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Self-initialized active contours
for microscopic cell image
segmentation

Asim Niaz?, Ehtesham Igbal*, Farhan Akram?, Jin Kim? & Kwang Nam Choi'**

Level set models are suitable for processing topological changes in different regions of images while
performing segmentation. Active contour models require an empirical setting for initial parameters,
which is tedious for the end-user. This study proposes an incremental level set model with the
automatic initialization of contours based on local and global fitting energies that enable it to capture
image regions containing intensity corruption or other light artifacts. The region-based area and

the region-based length terms use signed pressure force (SPF) to strengthen the balloon force. SPF
helps to achieve a smooth version of the gradient descent flow in terms of energy minimization. The
proposed model is tested on multiple synthetic and real images. Our model has four advantages:
first, there is no need for the end user to initialize the parameters; instead, the model is self-
initialized. Second, it is more accurate than other methods. Third, it shows lower computational
complexity. Fourth, it does not depend on the starting position of the contour. Finally, we evaluated
the performance of our model on microscopic cell images (Coelho et al., in: 2009 IEEE international
symposium on biomedical imaging: from nano to macro, IEEE, 2009) to confirm that its performance is
superior to that of other state-of-the-art models.

Image segmentation has numerous applications because it is an essential building block for most image process-
ing and computer vision tasks. Medical imaging, face recognition, pedestrian detection, etc., are some of these
applications. Image segmentation helps divide an image into multiple non-overlapping regions to simplify them
for further processing. The primary purpose of image segmentation is to simplify image representation in a
meaningful way for image analysis. The quality of image segmentation has a significant impact on the reliability
of the segmentation model. Artifacts such as intensity corruption in the images under observation greatly impact
segmentation accuracy. Slight inaccuracies could propagate errors throughout the complete image processing
chain. Hence, techniques that can manage these limitations are strongly desired.

Several methods are devised for the image segmentation, including region merging methods"?, graph-based
methods®?, and the active contours methods (ACM)>"'*. Kass et al. proposed ACM model, originally called
snake model, based on energy minimization technique’. The principle of ACMs is to limit the evolving curve
at the object boundaries by controlling inner and outer contour forces. Two drawbacks of original ACM are:
(1) evolving contour finds it difficult to adapt to topological changes in image and (2) it is sensitive to initial
condition. Level set-based active contour models need parameter initialization and the initial contour position
(seeds), requiring technical skills from the end-user, making it an uphill task. Although these parameters values
have a small effect on segmentation quality, expertise is still needed because it could lead to poor convergence.
The seeds of initial contour should also be placed near the object of interest; otherwise, the accuracy and time
cost could be compromised due to catching false contour lines.

ACMs are of two types:(1) global-region based and (2) local-region based. Both types have their pros and
cons. For example, the local-region-based methods are good at segmenting local regions, and the global-region-
based method can segment homogeneous areas efficiently. Mumford-Shah (M-S) model® uses a set of contours
C to partition different areas. However, it is challenging to minimize energy in the M-S model because the set C
of low dimension is unknown. Chan and Vese proposed their region-based ACM", assuming that the object of
interest is of homogeneous intensities. Real images contain inhomogeneity due to bias conditions. Therefore, the
C-V model worked well for the homogeneous images, but it is not suited for inhomogeneous image segmentation.
To overcome this limitation, the Local Binary Fitted model was proposed based on the local intensity fitting term’.
Zhang et al. proposed a local image fitting (LIF) model to segment local regions in an image®. C. Li proposed
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Figure 1. Example images: homogeneous image (left); inhomogeneous image (right).

their energy function based on the local k-means clustering property and estimated bias field, responsible for
the image inhomogeneity®. Figure 1 shows example images for homogeneous (free from intensity corruption)
and inhomogeneous (with intensity corruption) types.

Wu et al. dealt with the inhomogeneity problem by introducing Retinex model’®. Retinex incorporates a
piece-wise variational level set with the bias field estimation and subsequent correction. Later, Wu et al. per-
formed well on the homogenous and inhomogeneous images in their adaptive active contour model combined
with the datafield"”.

Region-based models are widely used for image segmentation due to their inherent noise filtering mechanism
and ability to manage topological changes. However, their performance could be compromised if local fitting
energy functionals are excluded. Image artifacts such as abrupt intensity variations within the same object of
interest require the inclusion of a local fitting energy functional.

