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Abstract: Damage detection based on modal parameter changes has become popular in the last few
decades. Nowadays, there are robust and reliable mathematical relations available to predict natural
frequency changes if damage parameters are known. Using these relations, it is possible to create
databases containing a large variety of damage scenarios. Damage can be thus assessed by applying
an inverse method. The problem is the complexity of the database, especially for structures with
more cracks. In this paper, we propose two machine learning methods, namely the random forest
(RF), and the artificial neural network (ANN), as search tools. The databases we developed contain
damage scenarios for a prismatic cantilever beam with one crack and ideal and non-ideal boundary
conditions. The crack assessment was made in two steps. First, a coarse damage location was found
from the networks trained for scenarios comprising the whole beam. Afterwards, the assessment was
made involving a particular network trained for the segment of the beam on which the crack was
previously found. Using the two machine learning methods, we succeeded in estimating the crack
location and severity with high accuracy for both simulation and laboratory experiments. Regarding
the location of the crack, which was the main goal of the practitioners, the errors were less than 0.6%.
Based on these achievements, we concluded that the damage assessment we propose, in conjunction
with the machine learning methods, is robust and reliable.

Keywords: damage detection; linear regression; random forest; artificial neural network; training
parameters; natural frequency

1. Introduction

Nondestructive damage detection methods have received increasing attention in recent
decades and have become a central research topic for scholars and practitioners belonging to
the structural health monitoring community. The principles of vibration-based techniques,
which are nowadays very popular, can be found in [1–5]. These methods are based on the
deterministic relation between the damage characteristics (mainly location and severity),
and changes in the modal parameters (natural frequencies, mode shapes, and curvatures).
Among the modal parameters, the natural frequencies are the easiest to determine and
require the involvement of relatively cheap and very robust instrumentation. Moreover,
estimating the natural frequencies requires a limited number of sensors compared to
methods based on mode shapes [6]. For this reason, in this paper, we focus on the analysis
of natural frequencies to detect damage.

Temperature changes can affect the natural frequencies of structures. For accurate
damage detection, it is important to remove the effects of temperature on the natural
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frequencies. An algorithm with this aim was presented in [7], where a successful damage
assessment was performed for the case of changing temperatures. Mass changes also affect
the natural frequencies of structures. In [8], an analytical approach was developed for a
mass-spring-damper system that demonstrates how to localize mass change.

Detection and measurement of damage features for different crack types in slender
beams using modal analysis was studied in [9]. Assessment of L and T-shaped cracks
as well as delamination in bi-metal structures using natural frequencies was successfully
performed in [10]. An assessment of corrosion and the analysis of the structural capacity of
corroded I girders that belong to steel bridges was studied in [11].

In some real cases, multiple damages can occur at once, and the structures can have
multiple supports. A complex study devoted to calculating the natural frequencies and
mode shapes of multi-span beams is found in [12], and in [13], a method to assess cracks
in continuous beams was presented. A study devoted to identifying multiple damages of
multi-span bridges based on influence lines was presented in [14].

The complexity of damage (the crack shape and the orientation, the associated loss of
mass, the number of cracks), as well as the complexity of the structures (multi-supported
beams, skeletal structures, the use of nonisotropic materials), increase the dimension of the
dataset to be processed for damage detection. However, for all cases mentioned above, we
determined reliable relations to also consider the different configurations of the structure
(multi-span beams or frames), the temperature effects, and the shape of the crack (L or
T shape, delamination). This makes the damage detection methods able to take into
consideration particular cases, which usually occur in real applications, but makes the
recognition of patterns more difficult. For this reason, researchers who develop methods
for detecting damages by employing vibration-based methods [15] are increasingly using
artificial intelligence (AI) to analyze large amounts of data. AI has now reached a level
where it can recognize the characteristics of objects as well as alterations of structures by
considering different types of data and can automatically learn the needed criteria [16]. A
study of the use of SHM methods is presented in [17,18] in which the authors presented
an image processing model capable of monitoring microseismic events [17] or pavement
monitoring [18] both of which achieved great strides in enabling the widespread use of
artificial intelligence solutions, although many of these continue to face challenges related
to large volumes of graphics data. Another approach is the use of vibration-based damage
detection methods, which are global and do not require access to the damaged area.

The use of Random Forests (RF) and data fusion for structural damage detection
are proposed in [19]. More recently, an RF model was used to predict the location of
potential damage on asphalt pavement [20]. Here, RF data mining was used to analyze
the interrelationships of variables. Another approach is found in [21]. The damage-
sensitive features were extracted from raw sensor data using the cross-correlation function
and wavelet packet decomposition. RF and other ensemble learning algorithms such as
XGBoost are used to train the damage pattern classifier.

The artificial neural network (ANN) is a commonly applied technique for SHM. A
method to identify the damage location and its severity in a ten-floor structure, employing
an auto-associative neural network combined with transmissibility is proposed in [22].
The development of a method to detect damages in a truss structure using an ANN is
the subject of the research presented in [23]. A method to predict crack width for thick,
as well as for thin, concrete elements based on the feed-forward backpropagation and
radial basis neural networks is proposed in [24]. Regarding the use of neural networks
for condition monitoring, we mention a technique involving a new convolutional neural
network (NCNN) that was proposed and successfully applied to detect bearing faults [25].

Despite successful assessment of damage, it is worth mentioning that the damage
considered in most studies presented in the literature either manifests on an element with
significant extent of damage along the beam [22] or has significant severity: 22% to 68%
in [26] and 20% to 80% in [27]. For skeletal structures, the damage manifests on one or
more structural elements, see, for example, [19–21,23].
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In prior research, we deduced a relation to calculate the natural frequencies of beams
with known crack parameters. This relation is applicable also for beams with non-ideal
boundary conditions. Being an analytical relation, it permits creating, easily and rapidly,
a database with patterns for a multitude of damage scenarios. The database contains the
relative frequency shifts (RFS) for eight out-of-plain vibration modes for all given damage
locations, severities, and fixing conditions. It was used to train RF and ANN with a huge
amount of data. The training was first performed for scenarios covering all locations
along the beam and afterwards for locations on a specific segment. The proposed damage
detection methodology presumes an initial/coarse assessment to find the crack location,
followed by a second/fine assessment targeting the accurate crack location and severity.

