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Abstract: Cephalotaxus oliveri is a tertiary relict conifer endemic to China, regarded as a national
second-level protected plant in China. This species has experienced severe changes in temperature
and precipitation in the past millions of years, adapting well to harsh environments. In view of
global climate change and its endangered conditions, it is crucial to study how it responds to changes
in temperature and precipitation for its conservation work. In this study, single-molecule real-
time (SMRT) sequencing and Illumina RNA sequencing were combined to generate the complete
transcriptome of C. oliveri. Using the RNA-seq data to correct the SMRT sequencing data, the four
tissues obtained 63,831 (root), 58,108 (stem), 33,013 (leaf) and 62,436 (male cone) full-length unigenes,
with a N50 length of 2523, 3480, 3181, and 3267 bp, respectively. Additionally, 35,887, 11,306, 36,422,
and 25,439 SSRs were detected for the male cone, leaf, root, and stem, respectively. The number of
long non-coding RNAs predicted from the root was the largest (11,113), and the other tissues were
3408 (stem), 3193 (leaf), and 3107 (male cone), respectively. Functional annotation and enrichment
analysis of tissue-specific expressed genes revealed the special roles in response to environmental
stress and adaptability in the different four tissues. We also characterized the gene families and
pathways related to abiotic factors. This work provides a comprehensive transcriptome resource for
C. oliveri, and this resource will facilitate further studies on the functional genomics and adaptive
evolution of C. oliveri.

Keywords: Cephalotaxus oliveri; SMRT; transcriptome; multiple tissues; gene families; pathways

1. Introduction

Cephalotaxus oliveri, a perennial shrub or small tree, belongs to the Genus Cephalotaxus
sect. Pectinate in Cephalotaxaceae, and it is famous for producing the alkaloids harringto-
nine and homoharringtonine, which are effective in treating leucocythemia [1]. C. oliveri has
been regarded as a vulnerable species by International Union for Conservation of Nature
(IUCN) due to the deforestation and overexploitation [2,3]. Its natural populations were
widely distributed, which can be found in the montane regions of northern Guangdong,
Guizhou, western Hubei, Hunan, eastern Jiangxi, southern and western Sichuan, and
eastern Yunnan in China [2]. The available paleobotanical data show that C. oliveri was
widely distributed in North America, Europe, and Asia during the Cretaceous and Tertiary
periods. After the Quaternary, due to the influence of glacier activities, C. oliveri only
survived in a small environment. The existing C. oliveri is mainly distributed in the sandy
shale mountains with an altitude of 1300–1500 m in eastern China, while in the western
part it is distributed in the mountains with an altitude of 1500–2700 m, with the extreme
lowest temperature reaching −5 ◦C [2,4]. As an old rare species with a long life, C. oliveri
has experienced severe changes in temperature and precipitation over the past millions
of years, adapting well to cold and arid environments [3]. In view of the continuous
changes in the global climate, it is crucial to study how C. oliveri responds to the changes
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in temperature and precipitation for its conservation work. However, previous studies
only use different molecular markers to study the genetic diversity, population history and
adaptive loci of C. oliveri [3,5–7]. The molecular and genetic resources of this long-lived
conifer are still blank, limiting the studies on molecular and genetic analysis.

To adapt to changes in the environment, conifers have evolved a variety of physio-
logical responses and defense systems for withstanding various stress conditions, most of
which depend on changes in gene expression [8,9]. Researchers can study the expression
of all genes in specific tissues or cells at the overall level based on transcriptome studies,
from which they can mine gene families and molecular pathways related to environmental
stress or adaptation. Several important candidate genes and metabolic pathways related to
abiotic stress have been characterized in some conifer species. For example, Meng et al.
found that MAPK signaling pathway and TF families, like NAC, WRKY, ERF, MYB, and
bZIP responded to cold stress in Taxus chinensis based on transcriptomic analyses [10].
Moreover, Fox et al. created a drought-stressed Pinus halepensis transcriptome and found
the accumulation of heat shock proteins, thaumatin and exordium and the genes related to
abscisic acid response were up-regulated [11]. Other gene products, like dehydrins, were
also found to be related to environmental stress in some conifers [12–14]. In order to have
a more comprehensive understanding of the transcriptome information of C. oliveri and
its genes and metabolic pathways related to cold and drought tolerance, it is necessary to
conduct transcriptome studies on multiple tissues of C. oliveri.

The development of high-throughput sequencing technology has made transcriptome
sequencing widely used, greatly improving the efficiency of gene discovery [15–18]. The
development of sequencing technology has provided scientists with powerful tools for
studying plant transcriptomes. Illumina sequencing technology and third-generation sin-
gle molecular real-time (SMRT) sequencing technology have their own advantages. The
former has the advantages of high throughput, high sensitivity, and high accuracy; and its
cost is lower than that of third-generation sequencing; but its read length is short, and a
complex splicing process is required after sequencing [19]. The latter has the advantages
of ultra-long sequence reading, no need for PCR amplification and direct detection of
DNA modifications, but its sequencing accuracy is lower than that of second-generation se-
quencing, only 85% [20,21]. Therefore, combining second-generation and third-generation
sequencing technologies is commonly used in transcriptomic analyses.

Here, we combined long read SMRT sequencing and short read RNA-Seq to analyze
the transcriptome of C. oliveri. The aims of our study include: (i) generating reference
transcriptome sequences and annotating the transcriptome for the four tissues of C. oliveri;
(ii) identifying transcription factors (TFs), long non-coding RNAs (lncRNAs), and simple
sequence repeats (SSRs); (iii) exploring gene expression patterns among the four organs;
(iv) exploring the functions of tissue-specific expressed unigenes; and (v) charactering the
candidate gene families and metabolic pathways related to biotic and abiotic stress. This is
the first report of a comprehensive characterization of the global transcriptome of C. oliveri.
This study provides a valuable genetic resource for further studies on functional genomic
and adaptive evolution of this species and related species.

2. Results
2.1. The Full-Length Sequences of Pacbio Iso-Seq

Based on SMRT sequencing technology, 560,605, 312,574, 353,127 and 213,338 poly-
merase reads were generated for the male cone, root, stem, and leaf (Supplementary
Materials Table S1). After preprocessing, 9,465,158, 911,365, 8,444,499, 7,873,312 subreads
were obtained for the male cone, stem, root, and leaf with a mean length of 2127, 2097,
1238, 1912 bp, respectively. Then subreads were used to self-correction to obtain circular
consensus sequences (CCSs, Figure S1). In total, 264,227, 303,178, 189,764 and 462,122 CCSs
were obtained for the root, stem, leaf, and male cone, respectively. In addition, 213,507,
268,740, 150,247, and 401,815 sequences were identified as full-length non-chimeric (FLNC)
reads from the CCSs for the root, stem, leaf, and male cone. Based on the iterative clustering
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for error correction (ICE) algorithm and the polishing using the Arrow algorithm, 143,177,
158,855, 96,459 and 209,217 high-quality, full-length, and polished consensus isoforms were
generated for the root, stem, leaf, and male cone, respectively. After error correction using
the RNA-Seq data and removing the redundant sequences using CD-HIT, 63,931, 58,108,
33,013, and 62,436 unigenes were obtained for the root, stem, leaf, and male cone, with the
N50 of 2523 bp, 3480 bp, 3181 bp and 3267 bp, respectively (Table S2). Based on bench-
marking universal single-copy ortholog (BUSCO) analyses, approximately 62.7% (root),
72.7% (male cone), 64.6% (leaf) and 70.5% (stem) of the 1440 expected embryophyte genes
were identified as complete (Figure S2).

