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Abstract

Many complex human diseases are highly sexually dimorphic, suggesting a

potential contribution of the X chromosome to disease risk. However, the X

chromosome has been neglected or incorrectly analyzed in most genome-wide

association studies (GWAS). We present tailored analytical methods and software

that facilitate X-wide association studies (XWAS), which we further applied to

reanalyze data from 16 GWAS of different autoimmune and related diseases (AID).

We associated several X-linked genes with disease risk, among which (1)

ARHGEF6 is associated with Crohn’s disease and replicated in a study of

ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6

interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is

associated with three different AID, which is compelling in light of known

associations with AID of autosomal genes encoding centromere proteins, as well as

established autosomal evidence of pleiotropy between autoimmune diseases. (3)

We replicated a previous association of FOXP3, a transcription factor that regulates

T-cell development and function, with vitiligo; and (4) we discovered that

C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and

other X-linked genes that we associated with AID tend to be highly expressed in

tissues related to immune response, participate in major immune pathways, and

display differential gene expression between males and females. Combined, the

results demonstrate the importance of the X chromosome in autoimmunity, reveal
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the potential of extensive XWAS, even based on existing data, and provide the

tools and incentive to properly include the X chromosome in future studies.

Introduction

Over the past decade, genome-wide association studies (GWAS) have contributed

to our understanding of the genetic basis of complex human disease. The role of

the X chromosome (X) in such diseases remains largely unknown because the vast

majority of GWAS have omitted it from analysis or incorrectly analyzed X-linked

data [1]. As a consequence, though X constitutes 5% of the nuclear genome and

underlies almost 10% of Mendelian disorders [2–4], it harbors only 15 out of the

2,800 (0.5%) significant associations reported by GWAS of nearly 300 traits

[1, 5, 6]. This 0.5% of associated SNPs is less often in functional loci compared to

autosomal associated SNPs [1, 5, 7], which further suggests that X-linked

associations might include a higher proportion of false positives. This is possibly

due to most studies analyzing X using tools that were designed for the autosomes

[1]. We hypothesize that X explains a portion of ‘‘missing heritability’’ [8, 9],

especially for the many complex human diseases that exhibit gender disparity in

risk, age of onset, or symptoms. In fact, many of the complex human diseases

most extensively studied in GWAS are highly sexually dimorphic, including

autoimmune diseases [10–12], neurological and psychiatric disorders [13–17],

cardiovascular disease [18–22], and cancer [23–26]. Several mechanisms under-

lying sexual dimorphism have been suggested [12, 27–31], including the

contribution of the X chromosome [27, 32–35]. The hypothesis is further

motivated by the importance of X in sexually dimorphic traits in both model

organisms and human Mendelian disorders, as well as by its enrichment for

sexually antagonistic alleles, which are expected to disproportionately contribute

to complex disease risk [36]. Characterizing the role of X in complex diseases can

provide insights into etiological differences between males and females, as well as a

unique biological perspective on disease etiology because X carries a set of genes

with unique functions [37–39].

X-specific considerations that are important to account for in GWAS include,

but are not limited to: (1) correlation between X-linked genotype calling error rate

and the sex composition of an assay plate, which can lead to plate effects that

correlate with sex and, hence, with any sexually dimorphic trait; (2) X-linked

variants being more likely to exhibit different effects between males and females

[40], suggesting enhanced power of sex-stratified statistical tests; (3) power of the

analyses being affected by the smaller allelic sample size (due to males carrying one

allele and X-inactivation in females), reduced diversity on X and other unique

population genetic patterns [41–47], and a lower density of X-linked SNPs on

genotyping arrays; (4) quality control (QC) criteria need to account for sex

information to prevent filtering the entirety or a large fraction of the chromosome
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[1], while at the same time accounting for confounding sex-specific effects; (5)

sex-specific population structure leading to differential effects of population

stratification (which could lead to false positives [48–50]) between X and the

autosomes; and (6) application of association tests designed for the autosomes

potentially leading to statistical inaccuracies. Recent advances of association test

statistics for X have been made [51–57], with a recent study discovering X-linked

loci associated with height and fasting insulin level [56].

Autoimmune diseases (AID) are promising case studies for investigating the

role of X in disease because they are commonly sexually dimorphic in symptoms,

prevalence (most have higher prevalence in females) [10–12, 58], age of onset, and

progression [10–12, 29, 59–62]. While pregnancy [12, 30, 31] and other environ-

mental factors [63], as well as sex hormones [12, 29–31], can contribute to these

sexually dimorphic characteristics, a role for X-linked genes has also been

suggested [27, 62, 64–66]. AID have been extensively studied by GWAS, where the

majority of autosomal loci discovered have a small effect size, and the combined

effect of all associated loci only explains a fraction of heritable variation in disease

risk [67–69]. In addition, few of these GWAS have studied the contribution of X

and, combined, have provided little evidence for its role in determining disease

susceptibility [1, 5, 6].

In this study, we first introduce X-specific analytical methods and software for

carrying out X-wide association studies (XWAS), which take into account several

of the above ‘eXentricities’. These methods apply X-specific strategies for QC,

imputation, association tests, and tests of sex-specific effects. Furthermore,

motivated by the unique characteristics of genes on X, we implemented the first

gene-based test for associating X-linked genes and conducted an extensive XWAS

of a number of AID and other diseases with a potential autoimmune component

[70, 71]. Our discovery of X-linked risk genes illustrates the importance of X in

AID etiology, shows that X-based analysis can be used to fruitfully mine existing

datasets, and provides suitable tools and incentive for conducting such analyses.

Additional XWAS can further elucidate the role of sex chromosomes in disease

etiology and in the sexual dimorphism of complex diseases, which, in turn, will

contribute to improved sex-specific diagnosis and treatment.

Results and Discussion

Datasets and analysis pipeline

We assembled for analysis 16 datasets of AID and other diseases (Table 1). To

facilitate independent analysis and replication, we removed individuals from some

datasets such that no overlapping data remained between the 16 datasets

(Materials and Methods). For each dataset, we first carried out QC that was

developed expressly for the X chromosome (Materials and Methods), and

excluded the pseudoautosomal regions (PARs). We then imputed SNPs across the

X chromosome based on whole-genome and whole-exome haplotype data from

the 1000 Genomes Project (Materials and Methods). Of the 16 datasets, none of

X-Linked Genes Implicated in Immune-Related Disorders

PLOS ONE | DOI:10.1371/journal.pone.0113684 December 5, 2014 3 / 31



the original GWAS had imputed variants in an X-specific manner, and only the

Wellcome Trust Case Control Consortium 1 (WT1) carried out an analysis of X

that is not identical to that of the autosomes [72].

In each of the datasets, we applied three statistical tests for association of each

SNP with disease risk: FM02, FMF.comb, and FMS.comb (Materials and Methods).

The FM02 test utilizes logistic regression as commonly applied in GWAS, where X-

inactivation is accounted for by considering hemizygous males as equivalent to

female homozygotes. The other two tests employ regression analyses separately for

each sex and combine them into a single test of association using either Fisher’s

method (FMF.comb) or Stouffer’s method (FMS.comb). The FMF.comb test

accommodates the possibility of differential effect size and direction between

males and females and is not affected by the allele coding in males (i.e. whether

each allele in males is counted twice as in FM02 or only once; Materials and

Methods). FMS.comb takes in account the potentially different sample sizes of

males and females and the direction of effect, thereby increasing power in some

scenarios (see Text S1). We employed EIGENSOFT [48] to remove individuals of

non-European descent and to correct for potential population stratification.