To evaluate the effectiveness of the proposed approach, two examples, comprising
numerical simulations and laboratory experiments on steel beams were performed. The
results obtained by involving RF and ANN were compared; both methods led to the correct
location and quantification of the damage, regardless of the changes in the fixing conditions.
It was possible to detect cracks with a much smaller depth than those reported in the
literature because a large amount of the calculated, and consequently noiseless, data was
used for training. To the best of our knowledge, there are no artificial intelligence-supported
crack detection methods that apply to beams with non-ideal boundary conditions or that
can detect the weakening of the clamping.

The paper is organized as follows. After an introductory section, we present the
theoretical background which permits the development of a database consisting of an
INPUT and a TARGET part. The methodology of RF and ANN, along with the training
process based on the database are introduced in Section 3. In the next two sections, we
prove the efficiency of the proposed approach. In Section 4 we describe the numerical
simulations performed on a steel cantilever beam, done to find the natural frequency shifts
due to several damage cases. Then, we apply the two machine learning methods. In
Section 5 we repeat the approach for laboratory-scale beams. Eventually, conclusions are
formulated.

2. Creating the Database for Machine Learning (ML)

As a crack propagates in a structure, it produces an alteration of structural stiffness.
This alteration produces a change in modal parameters, of which the most obvious and easy
to measure are changes in natural frequencies. There is a deterministic relationship between
stiffness change and the decrease in the natural frequencies of the structure; therefore, the
position and depth of the crack can be identified if the changes in the frequencies produced
by the defect are known. We proposed a robust and easy-to-use mathematical relation to
predicting the natural frequency fi−D(x, a) of a cracked beam [28]. This relation relies on the
features of the healthy beam, namely, the natural frequencies fi−U and the modal curvatures
φ
′′
i (x) of the out-of-plain vibration modes, and the damage severity γ(a), respectively. The

mathematical relation, following [28], is

fi−D(x, a) = fi−U

{
1− γ(a)

[
φ
′′
i (x)

]2
}

. (1)

In this relation, we denoted the crack position with x, the crack depth with a, and i
stays for the mode number. From Equation (1) we can deduce the relative frequency shift
(RFS), which is the normalized frequency drop due to a crack, as

∆ f i−D(x, a) =
fi−U − fi−D(x, a)

fi−U
= γ(a)

[
φ
′′
i (x)

]2
. (2)

We find the two terms in the right part of Equation (2) as follows. The crack severity
is calculated involving an energy method, which says that a beam with a crack will be
able to store less energy than a similar healthy beam and will suffer a greater deformation
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if subjected to a force [29]. So, we can calculate the severity involving the mathematical
relation proposed in [30], that is

γ(a) =

√
δD(a)−

√
δU√

δD(a)
. (3)

In this relation, we denoted δU the deflection of the healthy beam, and with δD(a) the
defection of the beam with a crack that has depth a. Note that the severity is calculated for
the crack located at the position where the biggest curvature (or bending moment, which is
proportional to the curvature) is achieved. In consequence, the position of the damage for
which the severity is calculated differs depending on the boundary conditions of the beam;
for example, for the cantilever beam that is the subject of the study presented hereinafter
this position is the fixed end. On the other hand, the severity depends solely on the crack
depth a, so that for a given depth it is the same regardless of the boundary conditions. The
relationship between the crack depth and the severity can be found before starting the
damage detection procedure. When applying the damage detection method, we determine
the damage severity and afterward determine the damage depth from the depth-severity
relationship known a priori. So, knowing the deflection of the monitored structure is not
necessary.

The effect of the crack position is controlled by the local curvature (or bending mo-
ment). This happens because the stress present in the affected slice is proportional to the
bending moment. In consequence, a smaller effect on the frequency drop is obtained if the
crack is not located at the particular position where the biggest bending moment is present.
There are even situations in which the crack does not cause a decrease in frequency, namely
when it is located at an inflection point [31]. To consider the effect of the crack position x on
the frequency drop, we use the normalized squared curvature. By normalization, we assign
value one to the curvature or bending moment for the location where the beam is the most
requested and a subunit value for the rest of the positions. For the cantilever beam, the
normalized curvature is

φ
′′
i (x) = 0.5

{
cos(λix) + cosh(λix)−

cos λi + cosh λi
sin λi + sinhλi

[sin(λix) + sinh(λix)]
}

. (4)

where we denoted with λi the eigenvalue of the i-th vibration mode. These values are
indicated in the literature for different boundary conditions of the beam. Note that, other
boundary conditions also lead to other curvature functions.

Taking into account the above, we can summarize that:

• The severity γ(a) depends on the crack depth a and is independent of the crack
position x, boundary conditions, and vibration mode number i. Therefore, the severity
for a beam with a given crack once calculated using Equation (3) is valid for that
beam irrespective of the boundary conditions. In practice, we calculate the severity
using data obtained from static finite element analysis for a cantilever beam because it
presents an important deflection at the free end. A comprehensive description of the
procedure to determine the correct severity is given in [32];

• The value of the normalized modal curvature φ
′′
i (x) at the position x where the crack is

located reduces the effect of the severity since at that position less stress is stored in the
beam. This term depends on the vibration mode number i and the boundary conditions.
Therefore, Equation (2) has a large degree of generality; it can be properly used for
any support type if the correct curvature function φ

′′
i (x) is employed. Hereinafter we

exemplify the case of a cantilever, thus Equation (4) is used.