This study proposes an energy functional that comprises both the local and global fitting energy terms for
inhomogeneous image segmentation. The proposed model includes a signed pressure force (spf) function in its
area and length term to help it converge faster than other comparison methods. The inclusion of local and global
fitting energies makes this method robust irrespective of image inhomogeneity. A hybrid energy functional is
formulated and then penalized with SPF-based length and area terms. This work contributes to the level set-based
ACM category of unsupervised segmentation.

This model is independent of the initial contour position. In addition, there is no need to initialize the
parameters, unlike other models that require the end-users to initialize parameters. Inspired by the excluding
seed method (ESM)'8, the concept of walking particles is incorporated with the proposed method to assist with
the self-initialization. The proposed model shows greater accuracy and is computationally less expensive than
previous work.

The rest of this paper is organized as follows. “Section Proposed method” describes the level set formulation
of the proposed model, and “Section Results” presents segmentation results, quantitative analysis, noise sensitiv-
ity analysis and computational cost evaluation followed by the ablation study where we presented two different
SPF formulations. Subsequently, we have a discussion section and the final section concluding this manuscript.

Proposed method
This section of the manuscript briefly explains the proposed model. Let us have an image I(x) in the x, y planes
R2. Q represents the bounded open subset of the given domain, with domain boundary 3. For initial con-
tour position we use circular projection concept'® explained in the Discussion section of this manuscript.
C(s) : [0,1] — R? is equivalent to the mathematical representation of a curve, dividing image I(x) into two
distinctive regions, inside(C), and outside(C).

C-V" bases their energy functional on the M-F® model and proposes the following model:

Ecv(C,c1502) =i1/Q|I(X)—C1|2He(¢(X))dX+7nz/QII(X)—Czlz(l—H)s(d)(X)))dx

(1)

+M/ IAHa(¢(x))|2dX+V/ He (¢ (x))dx
Q Q

where /1, 45, and v are the positive coeflicients; c;, and c; are are the average intensity means of the inner and
outer regions of contour C in image I(x), mathematically given as

Jo I He ¢ (x))dx
= —F 77 (2)
Jo He (9 (x)))
and
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Figure 2. Effect of epsilon on (a) Heaviside function, and (b) Dirac delta function.

o _ oI~ Hepx))dx
2 Jo(l = He(¢(x)))

In these relations, € controls the smoothness of the H(¢), which is the smooth approximation of the Heaviside
function. The effect of ¢ on Heaviside function is illustrated in Fig. 2a.

Ha( 1 2 ¢
(P(x)) = 3 1+ ;arctun . (4)

®3)

The C-V'*> model is a global region-based model that was originally designed based on the assumption that
objects of interest have homogeneous intensities. The C-V**> model shows good performance while segmenting
objects having homogeneous intensities. However, C-V'* fails to capture objects that have inhomogeneity due
to corrupted intensity.

This work considers an image to be an approximation of the varying function of inhomogeneity. Variational
level set with bias correction (VLSBC)? suggested that an image under experiment contains some degree of inten-
sity corruption. The image under experiment is equivalent to the bias field (b(x)), which is the region responsible
for intensity corruption, true image (J(x)) that is free from noise and the additive noise (n(x)). The image under
experiment can be described using the following mathematical expression:

I(x) =b(x)](x) + n(x), xe€ Q. (5)

J(x) =2 iM;(¢) (6)

constitutes the constant approximation of an image that is free from inhomogeneity. K-means clustering, which
is local clustering, is the minimization of

N
Ex~ / (Eizl /Q Ko (x = p(y) — b(x)c,»|2dy> dx (7)
Using Heaviside function, (7) becomes
N
= [ (z,»:l | Kot =i - b(x)milei(¢>)dy> dx ®)

Here N = 2, and M; accounts for the region member functionsi.e M; = H(¢), M, = 1 — H(¢).
Taking the first derivative of (8), we obtain b(x), and m; as

Kok U@mMi($)
b = e (M) ©)
and
- /&*(I(x)b(x)Miw)) ;
=] Ky * (007 M) (10)

, respectively.