2.2. De Novo Assembly of Illumina RNA-Seq Data

The Illumina RNA-seq generated 210.48 million raw reads for all tissue samples. After
trimming and filtering, 52.58, 50.07, 48.63, and 53.48 million clean reads were obtained for
the root, stem, leaf, and male cone (Table S3). Each sample produced no less than 7 Gb data,
the percentage of Q30 reached more than 91.94%, and the GC content was between 43.95%
and 44.88%. Based on these clean reads, Trinity software de novo assembled 72,356, 43,372,
42,844 and 36,446 unigenes for the root, stem, male cone, and leaf. The corresponding N50
was 1905 bp, 2150 bp, 2051 bp and 2046 bp, respectively (Table S4), which were shorter
than the N50 length from PacBio isoform sequencing (Pacbio Iso-Seq).

2.3. Functional Annotation

To obtain a comprehensive annotation of C. oliveri transcriptome, 62,436 (male cone),
58,108 (stem), 33,013 (leaf), 63,831 (root) full-length transcripts were annotated by searching
against seven databases, including NCBI non-redundant protein (Nr), NCBI non-redundant
nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene
Ontology (GO), Pfam protein families, and NCBI euKaryotic Ortholog Groups (KOG)
databases. Among the four tissues, male cone was the best annotated, followed by stem,
leaf, and root. 58,601 (93.86%) unigenes of male cone were annotated in at least one
database, while the number of the other three tissues was 58,108 (91.19%, stem), 29,411
(89.09%, leaf), and 51,054 (79.98%. root), respectively (Table 1).

Table 1. Statistics of annotations of the full-length transcripts from four tissues of C. oliveri with
seven databases.

Database Male Cone Stem Leaf Root

Nr 57,787 51,624 28,649 48,379
Swiss-Prot 50,366 44,725 24,361 39,525

KEGG 57,094 50,652 27,952 46,851
KOG 38,768 34,613 18,671 31,056
GO 40,828 35,387 19,395 29,940
Nt 40,691 32,627 18,436 29,751

Pfam 40,828 35,387 19,395 29,940
At least one database 58,601 52,990 29,411 51,054

All databases 23,857 18,801 10,302 14,577

The homologous species of C. oliveri were predicted by sequence alignment on the
basis of the Nr database. The species distribution of the top 20 best match results in Nr
were shown in Figure S3. The top three homologous species for the four tissues were Picea
sitchensis, Amborella trichopoda and Nelumbo nucifera. The number of unigenes distributed in
these three species was 17,393 (30.10%), 10,676 (18.47%) and 5530 (9.57%) for male cone;
10,304 (35.97%), 4098 (14.30%) and 2202 (7.69 %) for leaf; 12,774 (26.40%), 4227 (8.74%)
and 3099 (6.22%) for root; 14,459 (28.01%), 8245 (15.97%) and 4544 (8.80%) for stem. As
expected, the top homologous species was a conifer.

GO terms were assigned to C. oliveri unigenes for functional categorization. The
assigned GO terms were summarized into the three main GO categories (biological pro-



Int. J. Mol. Sci. 2021, 22, 787 4 of 26

cess, cellular component, and molecular function), and then into 54 functional categories
(Figure S4). Within the biological process category, “metabolic process” (GO: 0008152),
“cellular process” (GO: 0009987) and “single-organism process” (GO: 0044699) were promi-
nent subcategories. For the cell components category, the first three subcategories of
the four tissues were “cell” (GO: 0005488), “cell part” (GO: 0044464), and “organelle”
(GO: 0043226). In the molecular function category, the first three subcategories of the
four tissues were the same as “binding” (GO: 0005488), “catalytic activity” (GO: 0003824)
and “transporter activity” (GO: 0005215) (Figure S2). In addition, there were 3555 (male
cone), 1746 (leaf), 2878 (root) and 3332 (stem) unigenes annotated into the “response to
stimulus” (GO: 0050896) in the biological process category. In the next level of GO terms
of “response to stimulus”, that is, the third level of GO terms, there are five GO terms
worthy of attention. C. oliveri had 218 (male cone), 124 (leaf), 207 (root) and 190 (stem)
unigenes annotated to “response to stress” (GO: 0006950). There were 78 (male cone),
24 (leaf), 39 (root) and 68 (stem) unigenes assigned to “response to hormone stimulus”
(GO: 0009725). The number of unigenes annotated to “response to water” (GO: 0009415)
were 28 (male cone), 53 (leaf), 43 (root) and 63 (stem), respectively. It was worth noting that
the number of unigenes annotated to “response to oxidative stress” (GO: 0006979) in the
root tissue was 105, which was significantly higher than the other three tissues (Table 2).

Table 2. The number of genes of the third-level Gene Ontology (GO) terms from “response to
stimulus” in each tissue.

GO_ID GO_Term Male Cone Leaf Root Stem

GO: 0006950 Response to stress 218 124 207 190
GO: 0009733 Response to auxin stimulus 9 8 15 5
GO: 0009415 Response to water 28 53 43 63
GO: 0006979 Response to oxidative stress 68 39 105 61
GO: 0009725 Response to hormone stimulus 78 24 39 68

It is helpful to evaluate the biological pathways that might be active in C. oliveri with
KEGG pathway analysis. According to the KEGG classification, the unigenes were assigned
to six KEGG biochemical pathways: (1) cellular processes, (2) environmental information
processing, (3) genetic information processing, (4) metabolism, (5) organismal systems
and (6) human diseases (Figure S5). The top five subcategories of the four tissues were
“transport and catabolism”, “folding”, “sorting and degradation”, “translation”, “signal
transduction”, and “carbohydrate metabolism”. Obviously, the category of “environment
information processing” was worthy of our attention. Among the four tissues, 2893 (male
cone), 1409 (leaf), 2503 (root) and 2695 (stem) unigenes were assigned to “environment
information processing”. This category is mainly divided into three subcategories, namely
“membrane transport”, “signal transduction” and “signaling molecules and interaction”. In
addition, the sub-category of “environmental adaptation” under “organismal systems” also
deserves special attention. 586 (male cone), 326 (leaf), 548 (root) and 613 (stem) unigenes
were assigned to this category, the specific ko pathways were plant–pathogen interaction
(ko04626) and circadian rhythm-plant (ko04712).

The KOG analysis demonstrated that 38,768 (male cone), 34,613 (stem), 18,671 (leaf),
31,056 (root) unigenes were assigned to 26 functional clusters (Figure 1). In the four tis-
sues, the first five categories were “general function prediction (R)”, “post-translational
modification, protein conversion, molecular chaperone (O)”, “signal transduction mecha-
nism (T)”, “transcription (K)” and “unknown function (S)”. In addition, 1519 (male cone),
778 (leaf), 1310 (root) and 1326 (stem) unigenes were assigned to the “biosynthesis, trans-
port, and catabolism of secondary metabolites (Q)”; 305 (male cone), 200 (leaf), 332 (root)
and 294 (stem) unigenes were annotated to “defense mechanism (V)”. In the Q category,
most of the unigenes were annotated as cytochrome P450 CYP4/CYP19/CYP26 subfamilies
(KOG0157), iron/ascorbate family oxidoreductases (KOG0143), pleiotropic drug resistance
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proteins (PDR1-15) (KOG0065), cytochrome P450 CYP2 subfamily (KOG0156) and mul-
tidrug/pheromone exporter (KOG0055).