In Figure 1 we represent the RFS calculated using Equation (2) for vibration modes
1 and 3, for two crack depths. The RFS values for the fixed (left) end reflect the severity
of the cracks when the cross-section is reduced by 12 and 20%, respectively. For the other
locations, the effect of the crack is reduced in concordance to the local curvature. Because
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the normalized curvature is the unit for the crack located at the fixed end, here the relative
frequency shift is equal with the crack severity and is not dependent on the vibration
mode number. It is obvious that the bigger the crack depth, the bigger the severity and in
consequence the RFS.

Figure 1. Plotted RFS functions for out-of-plain bending vibrations of a cantilever beam with perfect
fixing: (a) vibration; mode 1; (b) vibration mode 3. The functions are plotted for a cross-section
reduction of 12% and 20%, respectively.

The above approach is valid for perfect boundary conditions. If the fixing is non-ideal,
the frequency drop is bigger. In prior research, we demonstrated that the superposition
principle is valid [33]. For a beam with two cracks, which have position x1 and x2, and
depths a1 and a2, respectively, the frequency drop is calculated as the sum of the two RFS,
that is

∆ f i−D(x1, a1, x2, a2) = γ1(a1)
[
φ
′′
i (x1)

]2
+ γ2(a2)

[
φ
′′
i (x2)

]2
. (5)

We simulate the non-ideal boundary condition, namely the weak fixing, as a crack at
the clamped end. So, an additional rotation is possible [34], which leads to a frequency
decrease. Knowing that the normalized modal curvature at the fixed end of the cantilever
is φ

′′
i (0) = 1, Equation (5) becomes

∆ f i−D(0, a1, x2, a2) = γ1(a1) + γ2(a2)
[
φ
′′
i (x2)

]2
. (6)

Hence, we can plot the RFS for the beam with non-ideal boundary conditions as shown
in Figure 2. These are calculated using Equation (6), again for the vibration modes 1 and 3,
and the same two crack depths (cross-section is reduced with 12% and 20%, respectively).
In this figure, we can observe that in addition to the RFS caused by the crack we have
the RFS caused by the non-ideal clamping. The two RFS, caused by crack and by weak
clamping, are superimposed and the contribution of the weak clamping is marked with a
red dashed line.
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Figure 2. Plotted RFS functions for out-of-plain bending vibrations for a cantilever beam with non-
ideal fixing: (a) vibration mode 1; (b) vibration mode 3. The functions are plotted for a cross-section
reduction of 12%, respective 20%.

The inverse method we developed to detect cracks implies, as a first step, calculating
the RFS for numerous damage scenarios and creating a database. The database thus
contains two distinct sections:

• TARGET elements, which are the local value of the curvature for a given position, the
severity of the defect, and the severity corresponding to the weak fixing. These are
placed on columns, the number of columns m corresponding to the desired number of
scenarios. The index of the column is denoted k, thus k = 1, . . . ,m;

• INPUT elements, which are the relative frequency shifts RFSc
i−k calculated with the

mathematical relations (2) or (6) for a chosen number of vibration modes n. These are
also arranged in columns, each INPUT column corresponding to a TARGET column.

The second step is monitoring the structure, which presumes to measure the natural
frequencies. If changes are observed, the frequency shifts calculated for the measured
frequencies (RFSm

i ) are compared with the elements of the INPUT section of the database,
i.e., RFSc

i−k. The column number k for which the best fit is obtained between the calculated
and measured RFS indicates the crack position and severity. In this study, we propose a
machine learning approach to find the best fit. The chosen methods are the random forest
and the neural network.

3. Machine Learning Methods

In the last decade, artificial intelligence (AI) has become a frequently used term for
applications that perform complex tasks that once required human intervention, such
as structural health monitoring methods. In this section, we present the development
and testing of two machine algorithms used for damage detection. The training data are
generated using the method described in the previous chapter. The database contains
36,573 damage scenarios (number of columns in the INPUT and TARGET files). The
number of rows in the INPUT file is eight, comprising the first eight out-of-plain bending
vibration modes. The TARGET file consists of three elements, i.e., three rows, which are: the
damage location, the damage severity, and the severity of the damage simulating the weak
clamping. For this study, we considered 100 locations of the crack evenly distributed along
the beam, the cracks having 17 levels of depth. The beam has both ideal and non-ideal
clamping, for the latter situation seven cases of weak fixing are generated. It resulted in
36,573 damage scenarios. This number of data was selected after testing the influence of the
dataset dimension on the accuracy of the predictions. We observed that larger databases
led to better results. The two files of the database are presented in [35].
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Because of the complexity of the application and the accuracy required for determining
the exact position and severity of transverse cracks we propose a two-step approach. This
means that after a coarse localization of the crack using a network trained for all damage
scenarios, we apply a second check, this time for a model trained for the specific section
of the beam on which the crack is found at the first step. As an example, if the crack is
found involving one of the developed methods at 175 mm from the fixed end, we make the
second check for a segment extended between 100 and 250 mm. For this segment, we train
again the model for a limited number of inputs, considering just those which contain the
crack position between the limits 100 and 250 mm. This facilitates obtaining a better model
of the structure and, in consequence, more precise localization of the crack.

To have a fast estimation, we divide the beam into nine segments, partially overlapped,
and train the ML models a priori for these segments. Overlapping is used to avoid
uncertainty regarding the choice of the right segment. The segments used, and the name of
the network, are presented in Table 1.

Table 1. Segments used to train the machine learning models for enhanced damage detection.

Segment limits 0–150 100–300 250–400 350–500 450–600 550–700 650–800 750–900 850–1000
Network name Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7 Sector 8 Sector 9

The two ML methods and the settings applied for the training are presented in the
next two sub-sections. For both methods, we use 70% of the data for training, 15% for
testing, and 15% for validation.