Table 1. GWAS datasets.

Dataset Disease # SNPs
# Genes (#SNPs in
genic regions)

# Cases (males,
females)

# Controls (males,
females)

ALS Finland [123] Amyotrophic Lateral Sclerosis
(ALS)

207,947 970 (72,219) 400 (198, 202) 490 (103, 387)

ALS Irish [124] Amyotrophic Lateral Sclerosis
(ALS)

219,300 967 (77,043) 221 (119, 102) 210 (112, 98)

Psoriasis CASP [128] Psoriasis 184,246 953 (62,106) 1,209 (588, 621) 1,271 (585, 686)

Celiac Disease CIDR
[125]

Celiac Disease 187,284 962 (64,836) 1,576 (447, 1129) 504 (225, 279)

CD NIDDK [127] Crohn’s Disease (CD) 176,072 837 (58,874) 791 (378, 413) 922 (457, 465)

CD WT1* [72] Crohn’s Disease (CD) 150,275 930 (49,017) 1,592 (607, 985) 1,701 (923, 778)

UC WT2* [131] Ulcerative Colitis (UC) 196,781 963 (67,422) 2,341 (1148, 1193) 1,699 (843, 856)

MS case control [96] Multiple Sclerosis (MS) 183,954 842 (61,119) 943 (312, 631) 851 (290, 561)

MS WT2* [132] Multiple Sclerosis (MS) 169,707 962 (58,463) 2,666 (698, 1968) 1389 (700, 689)

Vitiligo GWAS1 [126] Vitiligo 157,676 958 (54,384) 1,391 (411, 980) 4,521 (1985, 2536)

Vitiligo GWAS2 [133] Vitiligo 187,688 962 (64,974) 415 (144, 271) 2,552 (973, 1579)

T2D GENEVA [129] Type-2 Diabetes (T2D) 220,752 971 (75,941) 2,515 (1050, 1465) 2,850 (1187, 1663)

T2D WT1* [72] Type-2 Diabetes (T2D) 152,996 927 (49,956) 1,811 (1051, 760) 1,668 (710, 958)

T1D WT1* [72] Type-1 Diabetes (T1D) 152,304 926 (49,718) 1,867 (954, 913) 1,714 (941, 773)

RA WT1* [72] Rheumatoid Arthritis (RA) 146,907 925 (47,880) 1,772 (443, 1329) 1,709 (920, 789)

AS WT2* [130] Ankylosing Spondylitis (AS) 200,042 966 (69,441) 1,472 (976, 496) 1,260 (665, 595)

For each of the case-control datasets analyzed in this study, the table lists its name, the disease considered, the number of X-linked SNPs (# SNPs), which
include imputed SNPs, the number of genes tested in gene-based tests (# Genes), and the combined number of SNPs mapped to these genes or to within
15 kb of them (# SNPs in genic regions). The number of individuals (# Cases and # Controls) represents the number of samples following QC. The number
of males and females in each category is denoted in parenthesis. All datasets consist of individuals of European ancestry.
*As control individuals overlap across these datasets, we only considered non-overlapping control subsets for each of the datasets (Materials and Methods).
The size of these subsets is indicated under # Controls.

doi:10.1371/journal.pone.0113684.t001
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Following this correction, QQ (quantile-quantile) plots for each of the three tests

across all SNPs, along with genomic inflation factors, revealed no systematic bias

across the datasets (Figure S1; Table S1). We provide results for association of

individual SNPs with disease risk in Text S1, Figure S2, and Table S2, and focus

on the results of gene-based tests (described below) for the remainder of our

analysis.

We applied a gene-based test to X-linked genes in each of the 16 datasets using

the FM02, FMF.comb and FMS.comb statistics. Gene-based tests aggregate association

signals across a group of SNPs within a locus while considering the dependence

between signals due to linkage disequilibrium (LD) to assign a level of significance

for the association of the locus overall. It thereby also reduces the multiple

hypothesis-testing burden from the number of SNPs to the number of tested loci

[73–76]. This approach can increase power for the autosomes [75, 77] and enable

replication based on a different set of SNPs in the associated locus. Due to some

issues discussed above (see Introduction), this increase in power can be even more

pronounced for X.

For our gene-based tests, we defined genes by unique transcripts and included a

flanking 15 kilobase (kb) window on each side of the transcribed region to also

consider cis-regulatory elements. We used the truncated tail strength [78] and

truncated product [79] methods (Materials and Methods) to combine signals

across all SNPs in a gene, while accounting for LD. These two methods combine

signals from several of the most significant SNPs, thus improving statistical power

compared to gene-based tests that consider all SNPs or only the SNP with the

strongest signal in the gene. This is especially important for cases in which a gene

contains multiple risk alleles or when the causal SNP is partially tagged by

multiple tested SNPs [80, 81]. From the first round of discovery, we considered

for replication genes with a significance of P,1023 (Tables S3, S4). For these, we

first attempted replication in a different dataset of the same disease (including the

related Crohn’s disease and ulcerative colitis), if such a dataset was available for

analysis (Table 1), and applied Bonferroni correction for the number of genes we

attempted to replicate. Otherwise, motivated by the shared pathogenicity of

different AID [82–85] (which is also supported by our following results), we

attempted replication in all other datasets considered herein (Table 1). In both

cases, we attempted replication using the same test statistic that passed the first

round of discovery.

Associations of X-linked genes with autoimmune and other

complex diseases

We detected 54 unique genes that passed the initial discovery criterion in one or

more of the 16 datasets. Of these, 38 genes were significant based on the FM02 test,

22 based on the FMF.comb test, and 34 in the FMS.comb test (Tables S3, S4), with

overlap between the three tests due to their statistical dependence. For 42 of these

54 genes, we had an independent dataset for the same or related disease with

which to attempt replication. Of these 42 genes, 5 (12%) successfully replicated,
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with 3 of the 5 both discovered and replicated based on more than one of the

three tests (Figure 1a–c and Table 2). These include 3 genes (FOXP3, PPP1R3F

and GAGE10) in LD for the FM02 test and 3 genes (PPP1R3F, GAGE12H and

GAGE10) in LD for the FMS.comb test that are associated with vitiligo. To reduce

the level of LD, we repeated the gene-based testing without the flanking region of

15 kb around each gene. All genes still successfully replicated in this case, though

it remains unclear whether these represent independent signals or remain in LD

with the same—likely unobserved—causal variant(s).

Of the above four genes we associated to vitiligo risk, FOXP3 (combined

P59.561026; Table 2) has been previously associated with vitiligo in a candidate

gene study of this same dataset [86]. Vitiligo is a common autoimmune disorder

Figure 1. X-linked genes associated with autoimmune disease risk. All genes that showed evidence of association in a gene-based test and replication,
including suggestive replication in any other dataset (see main text) are presented for the a) FMS.comb b) FMF.comb c) FM02 and d) sex-differentiated effect
size tests (Materials and Methods). X-axis denotes the different datasets, with their names following the notation from Table 1. Y-axis displays the different
gene names. For each gene, the more significant p-value of the truncated tail strength and truncated product methods is displayed on a 2log10 scale
according to the enclosed color scale. A ‘‘*’’ represents the discovery dataset and ‘‘**’’ indicates datasets in which replication is significant after correcting for
the number of genes tested for replication. These appear in grey when the discovery and replication are in datasets of the same disease (or across the
related Crohn’s disease and ulcerative colitis). Numerical values corresponding to this figure are presented in Tables 2–3.

doi:10.1371/journal.pone.0113684.g001
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that is manifested in patches of depigmented skin due to abnormal destruction of

melanocytes. FOXP3 may be of particular interest as it is involved with leukocyte

homeostasis, which includes negative regulation of T-cell-mediated immunity and

regulation of leukocyte proliferation [87, 88]. Defects in the gene are also a known

cause for an X-linked Mendelian autoimmunity-immunodeficiency syndrome

(IPEX - immunodysregulation polyendocrinopathy enteropathy X-linked syn-

drome) [89].