Figure 1. Eukaryotic ortholog group (KOG) classification of unigenes.

2.4. Identification of TFs, SSRs and LncRNAs

Transcription factor (TF) can specifically bind to a specific sequence upstream of the 5’
end of a gene, thereby regulating gene expression patterns. In this study, iTAK pipeline
was used to identify plant transcription factors in four tissues of C. oliveri. A total of
3846 (male cone), 1662 (leaf), 2522 (root) and 3685 (stem) transcripts were predicted as
plant transcription factors (Table S5). Except for FAR1, zn-clus, and C2C2-YABBY, all
other transcription factor families had a certain amount of expression in the four tissues of
C. oliveri (Figure 2a). The top 20 transcription factor families with the highest expression in
C. oliveri were AP2/ERF−ERF, HMG, CSD, C3H, MYB, C2H2, Trihelix, bZIP, Tify, NAC,
bHLH, HB−HD−ZIP, MADS −MIKC, MYB−related, GNAT, WRKY, GRAS, AUX/IAA,
MBF1 and TRAF.

SSR is widely and evenly distributed in the genome of eukaryotes. The software
MISA was used to search the SSR profiles in the unigenes of C. oliveri. 20,911 (33.49%),
8239 (24.96%), 20,857 (32.68%) and 16,148 (27.79%) SSR-containing unigenes were detected
from male cone, leaf, root, and stem, respectively. In the four tissues, mono-nucleotide
repeat motifs were the most abundant, followed by di-nucleotide repeats and tri-nucleotide
repeats (Figure 2b).

Four computational approaches (CPC, CNCI, CPAT, and Pfam) were combined to
identify lncRNAs. As is shown in Figure 2c, 11,113 (root), 3408 (stem), 3193 (leaf), and
3107 (male cone) unigenes were predicted as lncRNAs by the four methods, accounting for
5.50%, 6.63%, 2.41%, and 4.57% of the total unigenes, respectively.
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Figure 2. Identification of the transcription factors (TFs), simple sequence repeats (SSRs) andlong non-coding RNAs
(lncRNAs). (a) Expression profiles of transcription factor families in four tissues; (b) the histogram representing the number
of different types of SSRs; (c) Venn diagram of lncRNAs predicted by four different methods.

2.5. Gene Expression Level Analysis

To investigate the expression patterns of unigenes in C. oliveri, the Illumina clean reads
were mapped to the SMRT non-redundant transcripts to determine expression level using
fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM).
The mapped reads of each tissue were 48,227,272 (90.18%, male cone), 43,922,320 (90.31%,
leaf), 33,697,206 (64.08%, root) and 44,716,176 (89.30%, stem), respectively (Table S6). In the
four tissues, the number of unigenes in different expression intervals was almost the same.
The four tissues had 2656 (1.37%, root), 2436 (1.26%, stem), 2503 (1.29%, leaf) and 2397
(1.24%, male cone) unigenes with high expression, and their expression levels were greater
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than 60 FPKM (Figure 3a). Using FPKM > 0.3 as the standard for unigenes expression,
a Venn diagram of unigene expression in four tissues was drawn and a total of 41,123
unigenes expressed in all tissues were found (Figure 3b). In addition, the number of genes
uniquely expressed in each tissue was 11,650 (root), 3587 (leaf), 11,348 (male cone) and
5671 (stem).

Figure 3. Analysis of gene expression in four tissues of C. oliveri. (a) The fragments per kilobase of transcript sequence per
million base pairs sequenced (FPKM) interval distribution in four tissues; (b) A Venn diagram of the number of unigenes
expressed in four tissues.

Pairwise comparisons among the four tissues were performed to identify the dif-
ferentially expressed unigenes (DEGs). The largest differences were observed between
male cone and root, in which 12,021 DEGs were detected. The smallest difference existed
between root and stem, in which only 1634 DEGs were detected. In the male cone versus
leaf, male cone versus stem, leaf versus root and root versus stem, 10,343, 9465, 9704 and
8385 differentially expressed unigenes were identified, respectively (Table 3).

Table 3. The number of differentially expressed genes of tissues compared in pairs.

Degs Set Name All Degs Number Up-Regulated
Degs Number

Down-Regulated
Degs Number

Male cone vs. leaf 10,343 5371 4972
Male cone vs. root 12,021 5779 6242
male cone vs. stem 9465 4897 4568

Leaf vs. root 9704 4262 5442
Leaf vs. stem 1634 1076 558
Root vs. stem 8385 5046 3339

2.6. GO Enrichment of Tissue-Specific Expressed Genes

In order to explore the functions of these tissue-specific expressed unigenes, GO
functional enrichment analysis was conducted separately for the four tissues. GO enrich-
ment analyses showed that tissue-specific expressed unigenes were enriched in biological
processes and molecular function varying across tissues (Table S7).

In the “biological process” category, the four tissues were enriched to 51 (male cone),
15 (root), 9 (leaf) and 5 (stem) GO terms (Figure 4 and Figure S6), respectively. The first
five GO terms for male cone were “phosphate-containing compound metabolic process”
(GO: 0006796, 705 unigenes), “phosphorus metabolic process” (GO: 0006793, 705), “phos-
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phorylation” (GO: 0016310, 555), “protein phosphorylation” (GO: 0006468, 516), “carbohy-
drate metabolic process” (GO: 005975, 500) (Figure 4a). This indicated that phosphorylation
may play a very important role in male cone. The tissue-specific expressed genes in stem
were mainly assigned to five regulatory processes, namely “regulation of protein metabolic
process” (GO: 0051246, 79), “regulation of cellular protein metabolic process” (GO: 0032268,
76), “posttranscriptional regulation of gene expression” (GO: 0010608, 76), “regulation
of translation” (GO: 0006417, 74) and “regulation of cellular amide metabolic process”
(GO: 0034248, 74) (Figure S6a). The tissue-specific expressed genes in leaf were enriched in
three GO terms related to response to biological stress, namely “response to defenses of
other organisms” (GO: 0052173), “response to host defenses” (GO: 0052200) and “response
to host” (GO: 0075136) (Figure S6b).

In the “molecular function” category, the specifically expressed genes of male cone
were significantly enriched in more categories than the other tissues, and were mainly
enriched in various active molecules and binding molecules (Figures S7 and S8). Although
root-specific expressed genes are also enriched in active molecules, its categories were far
less than those in male cone. In stem and leaf tissues, specifically expressed genes were
mainly enriched in various binding molecules.

2.7. KEGG Enrichment of Tissue-Specific Expressed Unigenes

The significant enrichment of different biological pathways can help to identify
metabolic and signal transduction pathways that tissue-specific expressed unigenes were
involved in. A KEGG enrichment analysis of all tissue-specific expressed unigenes was
conducted and found that only the stem-specific unigenes were not significantly enriched
in any KEGG pathway, and the pathways enriched in the other three tissues were different
(Table S8, Figure 5). It was noteworthy that the male cone-specific expressed unigenes were
significantly enriched in four biosynthetic pathways, namely “diterpenoid biosynthesis”
(ko00904, 21), “cutin, suberine and wax biosynthesis” (ko00073, 20), “glycosphingolipid
biosynthesis-globo series” (ko00603, 19) and “zeatin biosynthesis” (ko00908, 11). In leaf,
the tissue-specific expressed unigenes were enriched in amino acid metabolism pathways,
including “glycine, serine and threonine metabolism” (ko00260, 29), “alanine, aspartate and
glutamate metabolism” (ko00250, 27) and “cyanoamino acid metabolism” (ko00460, 21).
In addition, the tissue-specific expressed unigenes from leaf were significantly enriched
in the pathways related to photosynthesis, such as “carbon fixation in photosynthetic
organisms” (ko00710, 50) and “photosynthesis-antenna proteins” (ko00196, 9), which were
in line with expectations.