3.1. Random Forest

Decision trees have proven to be successful at exploring non-linear relationships
between input and target variables [36]. Such trees work by splitting the dataset in instances
that have a minimum amount of node impurity or are, in other words, homogenous. Purity
here means that each leaf node represents data points that are in the same class and is
defined as the sum of square deviations in class predictions. The biggest drawback of
decision trees is that they can easily overfit. This can be mitigated by aggregating such
trees to reduce variance.

RF is a technique that employs an ensemble of decision trees and can be used for
regression and classifications tasks. The prediction made by an RF aggregates the output of
individual trees into a single variable [37]. When building trees, the algorithm randomly
selects a given number of features. This essentially prevents multiple decision trees that
rely on the same feature. The process is repeated until a group of regression trees, each
trained on a randomly selected subset of data, is created. This induced randomness is what
compensates for the weakness of each tree.

The performance of an RF model can be tweaked by tuning a few key parameters,
with some studies reporting that there is a significant benefit to tuning RF parameters away
from their default settings [38,39]. Table 2 summarizes the most common hyperparameters
of the RF model.

The number of trees in the forest should, in principle, be as high as possible but in
practice, performance plateaus appear after a few hundred trees. In general, increasing the
number of features considered in splitting a node will improve performance as each node
will have now have a higher number of options to consider; a lower value will increase
the chance of selecting features with small effects which in turn could lead to improved
performance in cases where such feature would be masked. Parameter min_samples_leaf
represents the minimum size of terminal nodes. A higher number will lead to small trees
while a smaller leaf size makes the tree more prone to noise in data.
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Table 2. RF hyperparameters.

Parameter Meaning Value Range

n_estimations The number of estimators in the forest 400 200–2000, step 200

max_features max number of features considered for splitting
a node sqrt -

max_depth max number of levels in each decision tree None None; 10–110, step 10

min_samples_split min number of data points placed in a node
before it is split 2 2, 5, 10

min_samples_leaf min number of data points allowed in a leaf node 1 1, 2, 4

bootstrap method for sampling data points. True=
bootstrap samples true true, false

The hyperparameters of the RF were tuned using randomized search with five-fold
cross-validation (RandomizedSearchCV in Scikit-Learn), that chooses one of the possible
values for each one of the hyperparameters and scores the estimator. The best estimator is
used in the model. Table 2 also shows the tuned values for each parameter The training
results using RF are presented in Figure 3 for the entire beam and sector 8, respectively.

Figure 3. Random forest training results; (a) obtained for coarse estimation involving all input data;
(b) obtained for accurate localization involving the Sector 8 input data.

3.2. Artificial Neural Networks

Numerous studies have shown the versatility and power of ANNs when applied
to different computational tasks such as prediction or classification in many real-world
applications [40]. In particular, they are universal approximators capable of detecting
nonlinearities in an n-dimensional input. This is achieved by including a large number
of nonlinear transformations between the input to an output mapping. A typical neural
network consists of several connected neurons, organized in layers, as shown in Figure 4.
A neuron will generally process information coming from its connections using a nonlinear
activation function. A neural network is trained to perform a specific function by adjusting
the values of the connections between its neurons.

Feedforward neural networks are ANNs where the topology is organized such that
every neuron in a layer projects only onto subsequent layers. This topology excludes thus
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recurrent connections and essentially means that information flows through the network
from one layer to another until it reaches the output.

Figure 4. Typical neural network structure.

By using the methodology presented in Section 2, we calculated the required data for
training. The calculated data involves the INPUT data as the calculated RFS values for the
first 8 transverse vibration modes and the TARGET data consisting of 3 values, i.e., crack
position, crack severity, and the severity for the weak clamping.

The ANN is developed using Matlab software, as shown in Figure 5. A feedforward-
backpropagation network type is employed, for which we choose: the Bayesian regularization
training function, the Levenberg–Marquardt learning function, the mean squared error (MSE)
performance function, and the hyperbolic tangent sigmoid transfer function. This combination
of Bayesian regularization and Levenberg–Marquardt training leads to regularisation and
essentially makes the network difficult to overfit [41].

Figure 5. The setup for the training of network 1.
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All networks used in this study consist of one input layer with 8 neurons, three hidden
layers with 30 neurons each, and an output layer with 3 neurons. An example is shown in
Figure 6.

Figure 6. Network 1 configuration.

The obtained training performance for network 1 is presented in Figure 7 in comparison
with one of the particular networks, Sector 9 shown in Figure 8.

Figure 7. Neural network training results obtained for coarse estimation involving network 1.
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Figure 8. Neural network training results obtained for accurate localization involving the Sector 9
network.

3.3. Evaluation of the Models

In this study, two criteria were used for evaluating the accuracy of the models relative
to the ones obtained through FEM analysis and experimental tests, error(x) for the position
and error(γ) for the severity. The error in the position is

error(x) =
x(r)− x(e)

1000
· 100% (7)

Here, x(r) is the real position of the crack expressed in mm, x(e) is the estimated
position using the ML models and 1000 represents the total length of the beam in mm.

The severity error is calculated as

error(γ) =
γ2(r)− γ2(e)

1
· 100% (8)

In this relation, γ(r) is the real severity of the crack, γ(e) is the estimated severity of
the crack found using the ML models, and 1 represents the maximum value that can be
achieved by the crack severity.
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In addition to the two above-mentioned errors, we evaluate the capacity of the models
to detect weak clamping. The possible responses are false or true.

4. Numerical Validation

For testing the reliability of the damage detection methods described in the previous
section, we first involve the finite element method (FEM). Modal analysis is performed
using the ANSYS software. We generate a prismatic steel cantilever beam, like that shown in
Figure 9, with dimensions: length L = 1000 mm, width B = 50 mm, and thickness H = 5 mm.
The assigned material is S355 JR steel with a modulus of elasticity E = 2 × 105 MPa and a
density of 7850 kg/m3.

Figure 9. Main dimensions of the considered beam geometry with a transversal crack.