In Crohn’s Disease (CD), an inflammatory bowel disorder (IBD) with

inflammation in the ileum and some regions of the colon, we discovered

association of the gene ARHGEF6 and further replicated it in the Wellcome Trust

Case Control Consortium 2 (WT2) dataset for ulcerative colitis, another IBD

(combined P51.6761025). ARHGEF6 binds to a major surface protein of H.

pylori [90], a gastric bacterium that may play a role in IBD pathology [91, 92].

We discovered that another gene, CENPI, was associated with three diseases

(celiac disease, vitiligo, and amyotrophic lateral sclerosis (ALS)), with an overall

combined P52.161027 (Table S5). The association of CENPI remains significant

when combining across all 16 datasets and applying a conservative Bonferroni

Table 2. Gene-based associations replicating in similar diseases.

Discovery dataset Gene p-value (tail, product) Replication dataset p-value (tail, product)
combined p-value
(tail, product)

FM02

Vitiligo GWAS1 PPP1R3F 6.6061025,
1.3961024

Vitiligo GWAS2 8.1061023,
2.7061023

8.2661026,
5.9361026

Vitiligo GWAS1 FOXP3 1.1161024,
2.7661024

Vitiligo GWAS2 5.6061023,
5.4061023

9.5061026,
2.1561025

Vitiligo GWAS1 GAGE10 1.6061023,
4.0361024

Vitiligo GWAS2 2.8061023,
3.8061023

5.9761025,
2.2061025

CD WT1 ARHGEF6 1.7061023,
3.6661024

UC WT2 2.3061023,
3.1061023

5.2661025,
1.6761025

FMF.comb

Vitiligo GWAS1 PPP1R3F 1.1461024,
4.9661024

Vitiligo GWAS2 3.7061023,
5.8061023

6.6161026,
3.9661025

FMS.comb

Vitiligo GWAS1 PPP1R3F 6.061026, 7.6061025 Vitiligo GWAS2 4.8061023,
1.3061023

5.2961027,
1.6961026

Vitiligo GWAS1 GAGE12H 6.3461024,
6.3461024

Vitiligo GWAS2 4.6061023,
4.6061023

4.0161025,
4.0161025

Vitiligo GWAS1 GAGE10 1.8561023,
2.6661024

Vitiligo GWAS2 2.9061023,
2.8061023

7.0561025,
1.1361025

Sex Difference

CD WT1 C1GALT1C1 1.9761023,
2.6361024

UC WT2 1.3961022,
1.1461022

3.1561024,
4.1161025

All genes with a discovery nominal P,161023 (in Discovery dataset) that also replicated in a dataset of the same or similar disease (Replicated dataset).
Results are presented for each of the 3 tests of association, as well as for the test of sex-differential effect size, as indicated by titles in the table. For both
discovery and replication, p-values of both methods of gene-based testing (truncated tail strength and truncated product) are presented. Combined p-values
(last column) were calculated using Fisher’s method.

doi:10.1371/journal.pone.0113684.t002
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correction for the number of genes we tested (P52.761025). CENPI encodes a

member of a protein complex that generates spindle assembly checkpoint signals

required for cell progression through mitosis [93]. CENPI is targeted by the

immune system in some patients with scleroderma [94]. Additionally, autosomal

genes in the same family of genes encoding centromere proteins have been

previously associated with ALS (CENPV) [95] and with multiple sclerosis

(CENPC1) [96]. These findings combined suggest a potential pleiotropic role of

CENPI in risk of AID.

Motivated by the association of CENPI in multiple diseases, as well as previous

evidence from the autosomes of shared pathogenicity across different AID

[82, 83], we next sought to replicate the 54 genes from the discovery stage in

diseases other than those in which they were discovered. We successfully

replicated 17 genes, beyond the aforementioned 5 that replicated in the same or

related disease, for a total of 22 (41%) of the 54 genes (Figure 1a–c and Table 3).

Six of these 17 were both discovered and replicated based on more than one of the

three test statistics, and 5 of the 17 replicated in two separate datasets. We

consider these results based on replication in other diseases to provide suggestive

evidence of these genes playing a general role in autoimmunity or immune

response, and we consider these genes together with the initial 5 in subsequent

analyses.

The sex-specific nature of X-linked genes implicated in

autoimmune disease risk

If X-linked genes contribute to sexual dimorphism in complex diseases, then we

would expect some genes to have significantly different effect sizes between males

and females. We implemented a test of sex-differential effect size (Materials and

Methods) and applied it across all SNPs and datasets (Materials and Methods).

Consideration of QQ plots and genomic inflation factors revealed no systematic

bias (Figure S3; Table S1). As with our above analyses, we combined SNP-level

results to a gene-based test of sex-differentiated effect size. This test captures a

scenario whereby SNPs within the tested gene display different effects in males

and females, without assuming such differential effects to be of a similar nature

across SNPs. We followed the same discovery and replication criteria as for the

previous analyses, with detailed results provided in Figure 1d, Tables 2–3, and

Table S6. Specifically, we discovered and replicated C1GALT1C1 as exhibiting sex-

differentiated effect size in risk of IBD (combined P54.1161025). C1GALT1C1

(also known as Cosmc) is necessary for the synthesis of many O-glycan proteins

[97], which are components of several antigens. Defects of C1GALT1C1 may

cause Tn Syndrome, a hematological disorder [98]. We also considered

replication of sex-differentiated effects in diseases other than the disease of the

discovery dataset. This analysis found 8 additional genes, including both CENPI

(combined P51.661028) and MCF2 (combined P52.061024), which we

associated with risk of AID in the above analyses (Tables 2–3). The evidence of

sex-differentiated effect of each of these genes is in the same diseases as in the

X-Linked Genes Implicated in Immune-Related Disorders
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Table 3. Gene-based associations replicating in other diseases.

Discovery dataset Gene p-value (tail, product) Replication dataset p-value (tail, product)
combined p-value (tail,
product)

FM02

ALS Finland NAP1L2 4.5161024, 3.8061025 UC WT2 5.7061023, 3.7061023 3.5761025, 2.3661026

Vitiligo GWAS1 1.061022, 1.4061022 6.0061025, 8.2261026

ALS Finland ITM2A 2.1061023, 4.1061024 Celiac Disease CIDR 7.9061023, 1.0661022 1.9961024, 5.8061025

MS case control FANCB 5.2061025, 1.3061023 RA WT1 3.8061023, 1.1061022 3.2561026, 1.7461024

Vitiligo GWAS1 CENPI 2.1761024, 1.0061023 ALS Finland 2.4061023, 2.0061023 8.0661026, 2.8261025

T2D GENEVA RP4-562J12.2 4.8961024, 1.3061024 CD NIDDK 3.4161022, 3.9361022 2.0061024, 5.5661024

WT2 AS 5.6061022, 4.3061022 3.1561024, 7.3261025

T2D WT1 MAGEC1 2.6461022, 5.3461024 MS case control 6.7061023, 8.5061023 1.7161023, 6.0461025

