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Paraná State, Brazil

* abiondo@ufpr.br

Abstract

Public health threats such as the current COVID-19 pandemics have required prompt action

by the local, national, and international authorities. Rapid and noninvasive diagnostic meth-

ods may provide on-site detection and immediate social isolation, used as tools to rapidly

control virus spreading. Accordingly, the aim of the present study was to evaluate a com-

mercial breath analysis test (TERA.Bio®) and deterministic algorithm for detecting the

SARS-CoV-2 spectral signature of Volatile Organic Compounds present in exhaled air sam-

ples of suspicious persons from southern Brazil. A casuistic total of 70 infected and 500

non-infected patients were sampled, tested, and results later compared to RT-qPCR as

gold standard. Overall, the test showed 92.6% sensitivity and 96.0% specificity. No statisti-

cal correlation was observed between SARS-CoV-2 positivity and infection by other respira-

tory diseases. Further studies should focus on infection monitoring among asymptomatic

persons. In conclusion, the breath analysis test herein may be used as a fast, on-site, and

easy-to-apply screening method for diagnosing COVID-19.

Introduction

The current COVID-19 pandemic, caused by the respiratory virus SARS-CoV-2, has demon-

strated the importance of rapid and focused use of financial and human resources [1]. Health-

care systems have been continuously challenged worldwide for decision-making guidance on

social distancing, self-isolation, curfew, lockdown, and other preventive measures against virus

spreading and mortality [2, 3]. A reliable, rapid, noninvasive, breathalyzer and on-site test, par-

ticularly for detecting asymptomatic people, could be used to avoid such lossmaking measures,

thereby allowing uninterrupted working of commercial companies and public services [4–7].
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The SARS-CoV-2 spreading has resulted in a persistent pandemic to date, mainly due to

fast transmission among people in close contact [8], beginning 2–3 days before the symp-

tom onset [9], and predominantly through respiratory transmission [10]. Although the

reverse-transcription polymerase chain reaction (RT-qPCR), mostly applied on nasophar-

ynx swab samples, has been reportedly considered to be the gold-standard diagnostic

method for SARS-CoV-2 by the World Health Organization (WHO) [11], false negative

rate has widely varied from higher in the first 5 days (up to 67%) to lower on day 8 after

exposure (21%) [12]. Asymptomatic SARS-CoV-2 carriers (varying from 5% to 80%) may

remain unknown spreaders in their communities and during traveling [13]. Thus, reliable

SARS-CoV-2 diagnosis has been crucial for rapid detection, interruption of transmission

and isolation [11].

In addition to swab samples, sputum and exhaled air have supposedly been used in medical

diagnosis due to air dispersion of volatiles organic compounds (VOC) as a result of the

patient’s metabolism [14]. Considering the noninvasiveness of exhaled air testing, such sam-

pling may potentially become a very convenient diagnostic method. Analyses on VOCs have

become well established for differentiation between healthy and sick human samples, particu-

larly in pulmonary conditions, applied in patients as noninvasive diagnostic and monitoring

tool [15].

Besides normally exhaling different VOCs, representing metabolic processes of body physi-

ological biochemistry, human respiration may also contain specific biomarkers as result of

internal chemistry changes during systemic disorders [16]. Endogenous gases may be also

identified in the VOC analysis of exhaled air, including methane, isoprene, acetone, and alde-

hyde [15], mostly detected by gas chromatography and infrared spectroscopy [17].

As breath analysis tests (BATs) may provide faster on-site detection rate than nasopharynx

samplings [18], gas chromatography-mass spectroscopy [20] and infrared spectroscopy [15,

16] have been established as the two most used detection methods. However, gas chromatogra-

phy has been an expensive and non-portable method [19], while humidity of exhaled air sam-

ples may interfere with infrared spectroscopy results [15].

The emerging technology based on Terahertz (THz) radiation has been able to detect bio-

fingerprints such as VOCs, viruses, bacteria, and inorganic material of exhaled air [20, 21].