The target was to find the first eight natural frequencies for the out-of-plain vibration
modes, for the healthy beam and the beam with different damages, respectively. Both ideal
clamping and non-ideal clamping are simulated.

To implement the crack and simulate the effect of the weak clamping, we involve
separate elements which are not fixed on one surface, as shown in Figure 10. In this way,
we assign the same mass for the beams with damage and non-ideal clamping and yet
obtain discontinuities. For simulating real-life scenarios where in most cases measurement
data can contain noise, we have also considered different meshing sizes for the damage
scenarios to have small differences in the frequency results. The maximum edge size is set
to 2 mm for scenarios 1–5 and 1 mm for scenarios 6–10.

Figure 10. The finite element model of the damaged beam with weak clamping.

The FEM model is composed of the beam body and the two parameterized elements,
which have a thickness equal to the crack depth and the length of 6 mm. The elements are
used to create discontinuities by setting the free condition for the faces where the crack is
intended.

The frequencies obtained from the FEM analysis for the undamaged and damaged
beam cases are presented in Table 3. The complete dataset is presented in [42].
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Table 3. Obtained natural frequencies for the defined damage scenarios.

Scen.
Crack
Pos.

x (mm)

Crack
Depth

a2 (mm)

Weak Clamp.
¯
a1 (%)

Natural Frequencies Obtained for the First 8 Modes

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0 Undamaged 4.09 25.627 71.757 140.63 232.53 347.46 485.47 646.59
1 100 1 0 4.081 25.606 71.745 140.631 232.472 347.229 484.947 645.751
2 150 1 0 4.082 25.620 71.754 140.552 232.257 347.024 485.083 646.448
3 400 1 0 4.087 25.601 71.708 140.588 232.186 347.447 484.904 646.092
4 550 1 0 4.089 25.588 71.739 140.478 232.383 347.238 484.950 646.435
5 613 1 0 4.089 25.593 71.686 140.609 232.189 347.401 485.079 645.855
6 133 1 20 4.073 25.568 71.624 140.323 231.864 346.328 483.945 644.903
7 280 1.2 20 4.073 25.555 71.445 140.116 231.936 346.097 483.238 644.674
8 410 1 20 4.080 25.549 71.579 140.300 231.744 346.819 483.831 645.103
9 570 1 20 4.082 25.512 71.586 140.209 231.700 346.824 483.324 645.633

10 962 0.6 10 4.088 25.616 71.727 140.571 232.430 347.305 485.241 646.262

The variables used for the studied damage scenarios are the crack location, which is
measured from the fixed end, and the proportion in which the clamped end is affected. The
weak clamping is replicated by adding the separate element of known thickness a1 to the
fixed end. Thus, a1 = a1/H (%) replicates the weak clamping. The RFS values obtained
for the studied damage scenarios are presented in Table 4, where crack position x, crack
depth a2 and weak clamping a1 represent the output values.

Table 4. Calculated RFS values for the defined damage scenarios.

Scen.
Crack
Pos.

x (mm)

Crack
Depth

a2 (mm)

Weak Clamp.
¯
a1 (%)

RFS for the First 8 Modes

RFS 1 RFS 2 RFS 3 RFS 4 RFS 5 RFS 6 RFS 7 RFS 8

1 100 1 0 0.002393 0.001227 0.000540 0.000099 0.000015 0.000075 0.000336 0.000652
2 150 1 0 0.001899 0.000254 0.000038 0.000552 0.001173 0.001254 0.000798 0.000219
3 400 1 0 0.000644 0.001020 0.000683 0.000299 0.001480 0.000037 0.001166 0.000771
4 550 1 0 0.000240 0.001535 0.000256 0.001080 0.000632 0.000640 0.001072 0.000240
5 613 1 0 0.000141 0.001343 0.000991 0.000146 0.001467 0.000171 0.000805 0.001136
6 133 1 20 0.002224 0.000466 0.000003 0.000336 0.001015 0.001417 0.00131 0.00077
7 280 1.2 20 0.004237 0.002804 0.004348 0.003654 0.002554 0.003922 0.004598 0.002963
8 410 1 20 0.002522 0.003063 0.002483 0.002346 0.003381 0.001844 0.003377 0.002300
9 570 1 20 0.000218 0.00167 0.000507 0.000837 0.00116 0.000208 0.001627 0.00002

10 962 0.6 10 0.000412 0.000412 0.000414 0.000419 0.000429 0.000446 0.000472 0.000507

The outputs obtained using the two ML methods based on the RFS values (Table 4) are
presented in Tables 5–8. Table 5 contains the results from the preliminary ML random forest
model, and Table 6 the results obtained using the refined random forest model. In Table 7 we
present the results obtained involving coarse estimation with network 1, and in Table 8 are
the results obtained with the specific ANN networks chosen for the particular cases after
the coarse estimation.

Table 5. Results obtained using Random forest rough model—first step.

FEM Scenarios Random Forest Preliminary Output

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 100 0.0033459 99.5 0.0028 0.05 0.05 Not detected True
2 150 0.0033459 151.6 0.0029 0.16 0.04 Not detected True
3 400 0.0033459 458.0 0.0024 5.80 0.09 Not detected True
4 550 0.0033459 515.8 0.0028 3.42 0.05 Not detected True
5 613 0.0033459 602.5 0.0028 1.05 0.05 Not detected True
6 133 0.0033459 138.1 0.0027 0.51 0.06 Not detected False
7 280 0.0051239 204.9 0.0068 7.51 0.17 Detected True
8 410 0.0033459 365.1 0.0044 4.49 0.11 Detected True
9 570 0.0033459 547.3 0.0063 2.27 0.30 Detected True

10 962 0.0011911 941.1 0.0129 2.09 1.17 Not detected False
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Table 6. Results obtained using Random forest enhanced model—second step.