UC WT21 NAP1L6 1.0661023, 5.7061025 ALS Finland 3.1061023, 5.5061023 4.4961025, 5.0161026

FMF.comb

CASP NLGN4X 8.8761024, 1.6661022 Vitiligo GWAS2 1.2161022, 1.3161022 1.3461024, 2.0561023

CIDR Celiac Disease 5.1061022, 4.9061022 4.9861024, 6.6661023

Celiac CIDR CENPI 2.9061023, 5.2361024 ALS Finland 1.1261022, 1.0061023 3.6861024, 8.0961026

ALS Irish 2.6861022, 1.6461022 8.1361024, 1.0961024

Vitiligo GWAS1 1.5561024, 2.6061023 7.0261026, 1.9761025

Vitiligo GWAS1 BEND2 1.8061023, 7.9061025 T2D WT1 9.3062023, 1.2961022 2.0161024, 1.5161025

Vitiligo GWAS1 CENPI 1.5561024, 2.6061023 ALS Finland 1.1261022, 1.0061023 2.4861025, 3.6061025

Celiac CIDR 2.9061023, 5.2361024 7.0261026, 1.9761025

Vitiligo GWAS2 MCF2 1.7061024, 5.7661024 MS WT2 2.3161022, 2.5061022 5.2861025, 1.7561024

CD WT1 LINC00892 1.3061023, 8.8061025 MS WT2 2.4261022, 1.9961022 3.5861024, 2.5061025

T2D WT1 MAGEC1 2.7561022, 1.8161024 MS case control 1.4261022, 1.5061022 3.4661023, 3.7561025

MS WT2 MAGEE1 7.0661024, 2.3061023 ALS Finland 3.2361022, 2.3661022 2.6761024, 5.8761024

FMS.comb

ALS Finland NAP1L2 5.761024, 1.1561024 UC WT2 8.3061023, 7.161023 6.2761025, 1.2361025

ALS Finland ITM2A 8.4361024, 3.0761024 Celiac CIDR 6.561023, 1.1361022 7.1961025, 4.7161025

ALS Finland CENPI 1.2761023, 1.7561024 Vitiligo GWAS1 1.6061023, 5.9061023 2.8961025, 1.5361025

ALS Finland TMEM35 2.7861023, 3.4561024 Vitiligo GWAS1 3.8061023, 6.2061023 1.3161024, 3.0161025

CD WT1 LINC00892 1.7361023, 5.2961024 MS WT2 6.3061023, 6.4061023 1.3561024, 4.6061025

Vitiligo GWAS1 2.3061022, 2.8961022 4.4161024, 1.8561024

UC WT2 GPR34 2.6261024, 1.6261024 MS WT2 5.6061023, 1.1061022 2.1261025, 2.5461025

UC WT2 NAP1L6 1.1961023, 4.2961024 ALS Finland 4.0061023, 1.0661022 6.3161025, 6.0561025

MS case control RP11-265P11.2 3.0361023, 8.5561024 T2D WT1 4.4261022, 4.6861022 1.3261023, 4.4561024

T2D GENEVA SNORA35 2.1261023, 4.5461024 AS WT2 2.4061023, 6.7061023 6.7161025, 4.1761025

T2D GENEVA IL13RA1 6.3561023, 8.5961024 AS WT2 6.2061023, 7.2061023 4.3961024, 8.0461025

T2D WT1 MAGEC1 2.6361022, 6.8061025 MS case control 1.0061022, 1.5461022 2.4361023, 1.5561025

Sex difference

ALS Finland MAGEE2 6.561024, 1.9461023 Vitiligo GWAS1 3.0861022, 1.6461022 2.3761024, 3.6161024

ALS Finland NDP 1.4161023, 9.3461024 CD WT1 8.6061023, 1.3361022 1.4961024, 1.5361024

CASP NLGN4X 2.3461024, 1.6561022 Vitiligo GWAS1 4.5261022, 4.3361022 1.3261024, 5.8961023

Celiac CIDR CENPI 4.461023, 2.0861024 ALS Finland 2.0361022, 1.7861022 9.2261024, 5.0061025

ALS Irish 9.8061023, 4.4061023 4.8861024, 1.3661025

Vitiligo GWAS1 BEND2 3.9961023, 1.2861024 MS case control 4.6061022, 5.2061022 1.7661023, 8.6061025
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association analysis, thereby pointing to not only a significant contribution of the

gene to risk of that disease, but also to its sex-specific effect on the same disease (

Figure 1d and Table 3). We again stress that such replication in other diseases is

only to be considered as suggestive evidence, and that we consider for subsequent

analyses these genes together with those that replicated in the same disease.

Sex-differentiated effects could be a consequence of the X-inactivation (XCI)

status of the gene, where at least 25% of human X loci escape XCI to varying

degrees. There is no evidence that any of the above three genes (C1GALT1C1,

CENPI, and MCF2) escape XCI [33, 99], and all three have degenerate Y

gametologs in males; i.e. either the gene has been lost from the Y chromosome

(MCF2) or the homologous gene on the Y is a non-functional pseudogene

(C1GALT1C1 and CENPI). Thus, these genes are expected to show monoallelic

expression in both sexes, at least in fibroblasts in which XCI status has been

derived [33, 99]. Nevertheless, it is possible that these genes show female-biased

expression in other tissues as a consequence of escaping XCI in a tissue-specific or

disease-specific manner [100, 101]. Additionally, the sex-differential risk factor

may arise from interaction with other genes and sex-specific environmental

factors.

We next directly tested whether any of the X-linked genes that we associated

and replicated with AID and related disorders exhibit differences in expression

between males and females. We considered a comprehensive dataset of whole

blood gene expression from 881 individuals (409 males and 472 females; Materials

and Methods) and assayed gene expression in males and females separately.

Considering all X genes that we analyzed, they exhibit 2.55-fold enrichment for

differential expression between males and females as compared to all genes across

all chromosomes (P56.561028). Unsurprisingly, XIST, which encodes the long

non-coding RNA that induces formation of the Barr body, displays the most

significant difference in gene expression between males and females among all X-

linked genes (P%10216). Of the genes we associated and replicated, four exhibit

significant sex-differential gene expression: ITM2A (4.5461029), EFHC2

(4.8661025), PPP1R3F (7.0661025), and BEND2 (4.1761024) (Materials and

Methods). Importantly, two of these (EFHC2 and BEND2) also passed initial

discovery in the above analysis of sex-differentiated effect sizes, though they were

Table 3. Cont.

Discovery dataset Gene p-value (tail, product) Replication dataset p-value (tail, product)
combined p-value (tail,
product)

Vitiligo GWAS2 MCF2 7.0061024, 1.9361023 MS WT2 2.3861022, 2.1261022 2.0061024, 4.5461024

T2D GENEVA EFHC2 6.0961024, 1.1261023 RA WT1 1.5861022, 1.4061023 1.2161024, 2.4261025

RA WT1 MIR320D2 8.6961023, 5.6861024 ALS Irish 2.3961022, 2.6461022 1.9761023, 1.8261024

All genes with a discovery nominal P,161023 that also replicated in a dataset of a different disease (see main text). The table mirrors Table 2, with the only
difference being whether replication is in the same disease (Table 2) or a different one (this table). Cases in which the same association is replicated in
multiple datasets span several rows.

doi:10.1371/journal.pone.0113684.t003
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only replicated in datasets different than the one in which they have been

discovered (Figure 1d and Table 3). These results suggest that X-linked genes

associated with disease risk, especially those that exhibit sex-differentiated effect

sizes, are related to sex-differential expression pattern of those genes.