Terahertz (THz) waves are located in the electromagnetic radiation between the microwave

and the infrared spectrum [17, 22]. THz radiation has consisted of non-ionizing electromag-

netic waves considered safe for human subjects and operators [23–26] In addition, studies

have shown that the association of algorithms and artificial intelligence may increase the diag-

nostic effectiveness [27].

The growth of THz technology has been directed towards rapid notification of tests by on-

site operators, and screening between SARS-CoV-2 negative and positive individuals [28]. Use

of metasensors may provide more rapid and precise screening and detection of key compo-

nents of viral entry such as the receptor-binding domain (RBD) of the spike (S) protein in

symptomatic or asymptomatic carriers [27, 29]. In such scenario, THz approaches may lead to

advances on a fast, accessible, and highly sensitive diagnostic tests for SARS-CoV-2 and other

pathogenic viruses [17].

A new commercially available breath analysis test (TERA.Bio1, TeraGroup Terahertz Ltd,

Herzliya, Israel) may also be able to identify the presence of specific VOCs in exhaled air sam-

ples from infected individuals with SARS-CoV-2, when used in association with a special pro-

prietary algorithm system. Accordingly, the aim of the present study was to evaluate a

commercial expired air analysis test (TERA.Bio1) based on THz technology for VOC identifi-

cation in exhaled air samples from SARS-CoV-2 infected and non-infected individuals.
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Material and methods

Study sample size and data validation

A validation study on the performance of TERA.Bio1 for making SARS-CoV-2 diagnoses

was conducted using clinical samples (Fig 1). The validation was designed as a prospective

uncontrolled cross-sectional study, with a single arm, to analyze this commercial BAT for diag-

nosing SARS-CoV-2. RT-qPCR was used as the gold-standard method for evaluating test sen-

sitivity and specificity. The RT-qPCR results used in this work were obtained at the Paraná

State Reference Laboratory (Lacen), during routine analysis. This was a study, where Lacen

researchers had no access to data generated by TeraGroup researchers, and TeraGroup

researchers had no access to data generated by Lacen researchers. Only researchers from the

Paraná Institute of Technology were able to compile the data and share the results after statisti-

cal analyses.

This study, as it required direct contact with patients, had to be notified and approved by

the National Research Ethics Commission of Brazil (protocol number 35555720.7.0000.5225),

The Brazilian Registry of Clinical Trials (protocol number U1111-1257-4565) and the National

Health Surveillance Agency (protocol number 25352.109400/2020-72) (S1 File).

The present study was conducted in Curitiba (25˚25’47” S, 49˚16’19” W), capital of Parana

State and the ninth most populated metropolitan area in Brazil, with an estimated population

of 3,693,817 habitants. Symptomatic and asymptomatic individuals from Curitiba and metro-

politan area were simple randomly selected in a convenience sampling (attendance routine)

and evaluated at the referral unit of Oswaldo Cruz Hospital between September 9 and Septem-

ber 22, 2020. The inclusion criteria were that these individuals should be outpatient cases,

older than 18 years of age, who had signed a free and informed consent statement; and that

sampling for both the RT-qPCR test and the SARS-CoV-2 BAT were performed within the

same day. Patients were excluded from the present study when younger than 18 years old (eth-

ics issue and considering their lower exposure to SARS-CoV-2 infection and COVID-19 mani-

festation), hospitalized inpatients, patients whose BATs for SARS-CoV-2 were analyzed more

than six hours after sampling, and patients who did not signed the consent statement for any

reason.

Although measurements in the THz spectrum were affected by environmental conditions

such as temperature and humidity, such problem was solved by maintaining constant environ-

mental conditions when operating the device (air-conditioned room at a constant temperature

of 22–23˚C and 30–40% humidity). In addition, sampling room air was measured in separate

tests as part of system performance evaluation, presenting insignificant variability.