VLSBC? is robust to initialization and guarantees the smoothness of the bias field over the data term.

The proposed model, inspired by'>*° segments inhomogeneous images by combining local and global fitting
energies as
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Eproposed = ELGFE(®) + 1Lspr (@) + vAgpr () (11)
where
Loy (9) = /stpf(1)8£(¢)|A¢|dx (12)
,and
Agr(P) = /Q spf (DHe (¢)dx (13)

are the region-based length and region-based area terms, respectively. Even though the terms Lyps (¢) and Agpr ()
are inspired from Akram et al.”®, they are different in a way that we have not appended membership function
in the SPF functions of each of these terms in contrast to the Akram et al.”®. There is no need to append the
membership function within the SPF of these region-based terms in the proposed model (this can be verified in
the ablation study section) because it is already added with (9) and (10). ErgrE is the local global fitting energy
model, defined as

Ercre(¢) = /((I(X) — Ippr) (I (x) — Igrr))dx (14)

where Iy and Igrr are the local image fitted and global image fitted models, respectively, and are defined as
follows:

Ipprr =b(x)(m My + myM;) (15)

Igrr =c1M1 + oM, (16)
In (12) and (13), spfis a signed pressure force function, defined as

I(x) — Igrr (%)

PO = 10 — Iem @D 17)
By calculus of variation?!, (11) minimizes to
d
8*(]: = 3 (P) U (x) — IpLrr(x)) (1 — €2) + 8 (@) (%) — IGrr(x)) (my — my)
(18)
) A(9)
+ (u,dw (spf(l) A0 ) ) 8e(p) — vspf ()8 ()
where §¢ (¢) is Dirac delta function, defined as
&
3 (¢) = Tt ed) (19)

The effect of € on the Dirac delta function is illustrated by Fig. 2b. ¢ is a constant that controls the width of the
Dirac delta function. ¢; and m; are the global and local intensity means defined by (2), (3), and (10), respectively.
The global intensity means are computed under the assumption that the image contains homogeneous regions.
Therefore, the inclusion of the bias field b(x) is included in the local intensity means to ensure efficient contour
evolution over inhomogeneous images as well.

The mathematical value of spf(I) is[—1, 1]inside and outside the contour. spf(I) modulates the pressure force
sign within the region of interest (ROI), such that it attracts the contour if outside, and expands the contour if
inside the ROLI. It helps to obtain a smooth version of the gradient descent flow.

A graphical presentation of the proposed model is presented in Fig. 3. The proposed model can automatically
estimate the default parametric values depending on the characteristics of the object of interest. Furthermore,
if the images of a new patient are fed into the model, this will automatically adjust the default values of the ini-
tial parameters, thereby eliminating the inconvenience of different results. The initial level set function of the

proposed model is defined as
—p, x € Qo — 9
Pxt=0 = { 0, xe€dQ (20)
p x€ Q-0

where p is a positive constant, i.e., p > 0, Q represents the image domain; €2 represents the initial contour inner
region; 982 is the initial contour. Later stages of the proposed algorithm are listed below.
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Figure 3. Graphical representation of the proposed algorithm.

Algorithm 1 The proposed algorithm

Input: /(x)

1) Bias field b(x) is initialized as b(x) = 0.

2) Initialize the levelset ¢ from time O using (20).

3) n = 0; (initialize iterations)

4) Compute the local intensity means m; using (10) and global intensity means ¢; by using (2) and (3).
5) Calculate spf(I) using (17).

6) Potential differential equation (18) is solved in ¢ to obtain ¢ ).

7) Check whether the solution is converged or not. If not then m = m + 1.

8) Obtain the final image segmentation.

Output: ¢

Results

In this section, the proposed model is compared with other level set models on synthetic and real images. All
experiments were conducted using MATLAB 2018 on a PC with Windows 10 and an Intel ® Core™ i7, 3.60
GHZ and 8192 MB RAM.

Figure 4 presents the experimental results on a synthetic image with five different levels of inhomogeneity
in increasing order from top row to the bottom. The first column shows input images, followed by a compari-
son of different models with the proposed model. For the first two levels, all the methods captured the region
of interest to the full extent. However, the global region-based active contour models struggle to evolve as the
inhomogeneity level increases correctly. On the other hand, the local-region-based models performed well as
compared to the global-region-based methods. The proposed model, containing local and global region-based
terms appended with the bias field and region-membership functions, captures ROI irrespective of the image
inhomogeneity levels.