Association of genes with immune-related function or Y homologs

The nature of the diseases we analyzed and the uniqueness of X led us to an a

priori hypothesis that genes of a specific biological nature contribute to X-linked

AID disease risk. We tested this hypothesis independent of the above results by

testing for concurrent association of a whole gene set with each of the individual

diseases (Materials and Methods). We tested two different hypotheses by

considering 3 such gene sets: The first two sets include X genes with immune-

related function as defined by the KEGG/GO or Panther databases (Materials and

Methods). The third set includes the 19 non-pseudoautosomal X genes with

functional Y homologs. Analysis of the immune-related gene sets was motivated

by the nature of the diseases. The test of the last set, on the other hand, was

motivated by the evolutionary perspective that genes with functional Y homologs

are more likely to be under functional constraint since their Y homologs have

survived the progressive degeneration of the Y chromosome over the course of the

evolution of the supercohort Theria [99]. Thus, they may be more likely to play a

part in disease etiology.

The Panther immunity gene set is associated with vitiligo risk in both vitiligo

studies that we analyzed and using each of the 3 test statistics of association, as

well with type 2 diabetes risk based on the FMS.comb test statistic (Table 4).

Similarly, the KEGG/GO set is associated with vitiligo risk in the larger of the

vitiligo datasets (Table 4). The set of genes with functional Y homologs

suggestively contributes to a much larger group of AID, including psoriasis,

vitiligo, celiac disease, Crohn’s Disease, and type 1 diabetes, with the first two of

these being significant after Bonferroni correction (Table 4). See Table S7 for

detailed results for all other datasets and tests.

Relationship and biological functions of genes implicated in

autoimmune disease risk

We set out to explore in three analyses the biological function of our associated

disease risk genes by considering all 22 protein-coding genes we discovered and

replicated with any AID or other complex disease tested. First, we investigated the

gene expression patterns of 13 of these genes for which we could obtain tissue-

specific expression data (Materials and Methods). Three of these genes show the

highest expression in cells and organs directly involved in the immune system

(Figures 2–3): ARHGEF6 is most highly expressed in T-cells, IL13RA1 in CD14+
monocytes, and ITM2A in the thymus (in which T-cells develop). Three of the

remaining genes, MCF2 (associated with vitiligo), NAP1L2 and TMEM35

(associated with ALS), exhibit the highest expression levels in the pineal gland

X-Linked Genes Implicated in Immune-Related Disorders
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(Figure 2). The pineal gland produces and secretes melatonin, which interacts

with the immune system [102, 103] and has been implicated in both vitiligo and

ALS [102, 104–108], as well as suggested as a possible treatment for ALS [109].

Second, we considered co-expression of these 22 associated genes across 881

individuals (Materials and Methods). We observed that 3.9% of all X gene pairs

exhibit significantly-positively correlated gene expression patterns. In comparison,

8% of pairs of genes from the set of the above 22 genes exhibit significantly-

positively correlated gene expression. This significantly higher fraction relative to

X genes overall (Table S8; P51.5361023) suggests that genes we associated with

disease risk are more likely to work in concert and perhaps interact in the same

pathways or cellular networks.

Third, we built an ‘‘interactome’’ by considering this set of 22 protein-coding

genes along with genes they interact with in either protein-protein or genetic

interactions (Materials and Methods). We found that 18 of these 22 genes are

included in the same interaction network (Figure 4), which further supports that

they interact with each other. In a pathway enrichment analysis of the resulting

interactome (i.e. all genes in Figure 4), several of the significantly enriched

pathways relate to immune response or specific immune-related disorders or

diseases (Table 5). Another enriched pathway is that underlying lupus, which is a

systemic AID. While no dataset for lupus was included in our study, the

interactome is potentially enriched for genes in that pathway due to pleiotropy of

genes between AID. Other significantly enriched pathways include the regulation

of actin cytoskeleton, which can influence the morphology and movement of T-

cells, as well as the TGF-beta signaling and ECF-receptor interaction pathways,

both of which can mediate apoptosis [110, 111]. Finally, the significantly enriched

Wnt signaling pathway is generally involved in cell development processes, such as

cell-fate determination and cell differentiation [112]. It also plays a role in T-cell

and B-cell proliferation and migration, as well as modulation of antigen

presenting cells such as dendritic cells [113].

Concluding remarks

In this study, we applied an X-tailored analysis pipeline to 16 different GWAS

datasets (Table 1), and thereby discovered and replicated novel associations of

several genes with AID risk (Figure 1, Tables 2–3). Multiple lines of evidence point

to some of these genes having immune-related functions, including expression in

immune-related tissues (Figure 2) and enrichment of these and interacting genes

in immune-related pathways (Table 5; Figure 4). Several of the genes we

associated with disease are involved in regulation of apoptosis, which plays a role

in AID [114–116], including vitiligo [117], psoriasis [118] and rheumatoid

arthritis [119]. Our analyses also highlight the sex-specific nature of associated X-

linked disease risk genes shedding light on the sexual dimorphism of autoimmune

and immune-mediated diseases (Figure 1, Tables 2–3).

The X chromosome has received little attention in the era of GWAS, with

growing attention only during the past year [1, 56, 120, 121]. Our results highlight
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the contribution of X to AID risk and yield new avenues for follow-ups, including

unraveling sexual dimorphism in disease etiology. More generally, our study

illustrates that with the right tools and methodology, new discoveries regarding

the role of X in complex disease and sexual dimorphism can be made, even by

mining existing GWAS datasets. Our findings thus underscore the potential for

new results and the importance of re-analyzing X in over 2,000 GWAS that have

been conducted to date, especially in more recent and better powered studies than

the datasets we considered here. To enable such analyses by other researchers, we

have made publicly available our X chromosome analysis toolset [122] (http://

keinanlab.cb.bscb.cornell.edu), which is in part an extension of PLINK [55].

Materials and Methods

Datasets

We obtained 16 GWAS datasets for analysis in this study, which are summarized

in Table 1. Datasets were selected to span different autoimmune diseases,

including ankylosing spondylitis, celiac disease, Crohn’s disease, multiple

Table 4. Gene set associations.

Dataset Statistic P-value

XY homologs gene set

Psoriasis CASP FMF.comb 0.0088

Celiac disease CIDR FMF.comb 0.0467

Vitiligo GWAS1 FMF.comb 0.0063

Vitiligo GWAS1 FM02 0.0329

Vitiligo GWAS2 FMF.comb 0.0346

CD NIDDK FM02 0.017

CD WT1 FM02 0.0234

T1D WT1 FMS.comb 0.0302

Panther immune gene set

Vitiligo GWAS1 FM02 0.0154

Vitiligo GWAS1 FMF.comb 0.0387

Vitiligo GWAS1 FMS.comb 0.0081

Vitiligo GWAS2 FM02 0.0142

Vitiligo GWAS2 FMF.comb 0.0448

Vitiligo GWAS2 FMS.comb 0.0127

T2D GENEVA FMS.comb 0.0073

KEGG/GO immune gene set

Vitiligo GWAS1 FMF.comb 0.002

Vitiligo GWAS1 FMs.comb 1.6461024

Three curated gene sets were tested for association with disease risk. Displayed are datasets for which P,0.05 for association with the gene set indicated in
header rows (XY homologs, Panther, KEGG/GO; Materials and Methods). Bold p-values indicate significant associations after multiple testing correction. P-
values are the minimum between that based on the truncated tail strength method and the one based on the truncated product method. Results for all
datasets and tests are presented in Table S7.

doi:10.1371/journal.pone.0113684.t004
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sclerosis, psoriasis, rheumatoid arthritis, type 1 diabetes, ulcerative colitis, and

vitiligo. We also considered datasets of ALS and type 2 diabetes due to suggestive

evidence of an autoimmune component to their etiology [70, 71].