The assumed positivity of RT-qPCR for sampling calculation in the clinical trial herein was

25%, based on epidemiological COVID-19 reports of Curitiba city, which had an estimated

population of approximately 1.9 million habitants at the time. Aiming at a type I error (α) of

0.05, and an estimated precision of 0.05, a minimum sample size of 400 subjects was obtained

to statistically evaluate the BAT test, considering a 90% sensitivity as minimum for a useful

diagnostic test [30]. Representing a consecutive, casuistic, random, and homogeneous sam-

pling, collected from all subjects who presented themselves at the hospital in the period, a total

of 570 successful samplings were included in the present study, with statistical power of 0.819.

Each subject (both SARS-CoV-2 infected and non-infected individuals) was asked to blow

five times into a disposable Teratube, which retained the exhaled air sample for subsequent

VOC detection. The Teratube and nasopharyngeal swab samples were individually labeled to

ensure traceability. The samples were subsequently tested using their spectral characteristics in

the THz band, using the "BioStation"1.
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Fig 1. Flow diagram for the BAT SARS-CoV-2 test validation.

https://doi.org/10.1371/journal.pone.0273506.g001
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Commercial breath analysis test

The commercial breath analysis test (TERA.Bio1) used herein was composed of a reading

equipment associated to a proprietary deterministic algorithm. In short, a portable electronic

station, called the "BioStation"1, was used to analyze the biomaterials of respiratory aerosols

collected in internal "Teratubes". The BioStation, a device with embedded and integrated tech-

nology was controlled by the "Terasystem", a THz technological diagnostic platform built-in

software called "BioPass"1, which used a scanner ("TeraScanner") to analyze the spectral sig-

natures of biomaterials using the spectroscopy system (Terasystem).

The main components of the BioStation include two distributed-feedback class IIIB lasers,

electric temperature control units, a control unit, a power unit, and photo mixers. The laser

beam was used to modulate a photocurrent at a tuned THz frequency, illuminating the photo-

mixer. The THz beam travels through the test sample, the signal is received at the photo-mixer

receiver, analyzed, and associated with the algorithm, as previously described by others [17].

The algorithm, based on data collected during in-vitro validation and clinical studies, iden-

tifies the spectrum area where biomarkers (biomaterials of respiratory aerosols) were associ-

ated with SARS-CoV-2 location. Built on an additional repetition of breath scan features,

applied on a machine learning (ML) of a statistical model, the system has become able to dif-

ferentiate between clear (negative patient) and not clear (patient with suspected SARS-CoV-2

infection) breath samples, from which the algorithm was set. An illustration of ML and algo-

rithm working was presented (Fig 2) to demonstrate separation capability in a specific area,

where any result>>0.5 or <<0.5 (further away from 0.5) was considered to represent good

differentiation between clear and non-clear samples. The algorithm used by the software for

the analysis was adjusted for the target sample during the equipment calibration phase (propri-

etary property).

The Teratube, an accessory of the BioStation, was used to collect and retain exhaled air sam-

ples for further identification of VOCs in exhaled air samples from SARS-CoV-2 infected and

non-infected individuals, a THz spectroscopy scanner. The Teratubes are composed of porta-

ble and disposable polypropylene-based tubes with a disposable melamine foam-based mem-

brane, used herein for the best absorption of the electromagnetic wave. Membranes were

made for single-use and discarded as biohazardous materials after use and analysis.

