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Purpose: To investigate the usefulness of a novel computer-aided classification

framework for the differential diagnosis of parkinsonian disorders (PDs) based

on 11C-methyl-N-2β-carbomethoxy-3β-(4-fluorophenyl)-tropanel (11C-CFT) positron

emission tomography (PET) imaging.

Methods: Patients with different forms of PDs—including Parkinson’s disease (PD),

multiple system atrophy (MSA) and progressive supranuclear palsy (PSP)—underwent

dopamine transporter (DAT) imaging with 11C-CFT PET. A novel multistep

computer-aided classification framework—consisting of magnetic resonance imaging

(MRI)-assisted PET segmentation, feature extraction and prediction, and automatic

subject classification—was developed. A random forest method was used to assess

the diagnostic relevance of different regions to the classification process. Finally, the

performance of the computer-aided classification system was tested using various

training strategies involving patients with early and advanced disease stages.

Results: Accuracy values for identifying PD,MSA, and PSPwere 85.0, 82.2, and 89.7%,

respectively—with an overall accuracy of 80.4%. The caudate and putamen provided

the highest diagnostic relevance to the proposed classification framework, whereas the

contribution of midbrain was negligible. With the exception of sensitivity for diagnosing

PSP, the strategy comprising both early and advanced disease stages performed better

in terms of sensitivity, specificity, positive predictive value, and negative predictive value

within each PDs subtype.

Conclusions: The proposed computer-aided classification framework based on
11C-CFT PET imaging holds promise for improving the differential diagnosis of PDs.

Keywords: 11C-CFT PET imaging, computer-aided diagnosis, Parkinson’s disease, multiple system atrophy,

progressive supranuclear palsy
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INTRODUCTION

Parkinsonian disorders (PDs) are a heterogeneous group of
neurological disorders characterized by tremor, bradykinesia,
rigidity, and poor postural stability. Parkinson’s disease (PD)—
themost common PDs occurring in the elderly (Pringsheim et al.,
2014)—should be differentiated by other atypical parkinsonian
syndromes (APSs), including multiple system atrophy (MSA)
and progressive supranuclear palsy (PSP) (Fahn et al., 2011).
A correct differential diagnosis between PD, MSA, and PSP
is paramount not only for proper treatment allocation and
prognostication, but also for correct implementation of clinical
trials focusing on disease-modifying drugs. Unfortunately, an
accurate diagnosis remains challenging both because of a
consistent overlap of signs and symptoms and the presence
of atypical manifestations—especially in early disease stages
(Steele et al., 1964). The key pathogenic mechanisms of PDs
consist of a progressive neuronal loss in the substantia nigra of

FIGURE 1 | Visual representation of the proposed computer-aided classification framework. Magnetic resonance imaging (MRI)-assisted 11C-CFT PET segmentation

was followed by feature extraction and prediction. The final step consisted of automatic subject classification in each of the three diagnostic groups (PD, MSA, and

PSP).

midbrain (Burns et al., 1983) and the occurrence of dopaminergic
dysfunction in the striatum (Hantraye et al., 1992; Strafella et al.,
2017). Although PDs were found to have different midbrain
neuronal loss and striatal dopaminergic dysfunction patterns,
their effect in PDs classification remains to be discussed (Martin-
Bastida et al., 2017).

DAT PET imaging is clinically useful to differentiate PDs from
conditions unrelated to dopaminergic dysfunction (e.g., essential
tremor and drug-induced or psychogenic parkinsonism)
(Benamer et al., 2000; Marshall et al., 2006; Thobois et al., 2019).
However, its use in differentiation among PDs remains elusive.
Knudsen et al. (2004) demonstrated that patients with PD have
significantly higher striatal asymmetry than those with MSA,
whereas Ilgin and coworkers (Ilgin et al., 1999) reported that
PD is characterized by a more pronounced loss of DAT in the
posterior putamen compared with PSP. However, studies have
shown that regional analysis of DAT PET images does not
allow differentiating between PD and MSA (Pirker et al., 2000;
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Varrone et al., 2001; Perju-Dumbrava et al., 2012). Therefore,
in current practice, patients considered with PDs frequently
undergo two different PET protocols, i.e., DAT PET for excluding
disorders unrelated to dopaminergic dysfunction and 18F-FDG
PET for PDs differentiation (Zhao et al., 2012), which is costly
and time-consuming.