2.8. Gene Families

A total of 84 complete sequences annotated as dehydrin were mined from the full-
length transcriptome data (Table S9). After deleting sequences that were too short (<80 aa)
and too long (>600 aa), there were 67 sequences remaining in the four tissues. CD-HIT was
used to perform a de-redundancy analysis on 67 sequences with 100% similarity, removing
the identical sequences in the four tissues, leaving a total of 32 sequences. The MEME
program in MEME Suite 5.1.0 was used to conduct an exhaustive search on the conservative
amino acid motifs of the 32 sequences. Ten motifs were identified from the dehydrins of
C. oliveri, from which lysine-rich K motif (Figure 6a) and serine-rich S motif (Figure 6b) were
found, and did not find E motif, A motif and Y motif. The neighbor-joining phylogenetic
tree (NJ tree) showed that all sequences were divided into three groups (Figure 6c). It was
found that most of the sequences with Kn structures were grouped into one category, and
the sequences with the SKn structure were divided into two groups due to the position of
the motifs. It can be seen from the expression heat map that Kn and SKn type dehydrins
were mainly expressed in the root, stem, and leaf, but their expression level in stem and
leaf were significantly higher than the other two tissues (Figure 7a). In addition, only SKn
type dehydrins were expressed in the male cone with a low level.
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Figure 4. The “biological process” category of Gene Ontology (GO) enrichment analysis of tissue-specific expressed genes.
(a) male cone; (b) root.
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Figure 5. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
tissue-specific expressed genes (A): male cone; (B): leaf; (C): root.

A total of 181 complete sequences annotated as heat shock proteins were identified
from the full-length transcriptome data (Table S10). Use ExPASy tool (http://www.expasy.
org/tools/) to predict the theoretical isoelectric point (PI) and molecular weight (kDa) of
the identified heat shock proteins. Among the 211 sequences, 85 had molecular weights
ranging from 5 to 43 kDa, 27 were from 45 to 65 kDa, 53 were from 66 to 78 kDa, 40 were
from 83 to 97 kDa, and 6 were from 100 to 102 kDa. From the annotation results of Nr and
Swissprot, it was found that these heat shock proteins were only annotated as the small
molecule heat shock protein (sHSP), HSP70 and HSP90 families. Therefore, combining the
predicted molecular weight and annotation results, a total of 22 sequences were identified
as the sHSP family, 38 sequences were identified as the HSP70 family, and 11 sequences
were identified as the HSP90 family.

It can be seen from the expression heat map that most sHSP protein families had cer-
tain expression levels in the four tissues of C. oliveri (Figure 7b). Although there were many
sequences annotated as HSP70 protein family, only 12 sequences were obviously highly ex-
pressed in the four tissues. In the HSP90 protein family, 3 sequences were highly expressed
in the four tissues. In addition, the expression level of i2_HQ_CO3Root_c1041/f3p2/2386
in the root was significantly higher than that of the other three tissues.

A total of 493 complete sequences annotated as cytochrome CYP were found in the
four tissues of C. oliveri, of which 195 transcripts were >500 aa (Table S11). 195 cytochrome
CYP enzyme sequences were clustered with 95% similarity to eliminate redundancy, and

http://www.expasy.org/tools/
http://www.expasy.org/tools/
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were divided into 118 clusters. The representative sequences in 118 clusters were used as
input, and local blastp alignment was performed with 12,112 cytochrome CYP enzyme
sequences in the Nelson database to further confirm the sequence annotation results.
Sequences with a homology of less than 40% were deleted, and 91 sequences remained,
and MEGA-X was used to construct an NJ tree. The results show that different cytochrome
CYP enzyme families are grouped together (Figure 8). All sequences of the four tissues can
be divided into 8 clans: CYP71, CYP72, CYP86, CYP97, CYP85, CYP51, CYP74 and CYP727.

It can be seen from the expression heat map that most family members of the CYP71
clan were expressed in the root of C. oliveri, only some of the family members were
expressed in the male cone, stem, and leaf (Figure 7c). On the other hand, members of
the CYP72, CYP86, and CYP97 families were mainly expressed in stem and leaf. The
expression levels of the rest of the family members were almost the same in the four tissues
of C. oliveri.

Figure 6. Conserved motif and neighbor-joining (NJ) phylogenetic tree of dehydrins. (a) K motif; (b) S motif; (c) NJ tree.
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Figure 7. Expression profiles of different genes families in four tissues. (a) dehydrin (DHN) genes families; (b) heat shock
protein (HSP) genes families; (c) cytochrome P450 (CYP450) genes families.

2.9. Pathway Related to Environmental Adaptation

From the results of KEGG annotation, it can be found that there were certain KEGG
pathways related to environmental stress in the four tissues. The gene products and tissue
expression of genes involved in these pathways were further analyzed.

A total of 1299 unigenes from the four tissues were assigned to the Plant hormone
signal transduction (ko04075) pathway (Table S12, Figure 9). This pathway mainly involves
40 different substances, which were mainly involved in the signal transduction of cytokinin,
gibberellin, abscisic acid, ethylene, brassinosteroids, jasmonic acid and salicylic acid.
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Figure 8. Phylogenetic analyses performed with 256 cytochrome P450 (CYP450) sequences of C. oliveri.

Most proteins encoded by unigenes were expressed in the four tissue (Figure 9). More-
over, JAZ (jasmonate ZIM domain-containing protein, K13464), IAA (auxin-responsive
protein IAA, K14484), SAUR (SAUR family protein, K14488), PYL (abscisic acid receptor
PYR/PYL family, K14496), PP2C (protein phosphatase 2C, K14497) and SNRK2 (serine/
threonine-protein kinase, K14498) had high expression levels in four tissues. In addition,
the expression of TCH4 (xyloglucan: xyloglucosyl transferase, K14504) in male cone was
significantly higher than that of the other three tissues. The expression of ARF (auxin
response factor, K14486), BIN2 (protein brassinosteroid insensitive 2, K14502) and BZR1_2
(brassinosteroid resistant 1/2, K14503) in the root were significantly higher than that of the
other three tissues.
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Figure 9. Metabolic pathway of plant hormone signal transduction in C. oliveri. The color boxes
represent substances assigned at least one unigene in C. oliveri; the boxes are divided into four colors,
representing the genes expression in the root, stem, leaf, and male cone in turn.

A total of 495 unigenes from the four tissues were assigned to the circadian rhythm-
plant (ko04712) pathway, involving a total of 19 substances (Table S13, Figure 10). The core
oscillator of plant circadian rhythm is composed of core circuit, day circuit and night circuit.
A total of 34, 12 unigenes coding for LHY and TOC1 of the core circuits were found in the
four tissues, and 8, 80, 35, 20, and 15 unigenes were respectively annotated as PRR5, PRR7,
GI, ZTL, which were the component for the daytime circuit or evening circuit. In addition,
three families (CSNK2B, casein kinase II subunit beta, K03115; CSNK2A, casein kinase II
subunit alpha, K03097; CHS, chalcone synthase, K00660) were highly expressed in all four
tissues (Figure 10). The number of unigenes annotated for these three proteins varied from
22 to 66. It is worth noting that the genes encoding SPA1 (protein suppressor of PHYA-105
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1, K16240), PRR5 (pseudo-response regulator 5, K12130) and FKF1 (flavin-binding kelch
repeat F-box protein 1, K12116) only expressed in the root.