Figure 5 showcases the segmentation results confirming the independence of our model of the initial contour
position. For this purpose, we used contours of different shapes and sizes over the same image and observed
the corresponding effect. It is evident that the position of the initial contour has no or negligible effect on
segmentation.

The performance of different active contour methods is compared to the proposed approach on multiple
synthetic and real images.
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Figure 4. Comparison of proposed model with other models on the same image with five different levels of
inhomogeneity: (col 1) input image with initial contour; (col 2) C-V'3; (col 3) LBF’; (col 4) LIF®; (col 5) VLSBC?
(col 6) Zhang et al.'%; (col 7) proposed model.

Figure 5. Segmentation results with contours of different shapes and sizes at different locations on the input
image. First row: input image with different contours; second row: associated results.

Figure 6. Results of the proposed model in comparison with those of other models on synthetic images: (col 1)
input image; (col 2) C-V*3; (col 3) LBF’; (col 4) LIF%; (col 5) VLSBC?; (col 6) Zhang et al.'% (col 7) FRAGL ; (col
8) proposed model.

Synthetics examples. Figure 6 represents a comparison of different ACMs over synthetic example images.
The original images are shown in the first column, followed by the results produced by C-V'>, LBF’, LIF®,
VLSBC?, Zhang et al.!?, and FRAGL", respectively. The top row of Fig. 6 exhibits almost similar segmentation
accuracy for all the comparison methods. The second row of Fig. 6 is a computer-generated image of fingers.
Although C-V?® produced smooth contours around the boundaries of the fingers, it did not fully distinguish the
middle and the ring fingers. This limitation is there because the C-V*> only considers the global statistics and
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Table 1. CPU time (s) and number of iterations consumed for segmentation results of Fig. 6.

1 3.44

Figure 7. Results of proposed model in comparison with those of other models on real medical images: (col
1) input image; (col 2) C-V'5; (col 3) LBF’; (col 4) LIF?; (col 5) VLSBC?; (col 6) Zhang et al.'%; (col 7) FRAGL! ;
(col 8) proposed model.
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Table 2. CPU time (s) and number of iterations consumed for segmentation results of Fig. 7.

not the local statistical information during contour evolution. Utilizing LIF energy, the LIF® differentiated the
middle and ring finger boundaries, but false contours compromised the segmentation accuracy of this model.
LBF” and VLSBC’ showed similar results, whereas the Zhang et al.'® model gave comparatively less segmentation
accuracy than all the other comparison methods.

Table 1 presents the statistical data for CPU time (s) and iteration counts measured for the mentioned
methods for the individual images in The computational cost of the proposed model is significantly less than
the previous methods.

Real examples. Figure 7 is a comparison of multiple methods on real medical images. The three rows of this
figure have a medical image, a dermoscopic image from the PH2 database’?, and a skin lesion image from the
Skin-Cancer-MNIST-HAM10000 database'?, respectively.

The segmentation results produced by the FRAGL!" method and the proposed method are almost the same.
The C-V' model failed to manage the inhomogeneity in images and produced noisy segmentation. The LBF” and
LIF® models captured the ROI, but the appearance of false contours compromised the segmentation accuracy.

Table 2 presents the statistical data for CPU time (s) and iteration counts measured for the mentioned meth-
ods for individual images in Fig. 7. The CPU time complexity of our model is significantly less compared to the
previous models.
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Quantitative analysis. This section presents the results for the proposed model in comparison with the

LIF®, VLSBC’, Zhang et al.'°, and FRAGL!" methods against ground-truths. To validate the superiority of our

model, we measured the segmentation accuracy metric for the microscopic cell image dataset? as:
TP+ TN

TP + FP+ TN 4+ FN’

Accuracy = (21)
where TP, TN, FP, and FN account for truepositive, truenegative, falsepositive, and falsenegative, respectively. The
segmentation accuracy of the proposed method is the highest, making it the most efficient of all the comparison
methods.