FEM Scenarios Refined Random Forest Output

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 100 0.0033459 97.7 0.0030 0.23 0.03 Detected False
2 150 0.0033459 148.3 0.0029 0.17 0.04 Detected False
3 400 0.0033459 400.0 0.0025 0 0.08 Not detected True
4 550 0.0033459 539.6 0.0028 1.04 0.05 Detected False
5 613 0.0033459 615.3 0.0026 0.23 0.07 Not detected True
6 133 0.0033459 136.3 0.0024 0.33 0.09 Not detected False
7 280 0.0051239 303.4 0.0087 2.34 0.36 Detected True
8 410 0.0033459 410.1 0.0046 0.01 0.13 Detected True
9 570 0.0033459 570.1 0.0058 0.01 0.25 Detected True

10 962 0.0011911 976.3 0.010 1.43 0.88 Detected True

Table 7. Results obtained using network 1—coarse estimation.

FEM Scenarios Coarse Network—Network 1 Output

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 100 0.0033459 99.6 0.0027 0.04 0.06 Not detected False
2 150 0.0033459 147.7 0.0023 0.23 0.10 Not detected False
3 400 0.0033459 392.9 0.0011 0.71 0.22 Not detected False
4 550 0.0033459 553.9 0.0031 0.39 0.02 Not detected False
5 613 0.0033459 604.4 0.0022 0.86 0.11 Not detected False
6 133 0.0033459 132.9 0.0047 0.01 0.14 Detected True
7 280 0.0051239 261.5 0.0098 1.85 0.47 Detected True
8 410 0.0033459 377.5 0.0033 3.25 0.00 Detected True
9 570 0.0033459 569.1 0.0072 0.09 0.39 Detected True

10 962 0.0011911 971 0.0134 0.9 1.22 Detected True

Table 8. Results obtained using the particular networks—fine estimation.

FEM Scenarios Accuracy Enhanced Network Output

Scen. Position
(mm)

Severity
γ2 (a2)

Network
Used

Position
(mm)

Severity
γ2 (a2)

Position
Error
(%)

Severity
Error
(%)

Weak Clamping

1 100 0.0033459 Sector 1 99.6 0.003332 0.04 0.00 Not detected True
2 150 0.0033459 Sector 2 148.9 0.003174 0.11 0.02 Not detected True
3 400 0.0033459 Sector 4 398.3 0.003031 0.17 0.03 Not detected True
4 550 0.0033459 Sector 5 554.7 0.002947 0.47 0.04 Not detected False
5 613 0.0033459 Sector 6 612.6 0.002936 0.04 0.04 Not detected True
6 133 0.0033459 Sector 1 132.3 0.003385 0.07 0.00 Detected True
7 280 0.0051239 Sector 3 280.8 0.004469 0.08 0.07 Detected True
8 410 0.0033459 Sector 4 409.4 0.003086 0.06 0.03 Detected True
9 570 0.0033459 Sector 6 570.4 0.003353 0.04 0.00 Detected True
10 962 0.0011911 Sector 9 962.2 0.001419 0.02 0.02 Detected True

The severity of the cracks with depth a = 1 mm, a = 1.2 mm, and a = 0.6 mm is:
γ2(1) = 0.0033459, γ2(1.2) = 0.0051239 and γ2(0.6) = 0.0011911.

One can observe that, after the first check, the largest error in estimating the crack
position is 7.51%, which is unacceptable. The severity is precisely found, the errors being
less than 1.17%. The method was not able to indicate correctly if the clamping is non-ideal.
In consequence, this machine learning method is not qualified to assess the crack position
and severity at this stage.
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Localization after the second check with the RF method is accurate, errors being below
1%. Estimating the severity of the defect is done also with small errors, up to 0.88%. As
shown in Table 6, weak clamping is detected incorrectly for some damage scenarios.

Assessing the crack with the ANN method is also made in two steps. First, a coarse
estimation is made with network 1, which considers the locations along the entire beam.
Here, we coarsely estimate the damage location and choose the segment on which the
crack is supposed to exist and perform a second check for the network trained for scenarios
available on this segment.

After the first check, the largest error obtained is 3.3% for the position, and small errors
were obtained for the crack severity. The model wrongly detects non-ideal clamping for
the first five damage scenarios. But, at this stage, we can estimate the segment on which
the crack occurred with high confidence.

Knowing the approximate position of the crack we can select the appropriate segment
and use the network trained for this particular segment. The results obtained in the second
step are given in Table 8. One can observe that now the largest error obtained is 0.5% for
the position and 0.07% for the crack severity. In addition, the model can detect non-ideal
clamping with high accuracy. These results allow us to conclude that the two-step ANN
method is more efficient in crack assessment.

5. Experimental Validation

To validate the developed ANN models, experimental studies were carried out by
measuring the first natural frequencies for five steel beams with the dimensions indicated in
the previous section. In the first five damage scenarios, the beams were perfectly clamped.
Furthermore, the capability of the developed method to detect non-ideal clamping was also
tested for the damaged beams by mounting rubber blocks between the jaws of the vise and
the beam (Figure 11). The transverse cracks are produced by wire-cut electrical discharge
machining, a method chosen to obtain cracks width of 0.08 mm.

Figure 11. Clamping system: (a) rigid clamping obtained by direct fixing in the vise; (b) weak
clamping obtained by intercalating rubber layers.

The acceleration signals are recorded with a Kistler 8772 accelerometer mounted on the
tested beam (5). It transmits the measured signal through the analog-to-digital conversion
module NI9234 mounted in a compact chassis NIcDAQ-9175 (3) which is connected to
laptop (2). The beam (5) is fixed into the vise (7) and to excite it at the desired resonant
frequencies we used the method described in [43]. An audio excitation system consisting
of a loudspeaker (6), amplifier (5), and dedicated software installed on a second laptop are
used (1). The experimental setup is shown in Figure 12.
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Figure 12. Experimental setup.