Figure 10. Metabolic pathway of circadian rhythm plant in C. oliveri. The color boxes represent substances assigned at least
one unigene in C. oliveri; the boxes are divided into four colors, representing the genes expression in the root, stem, leaf, and
male cone in turn.

3. Discussion
3.1. Transcriptome Sequencing

This study combined the PacBio SMRT-Seq and Illumina RNA-Seq to analyze the
full-length transcripts and genes expression patterns of the four tissues of C. oliveri. Based
on Illumina sequencing, 72,356 (root), 43,372 (stem), 42,844 (male cone) and 36,446 (leaf)
unigenes were obtained from the four tissues of C. oliveri, with N50 ranging from 1905 to
2061 bp. Based on SMRT sequencing technology, the number of unigenes in the four tissues
was 63,831 (root), 58,108 (stem), 33,013 (leaf) and 62,436 (male cone), and the N50 range
varied from 2523 bp to 3267 bp, which is significantly longer than the second-generation
sequencing data. In addition, the BUSCO software was used to evaluate the completeness
of the three-generation full-length transcripts of C. oliveri. 902 (root, 62.7%), 1048 (male
cone, 72.7%), 930 (leaf, 64.6%) and 1015 (stem, 70.5%) complete core conserved genes were
retrieved in the four tissues, which indicated the results of Iso-seq were good.

3.2. Funtional Annotation

More than 80% of unigenes in the four tissues of C. oliveri have been annotated in
at least one database, which provides important information for studying the interaction
mechanism between C. oliveri and the environment.

In the KOG classification, 1519 (male cone), 778 (leaf), 1310 (root) and 1326 (stem) genes
were annotated as the “biosynthetic transport and catabolism” (Q). And 305 (male cone),
200 (leaf), 332 (root) and 294 (stem) unigenes were assigned to the “defense mechanism”
(V). Secondary metabolites were non-nutritive substances in plants, so they were once
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considered as wastes during plant metabolism. However, after in-depth research on it,
researchers found that secondary metabolites play an important role in plant growth and
development and in responding to various biotic and abiotic stresses [22,23]. It is the
long-term evolution of plants in the process of adapting to the living environment.

In the GO classification, 3555 (male cone), 1746 (leaf), 2878 (root) and 3332 unigenes
were assigned to “response to stimulus” (GO: 0050896). In-depth analysis of this category,
239 (male cone), 163 (leaf), 234 (root) and 229 (stem) unigenes annotated as “response to
stress” (GO: 0006950), 32 (male cone flowers), 64 (leaf), 50 (root) and 74 (stem) unigenes
annotated as “response to water” (GO: 0009415) were found. These findings help us to
further study the adaptability of C. oliveri in different environments. In addition, the
number of unigenes assigned to “response to biotic stimulus” (GO: 0009607) in the root
was significantly higher than that of the other three tissues. This indicated that the root,
as an underground tissue, may require more genes and related substances to deal with
biotic stress.

In the KEGG pathway analysis, four tissues had multiple unigenes assigned to “en-
vironmental information processing” and “environmental adaptation” categories. The
sub-categories of “environmental information processing” mainly included the ABC trans-
porters pathway (ko02010), the bacterial secretion system pathway (ko03070), AMPK sig-
naling pathway (ko04152), calcium signaling pathway (ko04020), cAMP signaling pathway
(ko04024) and MAPK signaling pathway-plant (ko04016). The sensing and transduction of
stress signals are essential for plant adaptation and survival [24]. Ca2+ is a characteristic
signal that responds to various abiotic stresses. Low temperature or drought stress will
cause an increase in the concentration of Ca2+ in plant cells. This signal can be transmitted
downstream through the calcium signal transduction pathway to activate the expression of
corresponding resistance genes [24]. Liu Xueqin studied the signal transduction mecha-
nism of calcium in the process of low temperature stress on Cephalotaxus fortunei, and found
that Ca2+ treatment enhanced the activity of protective enzymes in the cell [25]. In addition,
Ca2+ combined with CaM protein to transmit signals, activating the downstream target pro-
tein, and finally enhanced the cold resistance of C. fortunei [25]. MAPK signaling pathway
is one of the most studied signal transduction mechanisms in plants. It is composed of a
class of proteins that can amplify signals step by step through tertiary phosphorylation [26].
It has been reported that the MAPK signaling pathway is an important signaling pathway
that regulates the cold response genes in T. chinensis [10].

In the category of environmental adaptation, it mainly involved plant–pathogen in-
teraction pathway (ko04626), circadian rhythm-plant pathway (ko04712) and circadian
rhythm pathway (ko04710). Circadian rhythm refers to the changes in life activities in a
certain period of time, which participates in the synthesis of plant hormones, signal trans-
duction and controls the stability of plant nutrients and the concentration of certain osmotic
adjustment substances [27]. Studies have shown that the CBF cold response pathway of
Arabidopsis thaliana is simultaneously induced by low temperature and controlled by the
biological clock [28]. The freezing tolerance of Pinus sylvestris was not only tissue specific,
but also affected by the photoperiod and temperature of the timing factors of the biological
clock [29]. In this study, there were more than 100 unigenes assigned to the circadian
rhythm-plant (ko04712) in the four tissues. This group of unigenes was also worthy of
further study.

3.3. Potential Aoles of Transcription Factors, LncRNAs and SSRs

Transcription factors were very important regulatory factors in plants. They play an
important role in regulating the response of plants to various biotic and abiotic stresses,
and activating downstream target genes to improve plant resistance [30]. In this study,
92 transcription factor families were identified in the four tissues of C. oliveri. Almost all
transcription factor families were expressed in four tissues. The top 20 transcription factor
families with the highest expression in the four tissues were AP2/ERF, ERF, HMG, Tify



Int. J. Mol. Sci. 2021, 22, 787 17 of 26

bHLH, C2H2, HB-HD-ZIP, MYB-related, GNAT, GRAS, WRKY, CSD, C3H, MYB, bZIP,
Trihelix, MADS, MIKC, NAC, PLATZ, HSF, and NF-YA.

NAC plays an important role in plant development and response to environmental
stimuli. Through RT-PCR experiments, Zhang found that PwNAC2 in Picea wilsonii can be
induced by a variety of abiotic stress and plant hormones, and can enhance plant tolerance
to abiotic stress through ABA signal or other signal transduction pathways [31]. In the
natural state, the FPKM of NAC in the four tissues were 1000.32 (root), 445.23 (stem), 371.17
(leaf) and 1562.61 (male cone), which was expected to play an important regulatory role in
the environmental adaptability of C. oliveri. Zinc finger proteins were one of the largest
TF families in plants [32]. According to its conserved domains, zinc finger proteins can be
divided into C2H2, C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6 and C8 subfamily. Only
the C2H2 and C3H subfamily were annotated in the four tissues of C. oliveri. Studies have
shown that C2H2 zinc finger protein can directly regulate the downstream genes related to
cold in plants, increase the level of osmotic substances, and regulate the response of plants
to environmental stress through the ABA signaling pathway [32].