To further add transparency to the experiments, we extended our evaluation to measure the Die Index, Jac-
card similarity index (Jaccard index), and contour matching score (bfscore). All of these metrics are calculated
for the proposed method and the comparison methods. The range of these metrics lies within [0, 1], where a
value closer to 1 indicates a more precise segmentation.

The Dice index is usually called an overlap index, and it is measured by overlapping the segmentation and
ground truth masks by placing one on top of the other. The value of the Dice index shows to what degree the
segmentation result is comparable to the actual result. The Dice index is measured using the segmentation result
(SR) and ground truth (GT). The formula used to calculate the Dice Index is as follows:

218, N S, |

Dice(SR, GT) ————=-
IS¢+ [Sg]

(22)

where S; and S, define the segmented results and the actual ground truths, respectively. We then calculate the
Jaccard index as:

S, NS
JaccardIndex (SR, GT) = ||S:Tsi|| (23)

Likewise, the contour matching score (BF score) helps estimate how close the boundary of the segmented
region is to the ground truth boundary. The BF score is measured as:
o102

BF(SR,GT) = P (24)

o1 is the proportion of the number of points on the boundary of the SRs that are sufficiently close to the
boundary of the GT to the length of the boundary of SR.

oy is the proportion of the number of points on the boundary of the GT that are sufficiently close to the
boundary of the SRs to the length of the GT boundary. The range of the BF score is [0,1]. The higher the BF
score, the better the segmentation quality.

These quantitative comparisons were conducted for all models to measure the segmentation accuracy, Dice
index, Jaccard index, and BF score over the microscopic images?* dataset of dermoscopic images. Figure 8 is
the visual presentation of segmentation results for LIF®, VLSBC’, Zhang et al.'%, Akram et al.’®, Akram et al.?,
FRAGL', and the proposed model, and Fig. 9 presents the quantitative illustration of various performance
metrics for all the comparison methods.

All the image segmentation evaluation techniques prove that the proposed active contour model achieves the
highest Dice index, Jaccard index, and contour matching score (BFscore) compared with the previous related
models.

Noise sensitivity evaluation. This section presents a noise sensitivity analysis of the proposed model
using the Jaccard Similarity Index (JSI). JSI helps compare segmentation accuracy when the input images are
corrupted with noise. We added different levels of artificial salt & pepper and Gaussian noise to the input images
to measure the robustness of various methods, including the proposed model. The mathematical relation of the
JSIis:

IXNY]|

SIX,Y) = ;
JSI(X, Y) XUY]|

(25)

where X and Y represent the segmentation result and the ground truth, respectively.

Figures 10 and 11 show segmentation results of different ACMs and the proposed method when the image
is corrupted with salt & pepper and Gaussian noises, respectively. The input image we considered representing
noise sensitivity evaluation in the manuscript is of average complexity. The reason is that most models, irrespec-
tive of their genres, perform better on such images.

Both Figs. 10 and 11 show that all the ACM methods in the experiment have captured the ROI well; however
previous methods took longer than the proposed model to converge. JS values of all the in-comparison methods
are calculated by comparing segmentation results with ground-truth using (25). The respective accuracy chart
for both the figures is shown in Fig. 12. It is clearly evident that the proposed model has higher JS values nearly
equal to 1, confirming its robustness to different noise levels.

Computational cost evaluation. This section presents one of the several images we tested various meth-
ods on to evaluate computational cost or the CPU time. The presentation image is of an airplane along with its
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Figure 8. Top row: input image with initial contour, segmentation results for LIF%, VLSBC® and segmentation

results for Zhang et al.!’, respectively. Second row: segmentation results for Akram et al.', Akram et al. %,

FRAGL!, and the proposed method, respectively.