The data is processed using the LabVIEW software installed on laptop (2). We employ
a VI designed to acquire the acceleration signal, plotted in the upper graph in Figure 13.
The coarse natural frequencies are estimated; in the bottom graph in Figure 13 we present
the spectrum of the signal acquired with the excitation set to produce resonance for the 4th
out-of-plain vibration mode, at around 140 Hz.

Figure 13. Mode no. 4 extracted signal for test beam 1.

The natural frequencies are estimated one by one, with high accuracy, after a procedure
described in [44]. This is imperious necessary for detecting the small changes induced by
the crack. Following the procedure, the acquired signal is imported in a Python application,
named PyFEST, developed by our research team that uses a method which truncates the
acquired signal and calculates the DFT values for different frequency resolutions, and the
results are graphically shown in Figure 14. The Python code to estimate the frequencies is
given in [45].
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Figure 14. A window displaying the overlapped Discrete Fourier Transform (DFT).

5.1. Perfect Clamping Experiments

In the first experimental study, each beam is mounted into a vise, thus achieving a
rigid clamping. The resulted frequencies for the undamaged beams are shown in Table 9.

Table 9. Frequencies estimated for the undamaged beams.

Test Beam
Natural Frequencies [Hz]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Beam 1 4035 25,284 70,970 139,090 230,336 344,196 481,809 641,261
Beam 2 4060 25,439 71,426 139,902 231,038 344,750 482,503 641,823
Beam 3 4034 25,341 71,064 13,915 230,138 341,868 480,773 636,769
Beam 4 4030 25,367 71,213 139,342 230,295 343,254 480,795 639,510
Beam 5 4044 25,482 71,287 139,42 228,528 344,177 481,213 641,114

Several damage scenarios are generated by saw cutting each of the five beams at
different positions and depths thus replicating a transversal crack. The position and depth
for every scenario are according to Table 10.

Table 10. Estimated natural frequencies for the test beams containing a crack of known position and
depth.

Test
Beam

Crack
Position

Crack
Depth

Natural Frequencies [Hz]
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

1 98 2.5 3.952 25.086 70.854 139.086 229.859 342.143 477.105 633.647
2 310 1.25 4.053 25.422 71.259 139.818 230.913 343.835 481.913 641.729
3 569 2.5 4.024 24.904 70.707 137.883 227.494 340.994 472.791 636.758
4 126 2.5 4.200 25.226 71.208 138.982 228.245 338.441 473.771 632.801
5 759 2.5 4.043 25.343 70.051 137.012 227.517 343.834 475.326 630.614

By using the measured frequencies for the beams in an undamaged and damaged
state, we obtain the RFS values with Equation (2); the results are presented in Table 11.
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Table 11. Calculated RFS value for each test beam.

Test
Beam

Crack
Position

Crack
Depth

Calculated RFS Values

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

1 98 2.5 0.020610 0.007828 0.001629 0.000031 0.002070 0.005964 0.009762 0.011873
2 310 1.25 0.001795 0.000660 0.002334 0.000600 0.000542 0.002654 0.001223 0.000146
3 569 2.5 0.002382 0.017252 0.005019 0.009109 0.011488 0.002556 0.016603 0.000017
4 126 2.5 0.023458 0.005550 0.000064 0.002581 0.008901 0.014021 0.014610 0.010491
5 759 2.5 0.000288 0.005461 0.017336 0.017272 0.004422 0.000996 0.012234 0.016377

The RFS data is fed to the coarse ML models to obtain the estimated crack position
and severity for the five damage scenarios. The results obtained after the first estimation
are shown in Table 12 for the RF model and in Table 13 for the ANN model.

Table 12. Results obtained using the preliminary Random Forest model.

Damage Scenarios Preliminary Random Forest

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 98 0.026224 96.99 0.0264 0.10 0.02 Not detected True
2 310 0.005124 309.85 0.0051 0.01 0.00 Not detected True
3 569 0.026224 564.87 0.0331 0.41 0.69 Not detected True
4 126 0.026224 125.42 0.0329 0.06 0.67 Not detected True
5 759 0.026224 758.25 0.0329 0.08 0.67 Not detected True

Table 13. Results obtained using the ANN—Network 1.

Damage Scenarios Coarse ANN—Network 1 Output

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 98 0.026224 97.8 0.0282 0.02 0.20 Not detected False
2 310 0.005124 313.2 0.0042 0.32 0.09 Not detected False
3 569 0.026224 567.2 0.0323 0.18 0.61 Not detected False
4 126 0.026224 126 0.0337 0.00 0.75 Not detected False
5 759 0.026224 757.8 0.0331 0.12 0.69 Not detected False

We identify the segments in which cracks were found and select the corresponding
networks. Afterward, by employing the enhanced ML models we obtain more precise
results, as presented in Table 14 for the refined random forest model and in Table 15 for the
enhanced ANN model.

Table 14. Obtained results using the refined Random Forest model.

Damage Scenarios Refined Random Forest

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 98 0.026224 99.40 0.0260 0.14 0.02 Not detected True
2 310 0.005124 309.73 0.0049 0.03 0.02 Not detected True
3 569 0.026224 568.22 0.0327 0.08 0.65 Not detected True
4 126 0.026224 127.84 0.0329 0.18 0.67 Not detected True
5 759 0.026224 758.19 0.0328 0.08 0.66 Not detected True
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Table 15. Obtained results using the precision sector ANN.

Damage Scenarios Enhanced Network Output

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position Error
(%)

Severity Error
(%) Weak Clamping

1 98 0.026224 98 0.0275 0.00 0.13 Not detected True
2 310 0.005124 310 0.0054 0.00 0.03 Not detected True
3 569 0.026224 568 0.0343 0.10 0.81 Not detected True
4 126 0.026224 126 0.0343 0.00 0.81 Not detected True
5 759 0.026224 758 0.0343 0.10 0.81 Not detected True

One can observe from Tables 14 and 15 that, for the case of ideal clamping, the damage
location and severity are found with high accuracy irrespective of the employed method.
Remarkably, ideal clamping is detected in all cases.