SSRs are highly efficient genetic markers, which are widely used in molecular breeding
research and gene mapping. The traditional SSR marker development methods take a
long time, while the development of SSR markers from transcriptome data is an efficient,
convenient, and low-cost method. Wang used ISSR molecular markers to explore the
genetic diversity of 22 populations of C. oliveri, only 251 polymorphic loci were obtained [3].
In this study, MISA software was used to analyze the transcriptomes of the four tissues of
C. oliveri, and many SSRs loci were obtained. There was no sufficient genetic background
information for C. oliveri. In the future, EST-SSR molecular markers of C. oliveri can be
developed to study the genetic diversity and genetic structure of C. oliveri, and more
scientific conservation strategies can be formulated.

LncRNAs are also an important set of regulatory factors, which can interact with
miRNA networks to regulate genes expression before transcription; in addition, they can
be combined with enhancers, promoters and chromatin modification complexes after
transcription to regulate genes expression [33]. In this study, many lncRNAs were obtained
from the four tissues of C. oliveri, and these lncRNAs were expected to play an important
role in regulating the physiological responses of C. oliveri.

3.4. Tissue-Specific Expressed Genes

Different tissues of plants play different roles in the process of environmental adapta-
tion due to their highly specialized functions. In order to fully obtain the transcriptome
information of C. oliveri and understand the differences between the tissues, this study
conducted a transcriptomic study on the male cone, root, stem, and leaf of C. oliveri. GO
and KEGG function enrichment analysis show the differences between the tissues.

11,650 (root), 3587 (leaf), 11,348 (male cone) and 5671 (stem) tissue-specific expressed
genes were found in the four tissues. GO enrichment results show that the tissue-specific
expressed genes of male cone were mainly enriched in categories related to phospho-
rylation, such as “phosphate-containing compound metabolic process (GO: 0006796)”,
“phosphorus metabolic process (GO: 0006793)”, “phosphorylation (GO: 0016310)” and
“protein phosphorylation (GO: 0006468)”. Protein phosphorylation is a kind of protein
post-translational modification, which plays a vital role in abiotic stress signaling path-
way [34]. The stem-specific expressed genes were mainly enriched in regulatory terms.
The leaf-specific expressed genes were involved in three Go terms in response to biolog-
ical stress, which may indicate that leaf have a special mechanism independent of the
other three tissues when facing biotic factors. In addition, the tissue-specific expressed
genes of the male cone in the GO enrichment had more types than the other three tissues,
which indicated that the male cone required more physiological activities to maintain its
growth and development as a reproductive organ. The KEGG enrichment analysis of
all tissue-specific expressed unigenes also showed the differences between tissues. The
male cone-specific expressed unigenes were mainly enriched in biosynthetic pathways,
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while the leaf-specific expressed unigenes were assigned to pathways related to amino acid
metabolism and photosynthesis.

3.5. Gene Families

Dehydrins are a member of late embryogenesis abundant (LEA) proteins families.
These proteins contained different conserved motifs in amino acid sequences, which were
named as Y-, S- and K-motifs or A-and E-motifs specifically in gymnosperms [12]. In this
study, only K- and S-type motifs were found in the dehydrins of C. oliveri, but did not
find Y-, A- and E-type motifs. Among them, 16 dehydrins belonged to the Kn type, and
the number of K-motif repeats was 2 to 4; 11 belonged to the SKn type and contained
one S-segment composed of 6 to 8 serine residues. Studies have shown that K-fragments
can form an amphipathic a-helix structure, which can establish hydrophobic interactions
with other proteins to stabilize the cell membrane [35,36]. Multiple K-segments can be
gathered to form an intramolecular binding structure, which enhances the amphipathic
characteristics of dehydrin [37]. Drira found that the K-fragment in dhn5 from wheat plays
a vital role in protecting lactate dehydrogenase and β-glycosidase [38].

Many research reports indicated that the accumulation of dehydrins was positively
related to the cold and drought tolerance of plants [39,40]. The data of in vitro dehydrins
research showed that dehydrins may participate in the process of plant growth and the
response to dehydration stress [41]. In this study, 67 unigenes annotated as dehydrin
were found in the four tissues of C. oliveri. It can be inferred that these unigenes play
an important role in the environmental adaptability of C. oliveri. In addition, SKn and
Kn-type dehydrin were found to highly express in root, stem, and leaf, while SKn-type
dehydrins were mainly expressed in male cone, which may indicate that the S-motif played
an important role in male cone.

Heat shock protein was a specific stress protein produced by organisms under envi-
ronmental stress. The rich expression of HSP can significantly improve plant tolerance to
environmental stress [42]. Small molecule heat shock protein (sHSP) was different from
other heat shock protein families in that sHSP itself cannot refold unnatural proteins. They
can bind to unnatural proteins through hydrophobic interaction and prevent aggregation
of unnatural proteins, and then refold through other ATP-dependent molecular chaper-
ones [43,44]. In this study, 22 unigenes annotated as small molecule heat shock proteins
were identified in the four tissues of C. oliveri. Compared with HSP70 and HSP90, most of
the sHSP were expressed at a lower level in the four tissues of C. oliveri.

Studies have found that the HSP70 family was the most conserved in the heat shock
protein family. A variety of HSP70 had been identified in organelles such as chloroplast,
endoplasmic reticulum and mitochondria in higher plants [45]. In this study, it was found
that the most unigenes were annotated as HSP70 in the four tissues of C. oliveri. HSP70
had an important function in preventing aggregation and assisting in the refolding of
unnatural proteins. Some family members of HSP70 were expressed constitutively and
were often called Hsc70 (Heat shock cognate 70 kDa protein). The members of the Hsc70
family were mainly involved in assisting the folding of newly synthesized peptides and the
translocation of precursor proteins, while other members of the HSP70 family were only
expressed when plants were affected [46]. There were 14 unigenes annotated as Hsc70 in
the four tissues of C. oliveri, and i2_HQ_CO3Flo_c76111/f10p0/2334 was the most highly
expressed among all HSP70 family members. Unlike other molecular chaperones, most of
the known substrates of HSP90 were signal transduction proteins, such as signal kinases
and steroid hormone receptors [47]. HSP90 played an important role in morphological
evolution and adversity adaptation of A. thaliana [48]. In this study, only 11 unigenes
annotated as HSP90 were found in the four tissues of C. oliveri, but the expression of these
unigenes in the four tissues was significantly higher than that of HSP70 and sHSP families.

The CYP450 superfamily is one of the largest gene families in plants and is involved
in various biosynthesis pathways [49]. In this study, 91 unigenes annotated as cytochrome
P450 were identified in the four tissues of C. oliveri. All the sequences of the four tissues
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can be divided into 8 clans: CYP71, CYP72, CYP86, CYP97, CYP85, CYP51, CYP74 and
CYP727. Among them, the CYP71 clan had the most family members (12). The CYP71
family contains more than 50% of plant CYPs and was the largest family cluster among
CYP450s [49]. Therefore, its functions were very diverse. This study also found many
family members of the CYP71 clan in C. oliveri, and the expression of these family members
in the root was significantly higher than the other three tissues, which indicated that the
family clusters play an important role in the root. In addition, 7 CYP750 and 5 gymnosperm-
specific members of CYP76 were found in the four tissues [50]. Studies have shown that
gymnosperms CYP76AA25 and CYP750B1 can catalyze the hydroxylation of sabinene in
Thuja plicata to produce trans-sabin-3-ol [51].