Out of these, we obtained the following datasets from dbGaP: ALS Finland

[123] (phs000344), ALS Irish [124] (phs000127), Celiac disease CIDR [125]

(phs000274), MS Case Control [96] (phs000171), Vitiligo GWAS1 [126]

(phs000224), CD NIDDK [127] (phs000130), CASP [128] (phs000019), and T2D

GENEVA [129] (phs000091).

Additional datasets were obtained from the Wellcome Trust Case Control

Consortium (WT): all WT1 [72] datasets, WT2 ankylosing spondylitis (AS) [130],

WT2 ulcerative colitis (UC) [131] and WT2 multiple sclerosis (MS) [132] (

Table 1). We removed overlapping control samples in order to avoid introducing

any biases into replication tests. To accomplish this, we used cases from the WT1

hypertension (HT), bipolar (BP), and cardiovascular disease (CAD) datasets as

additional control data. These samples were randomly distributed to the four

WT1 datasets, though only BP samples were used as controls for WT1 type 2

diabetes (T2D) due to potential shared disease etiology between T2D, CAD and

HT. The WT1 National Birth Registry (NBS) control data was also randomly

distributed to the four WT1 datasets. Finally, we randomly distributed the 58

Birth Cohort (58BC) control samples, along with any new NBS samples not

present in the WT1 data, between WT2 datasets.

Figure 2. X-linked autoimmune disease risk genes are differentially expressed between tissues. X-axis presents 13 of the associated X-linked genes
for which gene expression data was available for analysis. For each, a z-score is presented for the deviation of expression in each of 74 tissues (y-axis) from
the average expression of that gene across all tissues (Materials and Methods). For comparison, the last column shows average z-scores across all 504 X-
linked genes that were tested as part of the entire XWAS for which expression data was available. Several associated genes exhibit significantly higher
expression in immune-related tissues (see main text and Figure 3).

doi:10.1371/journal.pone.0113684.g002
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We additionally analyzed the Vitiligo GWAS2 dataset [133], which similar to

the Vitiligo GWAS1 dataset that we downloaded from dbGaP, contained case data

only. Therefore, we obtained controls from the following datasets in dbGaP:

PanScan [134, 135] (phs000206), National Institute on Aging Alzheimer’s study

[136] (phs000168), CIDR bone fragility [137] (phs000138), COGA [138]

(phs000125), and SAGE [138–140] (phs000092). Only samples with the ‘‘general

research consent’’ designation in these datasets were used as controls for studying

vitiligo. These samples were randomly distributed between the Vitiligo GWAS1

and Vitiligo GWAS2 datasets.

Quality Control (QC)

Our pipeline for X-wide association studies (XWAS) begins with a number of

quality control steps, some of which are specific to the X chromosome. First, we

removed samples that we inferred to be related, had .10% missing genotypes,

and those with reported sex that did not match the heterozygosity rates observed

on chromosome X [141]. We additionally filtered variants with .10%

Figure 3. Three X-linked disease risk genes show high expression in immune-related tissues and cells. ARHGEF6 (a), IL13RA1 (b), and ITM2A (c)
show expression greater than 4 standard deviations above the average expression of these genes in T-cells (highest in CD4+ in purple), CD14+ monocytes
(blue), and the thymus (red), respectively. Y-axis follows the respective tissues from Figure 2 and x-axis denotes a z-score for the deviation of expression in
each tissue from the average expression of that gene. The title of each panel includes the name of the gene and the tissue with the highest expression for
that gene.

doi:10.1371/journal.pone.0113684.g003
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missingness, variants with a minor allele frequency (MAF) ,0.005, and variants

for which missingness was significantly correlated with phenotype (P,161024).

X-specific QC steps included filtering variants that are not in Hardy-Weinberg

equilibrium in females (P,161024) or that had significantly different MAF

between males and females in control individuals (P,0.05/#SNPs), as well as

removal of the pseudoautosomal regions (PARs). We also implemented and

considered sex-stratified QC, namely filtering X-linked variants and individuals

via separate QC in males and females [120]. However, since we observed no

difference in the significant results when applying it to two of the datasets (CD

NIDDK, MS case control), we considered data prior to this QC step in our

Figure 4. Interactome of X-linked disease risk genes. All 22 X-linked protein-coding genes that showed evidence of association and replication (Figure 1)
are denoted by black diamonds and are presented together with genes that interact with them (grey circles) (Materials and Methods). Physical interactions
refer to documented protein-protein interactions. Genetic interactions represent genes where perturbations to one gene affect another. Predicted
interactions were obtained from orthology to interactions present in other organisms [159]. All but four of these 22 genes share interacting partners according
to these known and predicted interactions. Results of a pathway analysis based on this interactome are presented in Table 5.

doi:10.1371/journal.pone.0113684.g004
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analyses. Finally, following all above QC steps, we removed variants that exhibit

differential missingness between males and females (P,1027) [120, 142, 143].

This step follows the procedure described by König et al. [120] based on a x2 test.

Correction for population stratification

Sex-biased demographic events, including differential historical population

structure of males and females have been proposed for many human populations

(e.g. [42, 46, 144–147]). Such sex-biased history is expected to lead to differential

population structure on X and the autosomes, thus to differential population

stratification. Essentially, population structure on the X captures a 1:2 male to

female contribution, while on the autosomes males and females contribute equally

to the observed structure. Ideally, population structure on the X needs to be

considered to accurately correct for population stratification in an association

study of X-linked loci. Hence, we assessed and corrected for potential population

stratification via either autosomal-derived or X-derived principal components,

and studied the inflation of test statistics in each case as observed in QQ plots.

This was performed by principal component analysis (PCA) using EIGENSOFT

[48], after pruning for linkage disequilibrium (LD) and removing large LD blocks

[50].

For all the datasets analyzed here, which all consist solely of individuals of

European ancestry, we found that correction for population stratification is more

accurate when based on the autosomes than on X alone due to the smaller number

SNPs available to infer structure on X. This observation holds as long as enough

autosomal principal components (PCs) are considered. We note, however, that in

association studies where more data is available for X, or studies in admixed

populations, consideration of population structure on the X chromosome alone

can provide a more accurate population stratification correction for XWAS. For

Table 5. Gene-enrichment analysis of the interactome.