The study protocol has included non-hospitalized patients who were referred by the Curi-

tiba city health professionals after suspicious RT-qPCR results. Thus, exhaled air samples and

Fig 2. Separation capabilities between clear and non-clear samples based on biomaterial spectral signatures, where the X-axis was the THz frequency

range, and the Y-axis was the measurable index for differentiation ability (0.0 to 1.0).

https://doi.org/10.1371/journal.pone.0273506.g002
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nasopharyngeal swab samples were concomitantly collected and tested by the official city ser-

vice. Each patient sampled by nasopharyngeal swab was also given a dischargeable kit of

exhaled air analyzer containing an identified sampling device, which was uncovered in both

sides with opened capsule and the melamine membrane internally coupled. Patients were then

asked to keep a 2-meter distance from the operator, swallow all saliva in the mouth and deeply

blow the device for 5 times. After blown, the patient was asked to close both device sides with

the correspondent lids (within the kit) until hear a click noise of sealed lid, capturing the

exhaled breath constituents inside the device. The operator received the device, inspected the

complete lid closure, and disinfected the external parts with 70% alcohol. After taken to the

laboratory, device was opened and capsule with internal membrane removed and inserted into

the equipment for analysis. Samples were collected up to 6 hours maximum after sampling,

which insured best readings due to membrane integrity, ideal absorption of electromagnetic

wave and wave propagation into the exhaled air sample. After analysis, device was discharged

as hospital contaminated garbage.

RT-qPCR test procedure

Nasopharyngeal secretion from patients was obtained by a rayon swab and stored in viral

transportation media (Laborclin Laboratory Products, Pinhais, Brazil), placed at 4C, and

stored at the Paraná State Reference Laboratory until testing, following standard protocols pre-

viously established [31]. Confounding coinfections due to other viruses were also investigated

using the same protocols described above and included influenza A, influenza B, human coro-

navirus 229E, human coronavirus NL63, human coronavirus HKU1, human coronavirus

OC43, adenovirus, respiratory syncytial virus, metapneumovirus, rhinovirus, bocavirus,

enterovirus, parainfluenza type 1, parainfluenza type 2 and parainfluenza type 3. SARS-CoV-2

detection was carried out using a commercially available molecular kit (BIOMOL One-step/

COVID19, Molecular Biology Institute of Paraná [IBMP], Curitiba, Brazil), following the man-

ufacturer’s protocol [32].

The RT-qPCR results from these subjects were notified into the Brazilian National Report-

ing System and immediately delivered to patients by the primary care team. However, results

were not available to the TeraGroup team until the end of the analysis, ensuring the reliability

of results.

Statistical analysis

Sociodemographic, epidemiological, and clinical characteristics were presented as percentages,

arithmetic means and standard deviations. Differences in proportions were compared by chi-

square test with calculated 95% confidence intervals. The results were presented in contin-

gency tables, allowing the calculation of sensitivity, specificity, and predictive values for the

BAT. Assessment of association between categorical variables, and BAT and RT-qPCR tests

was performed by Fisher’s exact test. Mean differences in variables were compared by p-values

of Student’s unpaired t-test, assuming statistical significance when p<0.05. Precision of the

BAT was assessed using ROC curve analysis.

In addition, machine learning was based on “training data” that had been collected prior to

the study herein. Over 4,000 subjects were tested using the BATs at several locations worldwide

including Brazil. The THz spectrum features for healthy and infected (negative and positive)

subjects were processed using ML techniques, to establish a mathematical algorithm for

COVID-19 classification. The statistical analyses were performed using the SPSS version 17

software.
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Equipment calibration

As previously mentioned, a first stage (previous study) of ML was carried out which deter-

mined the algorithm, and in this stage, it was observed an instability was detected through

averaging all the scans from each BioStation and then calibrating the equipment with known

clinical samples (301 positive and 296 negative samples in Brazil). After observation that when

correlating the air sweep into closed and temperature-monitored chamber within a controlled

operating environment, the system checks whether the lasers were reproducing the same fre-

quencies and whether the signal to noise ratio level was kept within specification limits, the

instability was eliminated. Additionally, the water signature has been integrated into the THz

spectrum of the Terasystem. This constitutes a known parameter for indication of THz. This

"high-quality" scanning method that has been integrated into Terasystem (and subsequently

into the BioStation) has provided a stable reference point with no shift in the X-axis.