Recently, computer-aided medical diagnosis has emerged as
a valuable tool to extract information from medical images in
the context of early-stage PDs (Teune et al., 2014; Tripathi et al.,
2016; Matthews et al., 2018; Xu et al., 2019). In this scenario, this
study was undertaken to investigate the clinical utility of a novel
computer-aided classification framework for PDs using 11C-
methyl-N-2β-carbomethoxy-3β-(4-fluorophenyl)-tropanel (11C-
CFT) DAT PET imaging.

MATERIALS AND METHODS

Subjects
A total of 107 patients with PDs were recruited from the
Department of Neurology, Huashan Hospital, Fudan University
(Shanghai, China). Another group of 22 normal controls (NC)
was recruited as reference for PDs patients in the aspect of DAT
binding level. All participants were screened by two experts in
the field of movement disorders before PET imaging. Follow-
up was continued for at least one year. The clinical diagnosis
of “definite” PD was made according to the UK Brain Bank
criteria (Hughes et al., 1992) and confirmed using the Movement
Disorder Society clinical diagnostic criteria (Postuma et al.,
2015). All of the patients with MSA and PSP conformed to
the second consensus statement on the diagnosis of “probable”
MSA (Gilman et al., 2008) and the consensus diagnostic
criteria for “probable” PSP (NINDS-SPSP) (Litvan et al., 1996),
respectively. Exclusion criteria were as follows: history of other
neurological or psychiatric disorders; use of neuroleptics; and
presence of structural brain lesions on MRI (i.e., masses, white
matter changes, ischemia, or hemorrhage). The UPDRS motor
examination (items 18–31) and the Hoehn and Yahr (H&Y) stage
were determined within 2 h of PET imaging and at least 12 h
after discontinuation of antiparkinsonian medications (Wu et al.,
2013). The study patients were divided into patients with early-
stage (ES) and advanced-stage (AS) disease (duration threshold:
24 months). Ethical approval was granted by the Institutional
Review Board of the Huashan Hospital and written consent was
obtained from all participants.

Data Acquisition
PET images were acquired using a Siemens Biograph 64 PET/CT
scanner (Siemens, Munich, Germany) in the three-dimensional
(3D) mode. A computed tomography (CT) transmission scan
was initially performed for attenuation correction. A PET scan
of 15min was started 60min after the intravenous injection of
370MBq of 11C-CFT. During scanning, patients laid comfortably
in supine position in a room with dimmed lighting and
low background noise (Huang et al., 2020). MRI data were
acquired using the T1-weighted 3D inversion recovery spoiled
gradient recalled acquisition (IR-SPGR) technique, as previously

TABLE 1 | General characteristics of the study patients (n = 107) and normal

controls (NC) (n = 22).

PD MSA PSP NC

Disease

stage, ES%

22.0% 45.9% 40.0% –

Sex, male% 64.0% 67.6% 80.0% 77.7%

Age, years 61.54 ± 7.41 59.24 ± 7.58 65.00 ± 8.32 64.91 ± 6.91

Disease

duration,

years

3.53 ± 1.99 2.32 ± 1.37 2.82 ± 1.67 –

UPDRS-III 21.94 ± 9.69 30.13 ± 14.42 23.90 ± 12.87 –

Dose

equivalent,

mg

275.8 ± 301.0 267.5 ± 329.9 161.3 ± 196.9 –

Data are given as counts or means± standard deviations. PD, Parkinson’s disease; MSA,

multiple system atrophy; PSP, progressive supranuclear palsy; ES, early-stage; UPDRS-III,

Unified Parkinson’s Disease Rating Scale – part III.

described (Bu et al., 2018). PET and MRI scans were performed
within one week of each other.

Diagnostic Methods
Figure 1 provides a workflow of the proposed multistep
computer-aided classification framework—which consisted
of MRI-assisted PET segmentation, feature extraction and
prediction, and automatic subject classification. The detailed
procedures have been previously described (Xu et al., 2019).