Pathway Genes P-value

Regulation of actin cytoskeleton PAK1, RHOA, PAK3, CDC42, ARHGEF6, SOS1, ARHGEF7, PAK2, RDX, GIT1,
GNA13, TIAM1, ROCK2, FGD1

5.55610214

T-cell receptor signaling pathway PAK1, RHOA, PAK3, CDC42, SOS1, PAK2, IL4, NFATC2, NFATC1, ICOS, NFAT5 2.75610213

Axon guidance PAK1, RHOA, PAK3, EPHB2, CDC42, NFATC2, NFATC1, NFAT5, ROCK2 4.97610211

Wnt signaling SMAD3, SMAD2, RHOA, FZD4, LRP5, NFATC2, NFATC1, NFAT5, ROCK2 4.7461029

Systemic lupus erythematosus H2AFZ, H2AFJ, HIST1H2AH, HIST2H2AB, HIST1H2AJ, HIST3H2A, HIST1H2AD 4.3461028

Chemokine signaling PAK1, RHOA, CDC42, SOS1, GNB1, TIAM1, DOCK2, ROCK2 4.5261027

Focal adhesion PAK1, PARVB, RHOA, PAK3, CDC42, SOS1, PAK2, ROCK2 6.2861027

TGF-beta signaling SMAD3, SMAD2, RHOA, TGFBR2, ROCK2, BMPR1B 7.8761027

Pathways in cancer SMAD3, SMAD2, RHOA, MDM2, CDC42, FZD4, SOS1, RUNX1, TGFBR2 1.7461026

Pancreatic cancer SMAD3, SMAD2, CDC42, ARHGEF6, TGFBR2 6.1761026

Genes we discovered and replicated as associated with any disease tested, and their interacting genes (Figure 4) were enriched for several immune related
pathways. We display the ten most significantly enriched pathways. Genes within each pathway that were also within our query set are listed. Displayed p-
values are adjusted for multiple testing (Materials and Methods).

doi:10.1371/journal.pone.0113684.t005
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example, though African Americans have on average ,80% African and ,20%

European ancestry, they exhibit a significant deviation across the X chromosome

from these genome-wide estimates. Specifically, African ancestry levels are higher

on X, which is due to the sex-biased admixture in which ancestors included

relatively more African females and, correspondingly, more European males

[148]. Hence, population structure estimated genome-wide (e.g. by EIGENSOFT)

may not accurately correct for population stratification in testing X-linked loci in

studies of African Americans.

All subsequent analyses are hence based on first excluding any individuals

inferred based on EIGENSOFT [48] to be of non-European ancestry. Assessment

and correction for population stratification follow the convention of using the

first ten autosomal-derived PCs as covariates [49], which is supported by

investigation of the resultant QQ plots and by population stratification reported

by the original studies. Principal component covariates were not added to the

regression model for the ALS Finland, ALS Irish, and CASP datasets as no inflated

p-values were observed in these studies [123, 124, 128] (Figure S1).

Imputation

Imputation was carried out with IMPUTE2 [149] version 2.2.2 based on 1000

Genomes Project [150] whole-genome and whole-exome (October 2011 release)

haplotype data. One of the features added in IMPUTE2 is to account for the

reduced effective population size (Ne) of the X chromosome by assuming that it is

25% less than that of the autosomes, thereby improving imputation accuracy on

the X chromosome. As recommended by the authors IMPUTE2, Ne was set to

20,000 and variants with MAF in Europeans ,0.005 were not imputed. Based on

the output of IMPUTE2, we excluded variants with an imputation quality ,0.5

and variants that did not pass the above QC criteria (see Quality Control). Table 1

displays the number of SNPs we considered in each dataset following imputation

and these additional QC steps.

Single-SNP association analysis

We considered 3 tests for associating X-linked SNPs with disease risk. The first

test effectively assumes complete and uniform X-inactivation in females and a

similar effect size between males and females. In this test, females are hence

considered to have 0, 1, or 2 copies of an allele as in an autosomal analysis. Males

are considered to have 0 or 2 copies of the same allele, i.e. male hemizygotes are

considered equivalent to female homozygous states. This test is implemented in

PLINK [55] as the –xchr-model 2 option, termed FM02 in this study. We do note

that the assumptions of complete X-inactivation and equal effect sizes often do

not hold (see also our tests and results of sex-differentiated effect size and sex-

differentiated gene expression). Hence, in the second test, termed FMF.comb, data

from each sex (cases and controls) are analyzed separately (with males coded as

either having 0 or 2 copies of an allele as above). The female-only and male-only
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measures of significance are then combined using Fisher’s method [151]. This test

accommodates the possibility of differential effect size and direction between

males and females and is not affected by the allele coding in males (e.g. 0/2 copies

or 0/1 copies). Finally, the third test, termed FMS.comb, mirrors the second test

except for using a weighted Stouffer’s method [152] instead of Fisher’s method.

While Fisher’s method combines the final p-values, Stouffer’s method allows

combining and weighing of test statistics. The male-based and female-based test

statistics are weighted by the square-root of the male or female sample size [153]

and combined while also taking into account the direction of effect in males and

females. Implementation follows the equations as provided by Willer et al. [153].

Power calculations for these 3 test statistics for a few simulated examples are

provided in the Text S1.

Gene-based association analysis

Based on all single-SNP association tests, we implemented an equivalent gene-

based test for each statistic by considering all SNPs across each gene. This was

carried out in the general framework of VEGAS [73], where the significance of an

observed gene-based test statistic is assessed from the distribution of test statistics

that is expected given LD between SNPs in that gene [73]. Specifically, the n

observed SNP-level test statistics are summed together, where n represents the

number of SNPs in a gene. Next, simulated statistics are obtained as follows: n

statistics are randomly drawn from a multivariate normal (MVN) distribution

and summed. The MVN distribution has a mean of 0 and an n6n covariance

matrix corresponding to the pairwise LD between SNPs mapped to the gene. This

procedure is repeated k times in order to obtain a distribution of gene-based

statistics. The significance is then calculated as the proportion of the k simulations

that produced statistics that were as or more extreme than the observed one.

Here, we have implemented a slight modification to this procedure: Instead of

summing the SNP-based test statistics themselves, we combined SNP-based p-

values with either the truncated tail strength [78] or the truncated product [79]

method, which have been suggested to be more powerful in some scenarios

[80, 81]. The simulation procedure is carried out as above, where simulated p-

values are derived from the simulated test statistics. To increase time efficiency of

the simulation procedure, k was determined adaptively as in VEGAS [73].

We obtained a list of X-linked genes and their positions from the UCSC

‘‘knownCanonical’’ transcript ID track (http://genome.ucsc.edu/cgi-bin/

hgTrackUi?db5hg19&g5knownGene). SNPs were mapped to a gene if they were

within 15 kb of a gene’s start or end positions. When several genes in LD show a

significant signal, we repeated analysis while removing the flanking 15 kb on each

side.
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Test of sex-differential effect size

In a fourth test, we assayed the difference in the effect size between males and

females at each SNP based on statistics derived from the sex-stratified test

described above. Considering the female-only and male-only statistics, differential

effect size is tested using the following t-statistic [154]:

t~
log(ORmale){log(ORfemale)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
malezSE2

female{2rSEmaleSEfemale

q

where OR stands for the odds ratio estimated in either the male-only or female-

only test, SE is the standard error in either test, and r the Spearman rank

correlation coefficient between log(ORmale) and log(ORfemale) across all X-linked

SNPs. For the odds ratios to be comparable, the odds ratio in males is estimated

with coding as having 0 or 2 copies. Finally, we combined the single-SNP tests in

each gene into a gene-based test of sex-differential effect size along the same lines

as described above for the association test statistics.

Tests of sex-difference and correlation of gene expression

Whole blood gene expression data for 881 samples (409 males, 472 females) from

the Rotterdam Study III [155] was downloaded from Gene Expression Omnibus

[156] (accession GSE33828). Expression data was available for 803 of the genes

studied in our XWAS. Using a hypergeometric test, we assayed whether the 803 X-

linked genes analyzed in our study are more often differentially expressed between

males and females as compared to all genes genome-wide. For each gene, we then

tested for differential expression between males and females using the Wilcoxon

rank sum test across individuals and applied Bonferroni correction to its p-values.

