys Rev B
98:075109.

34. Nam NNT, Koshino M (2017) Lattice relaxation and energy band modulation in
twisted bilayer graphene. Phys Rev B 96:075311.

35. Wu F, MacDonald AH, Martin I (2018) Theory of phonon-mediated superconductivity
in twisted bilayer graphene. arXiv:1805.08735.

36. Lian B, Wang Z, Bernevig BA (2018) Twisted bilayer graphene: A phonon driven
superconductor. arXiv:1807.04382.

37. Rademaker L, Mellado P (2018) Charge-transfer insulation in twisted bilayer
graphene. arXiv:1805.05294.
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