MRI-Assisted PET Segmentation and Feature

Extraction
A U-net was implemented to carry out segmentation analysis
of the striatum—including the bilateral caudate, putamen,
pallidus and midbrain—on MRI images. Bilateral occipital areas
were segmented using the ITK-SNAP software package. The
U-net—which consists of an encoder-decoder network with
skip connections—is based on an optimized convolutional
neural network (CNN) (Ronneberger et al., 2015; Wong et al.,
2018). Segmented MRI images were thoroughly aligned to the
corresponding PET images by traditional registration methods
using the C++ programming language, and the resulting
transformation matrix was subsequently used to transform the
label information of theMRI image onto the PET image (Xu et al.,
2019). Based on the segmentation results, the bilateral caudate
and putamen were further divided into three subregions with an
equal volume (anterior, middle, and posterior) achieved by a k-
means clustering algorithm in Python (Ng et al., 2006). Features
were extracted by determining the volumes of tracer uptake from
a total of 16 subregions. The striatal-to-occipital ratio (SOR) of
the extracted features was calculated for normalization purposes.

SVM Classification Analysis
Machine learning of the extracted features and diagnostic
classifications were implemented using the software machine
learning library Scikit-learn 0.22.0 (https://pypi.org/project/
scikit-learn). The selection of the most suitable classifier was
performed by comparing the diagnostic performances with
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TABLE 2 | Average SOR values and bilateral asymmetric indexes for parkinsonism groups and normal controls (NC).

p value

PD MSA PSP NC PD vs. MSA PD vs. PSP MSA vs. PSP PD vs. NC MSA vs. NC PSP vs. NC

SOR values

Anterior caudate 0.90 ± 0.53 1.02 ± 0.83 0.58 ± 0.40 1.65 ± 0.65 ns ns ns *** ** ***

Middle caudate 0.52 ± 0.44 0.62 ± 0.59 0.25 ± 0.22 1.26 ± 0.77 ns ns * *** ** ***

Posterior caudate 0.25 ± 0.25 0.32 ± 0.36 0.14 ± 0.13 0.70 ± 0.55 ns ns ns *** * ***

Anterior putamen 1.13 ± 0.48 1.26 ± 0.88 1.03 ± 0.37 2.25 ± 0.74 ns ns ns *** *** ***

Middle putamen 0.65 ± 0.34 1.06 ± 0.93 0.67 ± 0.29 1.98 ± 0.91 ns ns ns *** ** ***

Posterior putamen 0.46 ± 0.30 0.77 ± 0.86 0.55 ± 0.29 1.50 ± 0.88 ns ns ns *** * **

Asymmetric index

Anterior caudate 1.06 ± 0.84 1.00 ± 0.71 0.97 ± 0.71 0.74 ± 0.66 ns ns ns ns ns ns

Middle caudate 1.28 ± 0.90 1.50 ± 0.91 1.57 ± 0.83 0.89 ± 0.82 ns ns ns ns * *

Posterior caudate 1.41 ± 0.72 1.78 ± 0.86 1.54 ± 0.71 1.24 ± 0.84 ns ns ns ns ns ns

Anterior putamen 0.63 ± 0.38 0.40 ± 0.41 0.31 ± 0.22 0.25 ± 0.23 ** * ns *** ns ns

Middle putamen 0.76 ± 0.50 0.45 ± 0.47 0.39 ± 0.40 0.29 ± 0.28 ** ** ns *** ns ns

Posterior putamen 0.67 ± 0.55 0.59 ± 0.44 0.52 ± 0.56 0.45 ± 0.36 ns ns ns ns ns ns

Data are given as means ± standard deviations. PD, Parkinson’s disease; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; ns, no significant difference; *p < 0.05,

**p < 0.01, ***p < 0.001.

FIGURE 2 | Comparison of SOR values and bilateral asymmetric indexes among parkinsonism groups and normal controls (NC). *p < 0.05; **p < 0.01. SOR value of

middle caudate was lower in PSP group than MSA group. Asymmetric indexes of anterior and middle putamen were elevated in PD group compared with all other

groups.
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TABLE 3 | Diagnostic performances of the proposed computer-aided classification framework for the binary classification of different parkinsonian disorders.

Classification group Accuracy AUC Sensitivity Specificity PPV NPV

PD vs. others 85.0% 85.0% 84.0% 86.0% 84.0% 86.0%

MSA vs. others 82.2% 80.1% 73.0% 87.1% 75.0% 85.9%

PSP vs. others 89.7% 82.1% 70.0% 94.3% 73.7% 93.2%

PD, Parkinson’s disease; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value.

TABLE 4 | Confusion matrix and diagnostic performances of the multi-class

classification system of different parkinsonian disorders.