We assessed whether any of the 22 protein-coding genes that were associated and

replicated in any dataset (Figure 1; Tables 2–3) showed significant sex-differential

expression. Expression data is available for 20 of these genes, and Bonferroni

correction was applied based on 20 tests.

We tested for co-expression between X-linked genes using the non-parametric

Spearman’s rank correlation test between the expression of each pair of genes

across the set of 881 individuals. Enrichment of significant co-expression within

the set of 20 genes as compared to all 803 genes was tested using a hypergeometric

test.

Tissue-specific gene expression

For analysis of tissue-specific gene expression, we obtained the Human GNF1H

tissue-specific expression dataset [157] via the BioGPS website [158]. After

excluding fetal and cancer tissues, we were left with expression data across 74

tissues for 504 of the genes studied in our XWAS, including 13 of the 22 genes that

were associated and replicated in any dataset. For each gene, we obtained a

normalized z-score value for its expression in each tissue by normalizing its
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expression using the average and standard deviation of the expression of that gene

across all tissues.

Network analysis

A network of interacting genes was assembled in GeneMANIA using confirmed

and predicted genetic and protein interactions [159] with a seed list of the 22

protein-coding genes that were associated and replicated across all datasets

(Figure 1; Tables 2–3). To minimize bias towards well-studied pathways, all gene-

gene, protein-protein and predicted interaction sub-networks were given equal

weight when combined into the final composite network. The resulting composite

network consisted of the 22 seed genes and the 100 genetic, protein-protein, and

predicted interactors with the highest interaction confidence scores. A list of

unique genes within this interactome was extracted as input to WebGestalt

[160, 161] to discover the ten most significantly enriched pathways in the KEGG

database [162]. Enrichment was assessed with the hypergeometric test [160] and

reported p-values were adjusted for multiple testing using the Benjamini-

Hochberg FDR correction as suggested for such analyses [160]. Pathways that only

included a single gene from our interactome were excluded.

Gene set tests

We additionally tested whether SNPs in a pre-compiled set of genes were

collectively associated with disease risk. To accomplish this, we modified the gene-

based analysis described above to consider multiple genes. Specifically, the

simulation step now entails drawing from m different multivariate normal

distributions, with m denoting the number of genes in the tested gene set. Each of

the m multivariate normal distributions denotes one gene and has its own

covariance matrix that corresponds to the LD between SNPs in that gene. To

verify that this procedure, previously proposed for gene-based tests, can be

applied to gene sets, we compared p-values derived from phenotypic permuta-

tions to this simulation procedure, which revealed highly correlated significance

values (Figures S4, S5). Thus, the results we report are based on the simulation

procedure, rather than from a limited number of computationally-intensive

permutations.

We applied this test to 3 sets of genes: (1) We manually curated a set of

immune-related genes from the KEGG [162] pathways and Gene Ontology (GO)

[163] biological function categories. We first considered all genes from the two

databases in 15 and 14 categories, respectively, that are particularly relevant for

autoimmune response. We subsequently removed eight genes from this list that

we found were either too general (e.g. cell cycle genes) or too specific (e.g. F8 and

F9 blood coagulation genes) to obtain a final list of 27 genes (Table S9); (2) The

Panther immune gene set was obtained by including all genes in the category of

‘‘immune system processes’’ in the Panther database [164]; and (3) The XY
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homolog gene set was obtained from data provided by Wilson-Sayres & Makova

[99].

Supporting Information

Figure S1. QQ-plots for single marker association tests. Blue triangles denote

association p-values for the FMF.comb test, red crosses denote p-values for the

FMS.comb, while the black points denote association p-values for the FM02 test. P-

values are plotted on a log scale. Respective genomic inflation factors are

summarized in Table S1.

doi:10.1371/journal.pone.0113684.s001 (TIFF)

Figure S2. Significant SNP associations. (a) A Manhattan plot of the nominal p-

values for the FM02 (upper), FMF.comb (middle), and FMS.comb (lower) tests of

association for chromosome X SNPs in the 16 datasets. The dotted purple lines

correspond to the X-chromosome-wide significance threshold for each dataset.

The significant associations are shown as red diamonds. (b–c) Regional

association plots of the association results of the FM02 test and LD for (b) Vitiligo

GWAS1 dataset and (c) WT2 UC dataset. LD structure was plotted using a revised

version of the snp.plotter software [165]. Due to the large number of SNPs in the

associated region of Vitiligo GWAS1, only 1 in every 10 of the non-significantly

associated SNPs is shown. We focus on regions presented in (b) and (c) since they

show the typical LD peaks around significant association signals.

doi:10.1371/journal.pone.0113684.s002 (TIFF)

Figure S3. QQ-plots for test of sex-differentiated effect size. Similar to Figure

S1, except that p-values are for the test of differential effect size between males and

females. Respective genomic inflation factors are summarized in Table S1.

doi:10.1371/journal.pone.0113684.s003 (TIFF)

Figure S4. Simulation versus permutation derived p-values for gene-set tests

for FM02. Comparison between simulation derived (x-axis) and permutation

derived (y-axis) p-values for the gene-set association analysis using the FM02 test

statistic. r represents Pearson’s correlation coefficient and the significance of the

correlation is indicated in parentheses in scientific notation.

doi:10.1371/journal.pone.0113684.s004 (TIFF)

Figure S5. Simulation versus permutation derived p-values for gene-set tests

for FMF.comb. Similar to Figure S4 except for considering the FMF.comb test

statistic.

doi:10.1371/journal.pone.0113684.s005 (TIFF)

Table S1. Genomic inflation factors were calculated from the observed p-values in

the various tests. No inflation factor exceeds 1.14. Together with the respective

QQ-plots (Figures S1 and S3) these results suggest little to no inflation in the

observed SNP-level p-values.

doi:10.1371/journal.pone.0113684.s006 (DOC)
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Table S2. All significant associations (adjusted P,0.05) as observed in Figure S2.

P-values are Bonferroni adjusted for the number of SNPs tested (Table 1).

doi:10.1371/journal.pone.0113684.s007 (DOC)

Table S3. All genes with either truncated tail or truncated product P,161023 for

the FMF.comb and the FMS.comb tests.

doi:10.1371/journal.pone.0113684.s008 (DOC)

Table S4. All genes with either truncated tail or truncated product P,161023 for

the FM02 test.

doi:10.1371/journal.pone.0113684.s009 (DOC)

Table S5. CENPI association p-values for the FMF.comb test across the 16 datasets.

doi:10.1371/journal.pone.0113684.s010 (DOC)

Table S6. All genes with either the truncated tail or truncated product P,161023

for the sex difference test.

doi:10.1371/journal.pone.0113684.s011 (DOC)

Table S7. All p-values for all gene sets and all datasets are listed. Those with

P,0.05 are highlighted in Table 4 in the main text.

doi:10.1371/journal.pone.0113684.s012 (DOC)

Table S8. Pairs of X-linked genes that are significantly co-expressed. Presented are

pairs of genes that are significantly co-expressed, after multiple hypothesis

correction, along with the squared Spearman’s correlation coefficient (r2) and p-

value of a Spearman’s rank correlation test (Materials and Methods).

doi:10.1371/journal.pone.0113684.s013 (DOCX)

Table S9. List of genes in the KEGG/GO immune gene set.

doi:10.1371/journal.pone.0113684.s014 (DOC)

Text S1. Supplementary information detailing single-SNP association analysis

and power calculations for gene-based tests.

doi:10.1371/journal.pone.0113684.s015 (DOCX)
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