Quantitative Analysis Chart
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Figure 9. Quantitative analysis chart showing a graphical illustration of segmentation accuracy, Dice index,
Jaccard index and BF score matrices.
shadow. We compared the performance of Retinex!®, Adaptive’’, FRAGL!, and the proposed model in terms
of CPU time. All in-comparison methods captured the object of interest, the airplane, disregarding its shadow.
We noted the computational time for each method to evolve over the object of interest until the contour fully
fits it. The computational cost chart is presented in Fig. 13, along with the airplane image segmentation results.
Adaptive!” model took 3.76 s to converge to the final segmentation, which is the second-best amongst competi-
tors, while the Retinex'® model took 4.23 s to segment the object of interest. FRAGL" model shows the perfor-
mance of 3.74 s, slightly slower than the proposed model, which is just 1.06 s.
Ablation study. This section presents the ablation study where we studied the impact of different terms of
the proposed model on its overall performance for the microscopic image?’. Figure 14 presents the line graph
for segmentation accuracy concerning the full energy functional of the proposed model, removing both of the
region-based terms, removing length term and removing area term, respectively.
Scientific Reports |  (2022) 12:14947 | https://doi.org/10.1038/s41598-022-18708-5 nature portfolio
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Figure 10. Col (1): Input image corrupted with Salt & Pepper noise levels (0.01, 0.02, 0.03, 0.04, 0.05), Col(2):
Segmentation results of (col 2) C-V'%; (col 3) LBF’; (col 4) LIF%; (col 5) Adaptive!’; (col 6) Retinex'®; (col 7)
FRAGL ; (col 8) proposed model.

Figure 11. Col (1): Input image corrupted with Guassian noise levels (0.01, 0.02, 0.03, 0.04, 0.05), Col(2):
Segmentation results of (col 2) C-V'%; (col 3) LBF’; (col 4) LIF%; (col 5) Adaptive'”; (col 6) Retinex'®; (col 7)

FRAGL ; (col 8) proposed model.
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Figure 12. ]S values for Figs. 10 and 11 are represented by (left) and (right), respectively.

Furthermore, we also observed the impact of including membership function with the SPF function of both
the region-based terms as in the Akram'® model. The results show that we achieve a similar type of results with
the only difference that it adds to the time complexity by 3%. This difference does not look great if we take the
computations for one image; however, at a large scale, this difference is worth expensive. Therefore, we opt not
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Computational Cost Chart
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Figure 13. Right Image: Row (1): Input image with initial contours pf different shapes at different positions;
Row (2) Adaptive!’; Row (3) Retinex'®; Row (4) FRAGL!; Row (5) proposed model. Left Image: Computational
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Figure 14. Segmentation results against time complexity (a) SPF with the Akram et al.'® formation (b) SPF
formation with out membership function in the proposed methodology.

to append membership function with the SPF of both the region-based terms. Figure 15 presents results from
both the formations against time complexity of each.

Discussion

Level set-based image segmentation models require parameter initialization that is randomly selected from the
literature. This requirement compromises such models’ performance if the end-user does not select suitable
parameters. Circular Projection (CP) assists with estimating the converging or diverging configuration, which
helps select seeds inside the object of interest. Inspired by ESM'S, the CP is defined as:

(Projue) VX 9)*  ifprojuyeyVx,y > 0,
P;f},(e) =iy ey Wi, Viy€ Wi, (26)
0, otherwise

and
(Projue) VX 9)*  if projugey Vx,y < 0,

PL,(0) = Zxyq Vxy€ W3, viy€ Wi, (27)
0, otherwise
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Figure 15. Ablation study over microscopic images* database by removing different terms from the proposed
function.

where Vi is a discrete vector filed W, having a window of size z with its center at point x, y of the discrete
vector field. vp8 = (% ;9),0 < 6 < 7.

Most image segmentation models belong to the supervised category requiring large and densely annotated
datasets. However, there is a scarcity of medical datasets as researchers have access to limited samples. And the
performance of such supervised models is compromised if they are trained on fewer images which could be
dangerous in medical applications. The proposed model does not belong to the unsupervised category of the
image segmentation literature that does not require large datasets to produce superior segmentation results.

Conclusion

This paper presents a novel method that is based on both the local and global fitting models and is smoothed
by Gaussian filtering. This method segments homogeneous as well as inhomogeneous images. The bias field is
incorporated with the local fitting model to ensure contour evolution over inhomogeneous regions. The Gaussian
kernel provides contour smoothness over object boundaries after each iteration. The proposed model success-
fully and efficiently dealt with bias conditions and outclassed the other segmentation methods, as confirmed by
the results and quantitative analysis sections. In the future, we will evaluate the proposed model on additional
types of images.

Data availability
The microscopic cell image dataset?? analysed for the quantitative study is available at Murphy-Lab. Rest of the
images analysed/generated in this manuscript are available from the corresponding author on reasonable request.
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