SVM classification Diagnostic categories (SOT) PPV/NPV

PD MSA PSP

PD 43 5 4 82.7%/87.3%

MSA 6 29 2 78.4%/88.6%

PSP 1 3 14 77.7%/93.3%

Sensitivity/specificity 86.0%/84.2% 78.4%/88.6% 70.0%/95.4%

SVM, support vector machine; SOT, standard of truth; PD, Parkinson’s disease; MSA,

multiple system atrophy; PSP, progressive supranuclear palsy; PPV, positive predictive

value; NPV, negative predictive value. The number of true positive subjects are marked

in bold.

various algorithms on the specified dataset—including SVM
(Haller et al., 2012; Long et al., 2012), logistic regression
(Tripathi et al., 2016) and random forest algorithm (Gray et al.,
2013). Owing to its capacity to handle high-dimensional feature
spaces with high efficiency, a linear SVM classifier with squared
hinge loss was selected for performing the classification task.
All of the parameters of the SVM solver were optimized for
subsequent experiments.

Training Strategies for Early-Stage Patients
The ES and AS groups consisted of 36 and 71 patients,
respectively. The classification performances in different
subsetting of ES and AS patients was tested using four strategies,
as follows: (1) 71 AS + 35 ES/1 ES (training on both the ES
and AS groups, and test on the ES group with a leave-one-out
cross-validation strategy); (2) 35 ES/1 ES (training and testing
on the ES group with a leave-one-out cross-validation strategy);
(3) 71 AS/36 ES (training on the AS group and testing on the
ES group); and (4) 36 AS/36 ES (training and testing on the
AS group, with the size of the training set made equal to the
ES group).

Statistical Analysis
We assessed demographic and clinical data with ANOVA,
Kruskal-Wallis, and χ² tests, as appropriate. The accuracy,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) for the binary and multiclass
classification of each PDs was determined. Areas under the
receiver operating characteristic (ROC) curve (AUCs) were
calculated to assess the diagnostic accuracy. The potential added
value of the inclusion of midbrain for the purpose of multiclass
classification was assessed using the McNemar’s test. All above
analyses were carried out in GraphPad Prism, version 8.0.1

(Graph Pad Inc., San Diego, CA, USA). Statistical significance
was determined by a two-tailed p value < 0.05. The relative
contribution of each striatal subregion to the classification
process was determined using the random forest method based
on Python. and visualized with the BrainNet Viewer (Xia et al.,
2013).

RESULTS

Subjects
Of the 107 participants, 50, 37, and 20 were clinically diagnosed
with PD, MSA, and PSP, respectively. Demographic and clinical
characteristics of subjects and normal controls are shown in
Table 1.

Detailed DAT distribution of patient groups are shown
in Table 2; Figure 2. Average SOR values of both sides of
subregions, and asymmetric indexes [(SOR of the higher side)
- (SOR of the lower side)] / (average SOR of both sides) were
calculated out and compared. Compared with NC group, patient
groups revealed a significant decline of SOR values. However,
almost no significant difference was found among parkinsonism
groups. Of note, asymmetric indexes of anterior and middle
putamen were significantly elevated in PD group compared with
all the other groups. At the same time, MSA and PSP group
performed higher asymmetric indexes in middle caudate than
NC subjects.

Binary and Multiclass Classification of
Parkinsonian Disorders
The goal of binary classification was to discriminate between
one subtype of PDs and the remaining two. The accuracy values
of this classification for distinguishing PD, MSA, and PSP from
the other two diagnostic groups were 85.0, 82.2, and 89.7%
respectively. The AUCs from ROC curve analysis were 85.0, 80.1,
and 82.1% respectively. The sensitivity, specificity, PPV, and NPV
for the diagnosis are shown in Table 3.

The overall accuracy of multiclass classification—defined as
the proportion of instances being correctly predicted across all
study participants—was 80.4%. The sensitivity and specificity
of multiclass classification are shown in Table 4. The NPV was
similar for the three diagnostic categories (∼90%), whereas the
PPV was higher for PD (Table 3).

Diagnostic Results According to Different
Training Strategies
We next investigated the classification accuracies for ES patients
using the above-mentioned four different training strategies.
Strategy 1 resulted in the highest accuracy (77.8%), which was
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TABLE 5 | Diagnostic performances of the four different training strategies.