Results

Although the protocol was initially approved for 400 participants, sample size was increased

(after approval by the regulatory institutions) to accommodate a drop of positive cases at the

time of survey.

Additionally, 29 patients were excluded due to lack of written agreement or tracking infor-

mation. In overall, tests were applied to breath samples from 500 unconfirmed and 70 con-

firmed infected persons.

The clinical, epidemiological, and sociodemographic data of all subjects included in the

present study were obtained through a self-report form, which was analyzed and presented,

contributing to the ML stage (Table 1, S1 Dataset).

Statistical analysis was based on ML data and resulted in identification of several spectral

regions (hot spots) areas. Each of them had a spectral signature for COVID-19 subjects, for

example: 500–550 GHz; 900–950 GHz and 1100–1150 GHz as illustrated (Fig 3). In addition

to the hot spots, the cohort difference between healthy and infected people was based on the

algorithm. Differences were identified by this model of ML techniques and translated into pos-

itive or negative results. Although all methods and results have been provided, ML techniques

remain a proprietary product (TeraGroup Terahertz Ltd., Herzliya, Tel Aviv District, Israel).

Analytical performance of BAT for SARS-CoV-2

The results from the RT-qPCR test and SARS-CoV-2 BAT for all subjects was presented

(Table 2). Using RT-qPCR method as the gold standard, the commercial BAT method was

found to have 92.7% sensitivity (CI 84.1–97.6%) and 96.0% specificity (CI 93.9–97.5%). The

positive predictive value (PPV) and negative predictive value (NPV) were determined as 76.5%

(CI 66.3–85.0%) and 99.0% (CI 97.6–99.7%), respectively. Fisher’s exact test showed a statisti-

cally significant association between results (P < 0.0001). The area under the ROC curve of the

total sampling was 0.94 (SD 0.19; CI 0.91–0.98) (Fig 4).

Considering only the symptomatic patients and using RT-qPCR as the gold standard, BAT

presented 92.4% sensitivity (CI 83.2–97.5%) and 95.9% specificity (CI 93.1–97.7%). The PPV

was determined as 81.3% (CI 70.7–89.4%) and the NPV as 98.5% (CI 96.5–99.5%). Fisher’s

exact test showed a statistically significant association between results (p<0.0001). The area

under the ROC curve calculated only with symptomatic patients was 0.94 (standard error 0.20;

CI 0.90–0.98).

Given that the optimum sampling window of opportunity for RT-qPCR has been reported

to comprise the first seven days with symptoms, the data were stratified for analysis including

the symptomatic patients who had shown symptoms for up to seven days. In such scenario,
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the results from SARS-CoV-2 BAT, compared with the RT-qPCR method as the gold standard,

showed 90.2% sensitivity (CI 76.0–97.3%) and 95.5% specificity (CI 90.9–98.2%). The PPV

was determined as 84.1% (CI 69.9–93.4%) and the NPV as 97.4% (CI 93.4–99.3%). Again,

Fisher’s exact test showed a statistically significant association between the results obtained

through the two methods (P < 0.0001). The area under the ROC curve calculated only for

symptomatic patients who had shown symptoms up to seven days was 0.93 (standard error

0.03; CI 0.87–0.98).

Considering only the asymptomatic patients, the results showed 100.0% sensitivity (CI

39.7–100.0%) and 96.3% specificity (CI 92.1–98.6%), with PPV of 40.0% (CI 12.2–73.8%) and

NPV of 100.0% (CI 97.7–100.0%). Fisher’s exact test showed a statistically significant associa-

tion between results (P < 0.0001). The area under the ROC curve calculated only with asymp-

tomatic patients was 0.98 (standard error 0.01; CI 0.96–1.00). The limitation of this method

was a false positive rate of 23.5%, indicating that the positive predictive value of the test may be

compromised in this sampling.

Detection of other respiratory viruses

The swab samples collected for RT-qPCR testing of SARS-CoV-2 were also concomitantly

tested for a viral panel of 15 other respiratory viruses that have been mostly reported in

Table 1. Sociodemographic, epidemiological, and clinical data of the 570 subjects included in the present study.