5.2. Improper Clamping Experiments

This study concerns the ability of the proposed approach to detect cracks in two
different cases:

• The structure has initially ideal boundary conditions, but after a while, a crack occurs
and an alteration of the fixing system is present, i.e., the clamping becomes non-ideal;

• The structure has from the beginning non-ideal boundary conditions, so the fixing
system remains unchanged, and is affected after a while by a crack.

The experiment is made for test beam 1. Improper clamping was ensured by mounting
rubber blocks between the jaws of the vise and the test beam, as shown in Figure 10. The
crack is generated at distance x2 = 98 mm and has depth a2 = 2.5 mm, The natural
frequencies were obtained from the measured data. The results for the undamaged beam
with ideal and non-ideal clamping, as well as the frequencies for the test beam 1 with
non-ideal fixing and a crack are shown in Table 16.

Table 16. Estimated natural frequencies.

Test
Beam

Crack
Position

Crack
Depth

Calculated Natural Frequencies [Hz]
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Undamaged with ideal clamping 4035 25,284 70,970 139,090 230,336 344,196 481,809 641,261
Undamaged with non-ideal clamping 4.0051 25.111 70.48 138.95 229.21 341.18 476.93 635.49

1 98 2.5 3.926 24.935 70.420 138.211 228.362 339.873 474.057 630.080

The calculated RFS values are presented in Table 17, first for the undamaged beam
with ideal fixing (case 1i) and afterward, for the undamaged beam with initially non-ideal
fixing (case 1n-i), In both cases, the damaged beam has non-ideal clamping.

Table 17. Calculated RFS values for the improperly clamped damaged beam.

Test
Beam

Crack
Position

Crack
Depth

Calculated RFS Values
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

1i 98 2.5 0.026955 0.013803 0.007749 0.006322 0.008572 0.012559 0.016089 0.017436

1n-i 98 2.5 0.019749 0.007008 0.000851 0.005318 0.003699 0.003830 0.006023 0.008513

The crack assessment is made employing the two ML methods, in compliance with
the two evaluation stages. The results for case 1i are presented in Table 18, while the results
for case 1n-i are presented in Table 19.
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Table 18. Crack assessment for a damaged beam with non-ideal clamping for the case the undamaged
beam had initially an ideal fixing (case 1i).

Damage Scenario Results Obtained with the ML Models

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position
Error
(%)

Severity
Error
(%)

Weak Clamping

First-step RF

98 0.026224

129.36 0.038300 3.14 1.21 Detected True
Second-step RF 92.68 0.039000 0.53 1.28 Detected True
First-step ANN 102.07 0.031283 0.41 0.51 Detected True

Second-step ANN 99.13 0.027038 0.11 0.08 Detected True

Table 19. Crack assessment for a damaged beam with non-ideal (but unchanged) clamping (case 1ii).

Damage Scenarios Results Obtained with the ML Models

Scen. Position
(mm)

Severity
γ2 (a2)

Position
(mm)

Severity
γ2 (a2)

Position
Error
(%)

Severity
Error
(%)

Weak Clamping

First-step RF

98 0.026224

82.54 0.0353 1.546 −0.9076 Not detected True
Second-step RF 32.05 0.0292 6.595 −0.2976 Not detected True
First-step ANN 74.63 0.0247 2.337 0.1524 Not detected False

Second-step ANN 96.4 0.0247 0.16 0.1524 Not detected True

Reviewing Tables 18 and 19, we can conclude that for the beam with changing bound-
ary conditions, the crack position and severity were found accurately after the second step.
The best result is obtained using the ANN, which located the crack with an error of 0.11%
and found the severity with an error below 0.1%.

The changed boundary conditions are detected with both ML methods. Dissimilarly,
the case when the beam initially had a weak fixing was properly solved just by the ANN
method. The errors accuracy, in this case, is sustained by errors less than 0.16%, for position
and severity as well. Both ML methods did not find an alteration of the fixing in the vise,
thus we consider the response to not be detected as true.

6. Conclusions

In this paper, we applied RF and ANN to identify the crack location and severity in
a steel cantilever beam with a rectangular cross-section. The beam had different levels of
fixing, including ideal and non-ideal clamping, and we also aimed to find out if the fixing
condition changed. To train the network we used as inputs the RFS found, applying an
original method, as the crack parameters and the fixing condition, respectively. To improve
the accuracy of the assessment method, we performed the crack assessment in two steps:
(i) in the first step we applied coarse estimation for the network trained for all damage
scenarios to identify the region in which the crack occurred; (ii) in the second step we
applied a fine estimation, for the network trained for a specific segment of the beam which
included the damaged region to determine the crack position and severity, along with the
changes in clamping, if any.

Both ML methods were able to learn and classify new data with characteristics compa-
rable with that of the training data. After training, the networks were successfully used
to assess other scenarios, which came from FEM simulation and laboratory experiments.
We found that, for all cases, the ability to accurately detect the crack location and severity
increases when using the two-step assessment. After the second step, the errors in locating
the crack were below 0.11% for the ANN method and 0.53% for RF, and the errors in
assessing the crack severity were less than 0.08% for the ANN method and 1.28% for RF.
Thus, the ANN led to better results. The smallest crack we found had a 0.6 mm depth in a
beam with a thickness of 5 mm. We did not search for smaller crack depths because of the
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training data we produced, and the knowledge that the ANN method is more efficient in
interpolation than extrapolation.

As a limitation, we mention that the proposed method is based on mathematical
relations to calculate the frequency variation due to cracking. Thus, the method is easy to
apply for relatively simple structures, such as beams. For more complex structures it is
necessary to determine the RFS using FEM analysis or from experiments, which can be a
laborious activity and provide results possibly affected by noise.

Further investigation should be conducted to evaluate the ability of the proposed
approach to identify cracks in the early stage and on large-scale structures.
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