3.6. Characterization of the Unigenes in Plant Hormone Signal Transduction

This study found that a total of 1299 unigenes from the four tissues of C. oliveri were
assigned to the plant hormone signal transduction (ko04075) pathway. These genes were
mainly involved in the signal transduction of auxin, cytokinin, gibberellin, abscisic acid,
ethylene, brassinosteroid, jasmonic acid and salicylic acid.

Abscisic acid signal transduction is an important tool for plants to produce strong
stress responses to environmental stimuli. When plants face abiotic stresses such as
drought and cold, they will utilize abscisic acid to assess the impact of stress and change
the signal transmission pathway of abscisic acid to adjust the corresponding physiological
processes [52,53]. In the signal transduction process, abscisic acid firstly binds to the re-
ceptor PYR/PYL/RCAR proteins, causing the conformation of receptors to change, and
then binds to protein phosphatase PP2C. Subsequently, ternary complexes composed of
ABA–PYR/PYL/RCAR–PP2C enable the activation of SnRK2s, resulting in the phosphory-
lation of downstream substrates, such as bZIP transcription factors and membrane channel
proteins [54]. This study found that the PYL protein and ABA response binding factor
(ABF) had high expression levels in the four tissues, but the expression level in the root
was significantly higher than the other three tissues. This may suggest that ABA signal
transduction plays an important role in the root.

Jasmonic acid (JA), a cyclopentanone plant hormone, is widely distributed in various
tissues of plants, and plays an important role in physiological responses to environmen-
tal stress and in developmental processes [55]. The JAZ protein family is an important
negative regulator in the jasmonic acid signaling pathway, which could bind and inhibit
MYC2 transcription factor [56]. Under natural conditions, all four tissues of C. oliveri
expressed JAZ protein, but the expression level in root was significantly higher than the
other three tissues.

Salicylic acid (SA) is a phenolic derivative, widely found in higher plants. The re-
searchers found that exogenous SA treatment could improve plant resistance to drought,
low temperature and other adversity stresses [57]. This study found that a total of 117 uni-
genes in the four tissues of C. oliveri were involved in endogenous SA signaling, of which
31 were annotated as NPR1 protein (regulatory protein NPR1), and 71 were annotated
as transcription factor TGA. NPR plays a positive regulatory role in the salicylic acid
signaling pathway. This protein can enter the nucleus to induce PR gene to express; and
TGA transcription factor is a direct connection point in this process [58]. This study found
that NPR1 protein, TGA transcription factor and PR1 (pathogenesis-related protein 1) were
highly expressed in the root of C. oliveri. The FPKM of PR1 in the root reached 1028.54,
while the PFKM of leaf, male cone and stem were only 197.39, 48.39 and 14.26, respectively.
This indicated that the root of C. oliveri may face more severe environmental stress than the
male cone, leaf, and stem in natural state.

3.7. Characterization of the Unigenes in Circadian Rhythm-Plant

In plants, circadian rhythm regulation forms the basic adaptation of plants to fluctuat-
ing environments [59]. Plant circadian clock is mainly composed of three parts, namely
input pathway, core oscillator, and output pathway. The input pathway is mainly respon-
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sible for the transmission of environmental timing information (temperature and light);
while the core oscillator mainly integrates environmental signals to generate new rhythmic
oscillation signals; the output pathway amplifies the new rhythmic oscillation signals
and transmits them to downstream genes, causing other physiological and biochemical
reactions [27]. Although different plants have different biological clock genes, the genes in
core oscillator are relatively conservative. The plant core oscillator includes a core circuit, a
day circuit and a night circuit. The core circuit includes the transcription factor CCA1, the
pseudo-response regulator TOC1 and LHY; the daytime circuit is composed of CCA1/LHY,
PRR9/PRR7/PRR5 and the night circuit is composed of TOC1, GI and ZTL [60].

This study found that 495 unigenes from the four tissues of C. oliveri were assigned to
circadian rhythm-plant pathway (ko04712), 34 and 12 of which were annotated as LHY,
TOC1, respectively. In addition, there were 8, 80, 35, and 20 unigenes annotated as PRR5,
PRR7, GI, and ZTL, respectively. Studies have shown that the circadian central oscillator
can regulate the expression of many genes that respond to environmental stress, making
them express rhythmicity. Hamer et al. found that the transcription factor LHY regulated
the response of plants to low temperature stress by controlling the expression of CBF
gene [61]. In addition, GI can participate in the regulation of early responsive to dehydration
(erd10 erd7), cor78, cor15a and other drought and cold stress response genes, and ABA or
drought response genes were positively regulated by PRR7 [62]. The expression levels of
these regulatory genes were different in the four tissues of C. oliveri. The expression levels
of LHY, PRR7 and ZTL in stem and leaf were significantly higher than that in root and
male cone; while PRR5 and GI were mainly expressed in root, which indicated that the
regulation of circadian rhythms was different between different tissues.

4. Materials and Methods
4.1. Plant Materials and RNA Extraction

The plant materials for this experiment were collected from Xiushui Meishan (28◦47′0” N,
114◦39′19” E, altitude: 330 m), Jiangxi Province, China. The climate in Xiushui County be-
longs to the subtropical monsoon climate. It is cold in winter with frost and snow. Summer
is hot and drought often occurs. Xiushui has maintained the highest temperature record in
China except Xinjiang (National Meteorological Information Center, China Meteorological
Administration). A well-grown male tree was selected in Meishan to collect four tissues
samples. All samples were stored in RNAfixer (BioTeke, Shanghai, China) and stored at
−20 ◦C until RNA extraction.

Total RNA of each tissue was extracted using the Rneasy Plus Mini kit (Qiagen,
Valencia, CA, USA) according to the manufacturer’s instructions. Using 1% agarose gels to
monitor RNA degradation and contamination. The purity and integrity of each sample
were evaluated using Nanodrop 2000 spectrophotometer (Thermo Scientific, Wilmington,
DE, USA) and Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA,
USA). Using the Qubit 2.0 fluorometer (Invitrogen, Life Technologies, Carlsbad, CA, USA)
to accurately quantify the RNA concentration of all samples.

4.2. Illumina Library Preparation, Sequencing and de Novo Assembly

The sequencing Library was generated using the NEBNext Ultra RNA Library Prep Kit
(NEB, Ipswich, MA, USA) according to the manufacturer’s instructions. Sequencing was
performed on the Illumina NovaSeq platform (Illumina, San Diego, CA, USA), generating
paired-end (PE) reads with lengths of 150 bp. Use in-house Perl script to filter raw reads,
mainly to remove adapter reads, reads with more than 10% ambiguous bases “N”, and
low-quality reads (Qphred ≤ 20 base with more than 50%). Trinity v. 2.4.0 was used to
assemble clean reads of four tissues, with parameters set as min_kmer_cov: 4 and other
default parameters [63].