Strategy (training/testing) Accuracy Error count (errors/total) Diagnostic group Sensitivity Specificity PPV NPV

1 71 AS+ 35 ES/1 ES 77.8% 8/36 PD 90.9% 80.0% 66.7% 95.2%

MSA 88.2% 84.2% 83.3% 88.9%

PSP 37.5% 100.0% 100.0% 84.9%

2 35 ES/1 ES 69.4% 11/36 PD 63.6% 88.0% 70.0% 84.6%

MSA 76.5% 79.0% 76.5% 79.0%

PSP 62.5% 85.7% 55.6% 88.9%

3 71 AS/36 ES 58.3% 15/36 PD 54.5% 76.0% 50.0% 79.2%

MSA 82.4% 57.9% 63.6% 78.6%

PSP 37.5% 96.4% 50.0% 79.4%

4 35 AS/36 ES 55.6% 16/36 PD 54.6% 76.0% 50.0% 79.2%

MSA 70.6% 57.9% 60.0% 68.7%

PSP 25.0% 92.9% 50.0% 81.3%

PPV, positive predictive value; NPV, negative predictive value; AS, advanced stage; ES, early stage; PD, Parkinson’s disease; MSA,multiple system atrophy; PSP, progressive supranuclear

palsy. The strategy column reports different combinations of training subjects while maintaining test subjects constant. Best performing values are marked in bold.

TABLE 6 | Relative contribution of different regions to the computer-aided

classification framework.

Region Contribution Region Contribution

Anterior caudate (R) 0.113 Anterior caudate (L) 0.072

Middle caudate (R) 0.099 Posterior caudate (R) 0.067

Middle putamen (R) 0.092 Middle caudate (L) 0.064

Posterior caudate (L) 0.077 Pallidum (L) 0.054

Middle putamen (L) 0.076 Anterior putamen (L) 0.053

Posterior putamen (R) 0.075 Anterior putamen (R) 0.048

Posterior putamen (L) 0.072 Pallidum (R) 0.038

R, right; L, left. Diagnostic characteristics were not adjusted. The sum of all relative

contribution values is 1.

found to decrease in a stepwise fashion from strategy 1 to strategy
4 (Table 5). The sensitivity, specificity, PPV and NPV obtained
with the application of strategy 1 were 90.9, 80.0, 66.7, and 95.2%,
respectively, for the diagnosis of PD; 88.2, 84.2, 83.3, and 88.9%,
respectively, for the diagnosis of MSA; and 37.5, 100.0, 100.0, and
84.9%, respectively, for the diagnosis of PSP.

Relative Contribution of Subregional
Features to the Diagnostic Classification
The caudate contributed more prominently (49.2%) than the
putamen (41.6%) and pallidum (9.2%) to the classification
process. Specifically, anterior caudate (18.5%), middle putamen
(16.8%), and middle caudate (16.3%) contributed more
than posterior putamen (14.7%), posterior caudate (14.4%),
anterior putamen (10.1%), and pallidum (9.2%). The relative
contributions of different striatal subregions to the diagnostic
classification are summarized in Table 6 and visualized with
the BrainNet Viewer (Figure 3) and. The addition of the
midbrain resulted in a slight improvement in terms of accuracy
(1.8%), without a significant effect (p = 0.683) on multiclass

FIGURE 3 | Relative contribution of different components of the striatum to

the proposed computer-aided classification framework. Intensity of colors

reflects the magnitude of contribution.

classification. Training based on midbrain alone resulted in a
poor diagnostic accuracy (48.6%) (Table 7).

DISCUSSION

In the current study, we demonstrate the feasibility of a novel
computer-aided classification framework for PDs based on 11C-
CFT PET imaging. Specifically, the accuracy values of the
proposed strategy for identifying PD, MSA, and PSP were 85.0,
82.2, and 89.7%, respectively—with an overall accuracy in the
context of PDs of 80.4%. The caudate and putamen had the
highest diagnostic relevance within the proposed classification
strategy, whereas the contribution of the midbrain was negligible.
If independently validated, our results may set the stage to
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TABLE 7 | Accuracy of different combinations of regions of interest.

Strategy Midbrain + striatum Midbrain Striatum p value

Accuracy 82.2% 48.6% 80.4% 0.683

(1) Midbrain + striatum: the classifier was trained using features extracted from both

midbrain and striatum; (2) Midbrain: the classifier was trained using features extracted

only from midbrain; (3) Striatum only: the classifier was trained using features extracted

only from striatum. p value refers to the difference between the analysis with the extracted

features from midbrain + striatum and striatum.

the application of the proposed computer-aided classification
approach for distinguishing among PD, MSA, and PSP.