Features� Confirmed cases (n = 70) Unconfirmed cases (n = 500) P-valuea

Age (years) 38.6 ±11.1 37.1±12.5 0.345

Males 41 (58.0%) 233 (46.6%) 0.060

Body mass index (kg/m2) 27.6 ± 4.7 d 25.9 ± 4.5 0.004

Non-white race 25 (40.3%) a 71 (15.4%) 0.0001

Travel history 07 (10%) 81 (16.7%) 0.109

Suspicious case contact 35 (50%) 218 (43.6%) 0.232

Confirmed case contact 32 (45.7%) a 156 (31.2%) 0.026

Attended at health service 20 (28.6%) 185 (38.2%) 0.090

Symptomatic 66 (94.3%) a 338 (67.6%) 0.0001

Days of symptoms b 5.4 ± 2.6 (75.7%) 5.1 ± 3.4 (36.4%) 0.468

Fever or chills 55 (78.6%) a 93 (18.6%) 0.0001

Myalgia or arthralgia 63 (90.0%) a 129 (25.8%) 0.0001

Headache 44 (62.9%) a 218 (44.9%) 0.005

Respiratory symptoms c 65 (92.9%) a 261 (52.2%) 0.0001

Gastrointestinal symptoms d 38 (54.3%) a 71 (14.2%) 0.0001

Anosmia 34 (48.6%)a 42 (8.7%) 0.0001

Ageusia 35 (50.0%) a 37 (7.6%) 0.0001

Rash 4 (6.1%) 12 (2.5%) 0.987

Smoking 4 (5.7%) a 67 (13.4%) 0.05

Pneumopathy 7 (10%) 43 (8.6%) 0.698

Diabetes 3 (4.3%) 12.0 (2.4%) 0.214

Hypertension 5 (7.1%) 43 (8.6%) 0.280

Other comorbidities 2 (2.9%) a 04 (0.8%) 0.007

ap<0.05. Continuous variables are presented as mean and standard deviation.
bDate of onset of symptoms was not reported by the patients.
c Coughing, odynophagia, dyspnea, nasal drainage.
d vomiting, diarrhea.

https://doi.org/10.1371/journal.pone.0273506.t001
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Brazilian patients. Among all the patients tested, 32/570 (5.61%) presented coinfection with

respiratory viruses identified by RT-qPCR including adenovirus (n = 1; 0.2%); bocavirus

(n = 2; 0.4%); other coronaviruses (n = 6; 1.1%); and rhinovirus (n = 23; 4.0%). A single case of

coinfection was observed, with simultaneous identification of rhinovirus and another corona-

virus. While no symptoms were observed in the 7/32 patients (21.9%) with other respiratory

viruses, the symptomatic patients (n = 25; 71.4%) mostly presented respiratory symptoms

(n = 22; 88.0%), myalgia and/or arthralgia (n = 14; 56.0%), fever and/or chills (n = 13; 52.0%)

and gastrointestinal symptoms (n = 10; 40.0%). No association has been found between false

SARS-CoV-2 positives and other respiratory virus infection.

Fig 3. Full resource spectra for 48 mean positive samples and 48 negative samples. Light red and light blue colors

represent the "distribution" of the sample, while dark colors are the average result. Light gray (not an additional

graphic) shows the blend of color shades, representing the standard deviation of the 48 samples mean for positive and

negative groups.

https://doi.org/10.1371/journal.pone.0273506.g003

Table 2. Results from RT-qPCR and BAT for the entire sample.