The Illumina RNA-Seq transcriptome raw data were deposited in the SRA of NCBI as
follows: root: SRR12058212; stem: SRR12058211; leaf: SRR12058210; male cone: SRR12058209.
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4.3. PacBio Library Preparation, Sequencing and Preprocessing

Total RNA for each of the four tissues was constructed library separately according
to the PacBio Isoform Sequencing (Iso-Seq) experimental protocol. PacBio libraries were
sequenced on the PacBio Sequel platform (Pacific Biosciences, Menlo Park, CA, USA). To
obtain Polymerase reads, raw reads were used to remove data containing 0 or 2 DNA
molecules as templates. Subreads were obtained by removing the connector and the data
with a length less than 50 bp. The subreads.bAM file is processed by the Circular Consensus
Sequence algorithm to obtain the CCS Sequence. The above data processing is carried out
in SMRTlink v. 6.0 software (http://www.pacb.com/products-and-services/analytical-
sofware/smrt-analysis/), and the parameters are set as: -minLength 50, -maxLength
15000, -minPasses 2, -min_seq_len 200, -minPredictedAccuracy 0.8, -minZScore -9999,
-maxDropFraction 0.8, -min_seq_len 200, -minReadScore 0.65, -no_polish TRUE.

Arrow was used to calibrate the consensus sequence using the nFL sequences [64].
And the parameters were set as: Hq_quiver_min_accuracy 0.99, bin_BY_Primer false,
bin_size_KB 1, Qv_TRIM_5p 100, Qv_TRIM_3p 30. To further improving the sequencing
accuracy, validate the polished consensus sequence with second-generation data using
LoRDEC V0.7 software and the parameters are set as follows: -K 23, -S 3 [65].

Using CD-HIT v. 4.6.8 to cluster the corrected transcript sequences according to the
95% similarity between the sequence, and the parameters are set as: -c 0.95, -T 6, -G 0, -aL
0.00, -aS 0.99, -AS 30 [66]. Select the core conserved gene set of terrestrial plants, namely
embryophyta_odb9 (Creation date: 13 February 2016, number of species: 30, number of
BUSCOs: 1440), and use BUSCO v. 3.0.2 to evaluate the completeness of the full-length
transcriptome sequences [67].

The PacBio Iso-Seq FL transcriptome data were deposited in the Sequence Read
Archive (SRA) of NCBI as follows: root: SRR12058216; stem: SRR12058215; leaf: SRR12058214;
male cone: SRR12058213.

4.4. Functional Annotation of Transcripts

The obtained non-redundant transcript sequences were functionally annotated using
the following databases: NCBI non-redundant protein (NR) database, the EuKaryotic
Orthologous Groups (KOG) database, the Swiss-Prot database, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, NCBI nucleotide sequences (NT) database, the
Gene Ontology (GO) database and the Protein Family (Pfam) database. The first four
databases annotations were performed using DIAMOND v. 0.8.36 with an E-value thresh-
old of 1.0 × 10−5 [68]. Using ncbi-blast-2.7.1+ with an E-value threshold of 1.0 × 10−5

and Hmmscan of the HMMER 3.1 package (http://hmmer.org/) for NCBI Nt database
annotation and Pfam database annotation [69]. Blast2GO (http://www.blast2go.com) and
a script were used for GO annotations [70].

4.5. Prediction of CDSs, TFs, LncRNAs

Predictive analysis of CDS (Coding sequence) is performed using ANGEL v. 2.4
software [71]. The software includes no error and error tolerant modes (the default is the
fault tolerant mode). The parameter setting is: –min_angel_aa_length 50, and the remaining
options are the default. iTAK V1.7A software was used to predict the plant transcription
factors in the four tissues of C. oliveri [72]. The parameters were set as follows: -F 3F. The
unigenes were applied to the CNCI v. 2 [73], CPC v. 0.9 [74], PfamScan v. 1.6 [75] and PLEK
v. 1.2 [76] to predict the coding potential. for lncRNA prediction through screening coding
potential. Unigenes that are longer than 200 nt and do not code protein were selected as
lncRNA candidates.

4.6. Simple Sequence Repeat (SSR) Detection

SSR, also known as microsatellite, is a tract of repetitive DNA in which certain DNA
motifs (ranging in length from 2–13 base pairs) are repeated, typically 5–50 times. Unigenes
from Iso-seq were selected for SSR analysis using MISA v. l.0 [77] with default parameters.

http://www.pacb.com/products-and-services/analytical-sofware/smrt-analysis/
http://www.pacb.com/products-and-services/analytical-sofware/smrt-analysis/
http://hmmer.org/
http://www.blast2go.com
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The minimum repeat time for core repeat motifs was set as following: 10 for mononu-
cleotide, 6 for dinucleotides and 5 for trinucleotides, tetranucleotides, pentanucleotides
and hexanucleotides.

4.7. Gene Expression Quantification and DEG analysis

The CD-HIT software was used to dereduce the corrected consensus sequence by
95% similarity, and the obtained transcripts were used as the reference sequence of the
gene. Using bowtie2 v. 2.3.4 [78] with the end-to-end, sensitive mode and other default
parameters to align the clean reads of each tissue obtained by Illumina sequencing to the
reference sequence. RSEM software was used to count the readcount value of each gene in
each tissue, and then using FPKM (expected number of fragments per kilobase of transcript
sequence per Millions base pairs sequenced) to determine the expression level of each
unigene. DEGseq v. 1.12.0 software [79] was used for differential expression analysis of
tissue genes. Unigenes with q value <0.005 and |log2 (fold change)| > 1 were considered
to be the DEGs.

4.8. Enrichment Analysis of Tissue-Specific Expressed Genes

The Bingo plug-in of Cytoscape v. 3.7.2 software [80] was used for GO enrichment
analysis of tissue-specific expressed genes. The software uses a hypergeometric test to
identify GO functional categories that were overexpressed in tissue-specific expressed
genes. Using the BH method to correct the p-value, and only GO terms with a corrected
p-value < 0.05 were significantly enriched. GO enrichment analysis of tissue-specific
expressed genes in tissues was performed using GO seq v. 1.10.0 [81]. The enrichment
analysis of KEGG pathway was performed using KOBAS v. 3.0 [82]. The p-value correction
method and the threshold value were consistent with the above.

4.9. Gene Family Analysis

Based on functional annotations from publicly available databases (Nr, Swiss-Prot,
Pfam, and KOG), the environmental stress-related gene families were identified in C. oliveri.
The number of unigenes annotated for known abiotic factor-related gene families (DHN,
HSP, CYP450) were compared among the four tissues of C. oliveri.

Using MEME Suite [83] to predict potential functional motifs in the dehydrin family,
and set the parameters as: motif -time 1000 -maxsize 600,000 -mod anr -nmotifs 10 -
minw 6 -maxw 20. Based on the detected conservative motifs, using MAST v5.1.1 to
classify dehydrin family with default parameters [84]. MAFFT 7 was used to perform
multi-sequence alignment with default parameters [85]. Using MEGA X to build a neighbor-
joining (NJ) evolutionary tree with the Poisson model [86]. Repeat 1000 times with the
bootstrap method to check the branch support rate of the phylogenetic tree reconstructed
by NJ.

5. Conclusions

In conclusion, this is the first study of transcriptomes in the four tissues of C. oliveri.
We obtained 63,831 (root), 58,108 (stem), 33,013 (leaf) and 62,436 (male cone) full-length
unigenes and the genes function and genes structure information based on the functional
annotation. Furthermore, the gene families and pathways related to abiotic factors were
characterized, including DHN, HSP, CYP450 families, plant hormone signal transduction
and circadian rhythm-plant pathway. GO and KEGG enrichment analysis of tissue-specific
expressed genes revealed the special roles in response to environmental stress and adapt-
ability in the different four tissues. This study not only provides a practical guide for
the transcriptomic analysis of species lacking genomic information but will also facilitate
further studies on functional genomics, adaptive evolution, and phylogeny and lay a
foundation for the development of conservation strategies for this endangered conifer.
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