While PD is generally characterized by a relatively preserved
DAT binding in the caudate during early disease stages followed
by a rostrocaudal progression in dopaminergic denervation,
diffuse striatal impairment is typical of both MSA and PSP
(Georgiopoulos et al., 2015). A recent meta-analysis provided a
comprehensive comparison of striatal presynaptic dopaminergic
function across the spectrum of PDs (Kaasinen et al., 2019).
Compared with PD and MSA, PSP is characterized by the
most pronounced loss of DAT function at both caudate and
putamen; in addition, caudate DAT binding is lower in patients
with MSA than in those with PD (Kaasinen et al., 2019).
Other studies have shown that different quantitative indices
of DAT PET imaging—including the specific binding ratio,
the putamen-to-caudate ratio, and the asymmetry index—are
capable of discriminating with high accuracy between PDs
and non-synucleinopathy diseases (Georgiopoulos et al., 2015;
Iwabuchi et al., 2019). However, the clinical utility of the indexes
in distinguishing between different PDs remains questionable
(Eerola et al., 2005; Georgiopoulos et al., 2015; Buchert et al.,
2019). In our study, subregion-to-subregion comparison showed
rare difference among PDs groups, while asymmetric indexes
of anterior and middle putamen could distinguish between PD
patients and the others on group level.

Recently, the application of a SVM diagnostic framework
to 123I-FP-CIT PET data by Nicastro et al. (2019) led
to an accuracy for binary classification of PDs ranging
between 62.9 and 83.7%. The accuracy values for binary and
multiclass classification in this current study were as high
as 82.2–89.7 and 80.4%, respectively, which were even in
accordance with those reported in recent studies based on
18F-FDG PET imaging (Supplementary Table 1). Accordingly,
additional features which had been detected by deep learning
were integrated to achieve the relative high accuracy in the
classification task.

In an effort to identify the most powerful training strategy,
we tested a total of four different approaches in different
combinations of patients with ES and AS disease—with the
highest accuracy (77.8%) being observed for the combined
ES+AS group. Notably, the accuracy in patients with AS was
lower (55.6–58.3%) than that observed in patients with ES
(69.4%). With the exception of sensitivity for the diagnosis of
PSP, the ES+AS strategy performed better in terms of sensitivity,
specificity, PPV, and NPV for each PDs subtype. These results
suggest that DAT PET imaging of patients with AS markedly

improves the classification results of patients with ES, while
the opposite does not occur. We therefore believe that future
replication efforts on the clinical utility of our computer-
aided classification system should include both patients with
ES and AS.

Another interesting finding from our study is that the greatest
contribution to the classification process was attributable to
the caudate and putamen, whereas the role of pallidum was
negligible. Amongst the intranuclear subregions, the anterior
caudate and the middle putamen contributed more prominently
to the diagnostic classification. Notably, patients with idiopathic
PD are characterized by an uneven pattern of intrastriatal
dopaminergic loss (Kish et al., 1988) and differences in terms
of intrastriatal dopaminergic loss may exist between different
PDs (Ilgin et al., 1999; Knudsen et al., 2004). However, the
addition of midbrain to our computer-aided classification system
did not significantly improve accuracy (p = 0.683). These results
may stem from a similar extent of midbrain dopaminergic
neuron loss across different PDs, although published data in
the field remain inconclusive (Hirsch et al., 1988; Fearnley
and Lees, 1991; Martin-Bastida et al., 2017). An alternative
explanation is that our computer-aided classification framework
is unable to capture existing differences with respect to
midbrain dopaminergic neuron loss, ultimately making their
diagnostic contribution for distinguishing between different PDs
not significant.

The present study has several limitations that merit comment.
Firstly, the sample size is relatively small and validation studies
on the data with larger sample size and from multiple centers are
required. Secondly, the transparency of the whole pipeline could
be compromised as a tradeoff of the accuracy when we extracted
features for semantic segmentation via deep neural networks
(Adadi and Berrada, 2018). The proposed pipeline should be
further optimized to be more user-friendly and achieve better
classification performance.

In conclusion, we described a user-friendly, semi-
automatic computer-aided classification framework for
PDs based on 11C-CFT PET imaging. The proposed
approach is capable of extracting subtle image
information and holds promise to improve the differential
diagnosis of PD, MSA, and PSP in both research and
clinical settings. However, replication in independent
samples is paramount for ensuring external validity of
our data.
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