RT-qPCR SARS-CoV-2 results

Positive (%) Negative (%) Total (%)

Results COVID-19 BAT test Positive 65 (11.4) 20 (3.5) 85 (14.9)

Negative 5 (0.9) 480 (84.2) 485 (85.1)

Total 70 (12.3) 500 (87.7) 570 (100.0)

https://doi.org/10.1371/journal.pone.0273506.t002
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Discussion

Although RT-qPCR has been very efficient under optimized conditions and considered the

gold-standard molecular method for detecting SARS-CoV-2, this method may require sophis-

ticated instruments and qualified personnel [33]. Biological samples may also need to be trans-

ported to reference laboratories, thus increasing costs and the time that elapses before

processing and delivery of results [34], besides reports of insufficient sampling, false negative

and uncertain results [35]. In addition, viable noninvasive sampling alternatives may be desir-

able to replace oropharynx and nasopharynx swabs, as required for RT-qPCR testing [31].

Although use of saliva has already been reported as alternative form of sampling for virus

detection, the diagnosis relies on the patient’s stage of infection, with a comparatively narrower

window than swabs [27, 34–37] Although several alternative platforms have now been

reported, few studies have shown any possible substitute or additional methods that could

replace RT-qPCR testing [38, 39].

The results presented here indicated that BAT presented 94.4% accuracy (95% CI: 91 to

98%) for both symptomatic and asymptomatic, which has been in accordance with the recom-

mendations of the WHO [11]. Moreover, its performance has been shown to be superior to

that of chest computed tomography used in association with a special algorithm, optimization

method for patient treatment [27]. In the present study, the commercial BAT showed to be a

fast on-site and easy-to-apply test with superior sensitivity and specificity, compared with sero-

logical tests [11, 35, 40] and other methods using saliva [37] and sputum samples [41].

Despite the low frequency of other respiratory viruses, false-positive results were not

observed and suggested that coinfection of other respiratory viruses may not compromise the

accuracy of the BAT method. Likewise, previous studies have shown no correlation between

positive COVID-19 cases and respiratory infections by influenza viruses [42]. As several other

Fig 4. ROC curve for the entire sample.

https://doi.org/10.1371/journal.pone.0273506.g004
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respiratory viruses were absent in the present study, the performance of BAT in such coinfec-

tions remain to be fully established.

Rational use of laboratory tools has become crucial for enabling efficient diagnosis, particu-

larly due to the high costs of mass testing [33, 43]. Highly specific, fast, easy-to-apply tests and

able to identify most patients at early stages of SARS-CoV-2 infection may promptly ensure

patient isolation and other preventive measures against virus transmission and spreading,

reducing infection and demand for further testing [11].

Limitations in the present study included the potential bias of symptomatic cases (n = 404;

70.9%), which may have partially compromised the assessment of BAT application for asymp-

tomatic patients who presented positive results. Thus, such parameter should be further evalu-

ated with larger sample number of asymptomatic patients. The 95% CI amplitude for PPV was

the widest among all the analytical parameters of performance assessed herein. Further investi-

gations should be also conducted in asymptomatic, underage, and patients in the first days of

infection or more than 7 days after clinical onset, with larger sample size to better establish the

BAT positive predictive capacity. Finally, the present study has relied on natural occurring

cases of SARS-CoV-2 and coinfection with other respiratory viruses at the time of COVID-19

variants and coinfections. Thus, the specific spectral characteristic for each virus and con-

founding coinfection impact was limited to the income casuistic cases at the time. Thus, future

studies should be performed as multicentric surveys, representative samplings and with

broader virus coinfection occurrence.

Conclusion

In summary, comparison between a commercial BAT (TERA.Bio1) and RT-qPCR for diag-

nosis of SARS-CoV-2 has demonstrated satisfactory accuracy (94.4%) and sensitivity (92.6%)

for diagnostic use, except among asymptomatic patients. BAT has also shown 96% specificity

for diagnostic use in all patient groups, strongly recommended as screening, fast and noninva-

sive on-site test, with positive cases confirmed by RT-qPCR. Since the NPV of the BAT method

was 98.97%, the commercial BAT may be also indicated as a screening method for ruling out

negative cases.
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