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In recent decades, machine learning has emerged as a very powerful compu-
tational method. Because of its exceptional successes in computer science and
engineering, machine learning has ignited research interest in other disciplines,
including biology, chemistry, physics, and finance. Machine learning models,
which are usually regarded as mathematical models, have traditionally been im-
plemented on the basis of digital computing platform (Figure 1A). The increasing
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Figure 1. Schematics of conventional machine learning models and PNN (A and B) Diagra
physical systems: mechanical, optical, and electronic. (D) Diagram of a PAT model that can
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prevalence of machine learning has been accompanied by a rapid increase of
computing requirements, outpacing Moore’s law. Therefore, researchers have
been committed to the development of analog computing hardware platforms
to overcome the inherent limitations of computing resources. Considering that
wave physics is an attractive candidate to build analog processor,1 wave-based
analog computing platforms are emerging as an important direction to
ms of (A) a traditional neural network and (B) a PNN. (C) Three examples of controllable
be used to train virtually any controllable physical system.
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 implement machine learning. Most wave-based analog processors are designed

on the basis of the mathematical isomorphism between physical systems
and conventional machine learning models, such as deep neural networks
(DNNs),2,3 implying that analog processors can be trained using standard training
techniques for neural networks.

However, it remains a huge challenge to design a physical system with strict
operation-by-operation mathematical isomorphism, which requires a prohibitive
amount of time. In fact, strict mathematical isomorphism is unnecessary to build
analog computing platforms. Recently, scientists from Cornell University pro-
posed a hybrid in situ/in silico algorithm, called physics-aware training (PAT), to
train physical neural networks (PNNs) with back-propagation.4 PNNs are
composed of layers of controllable physical systems, which lack mathematical
isomorphism compared with conventional artificial neural networks. And PAT
computes the forward pass on the basis of physical systems instead of training
only through numerical simulations. In this way, the impact of the simulation-re-
ality gap on model performance can be significantly reduced, and the perfor-
mance penalties associated with parameter transformation from numerical
simulations to real physical devices can also be avoided. Therefore, PAT allows
researchers to construct PNNs from virtually any controllable physical systems
and train hardware to perform desired computations. The insights gained from
this study will be of great assistance to overcome the physical limitations of
computing resources and render machine learning faster, more scalable, and
energy efficient.

A universal framework of PNNs is shown in Figure 1B, in which the dark cyan
boxes represent controllable physical systems. The input data of PNNs are usu-
ally a wave-based signal. And the parameters of PNNs correspond to some
adjustable properties of the physical system, which can be trained as the weights
of conventional artificial neural networks. Figure 1C shows three examples of
controllable physical systems. In the audio-frequency mechanical system, input
data and parameters are encoded into time-dependent forces, which can drive
the voice coil of a speaker, and that in turn drives the oscillating titanium plate.
In the nonlinear optical system, input data and parameters are encoded into
the pulses’ spectra, which are transformed and mixed nonlinearly by passing
through a crystal. In the electronic system, input data are voltage time series,
and parameters are trainable scale factors of the voltage time series. The re-
scaled voltage time series is then sent to the analog circuit. These systems
can perform both linear and nonlinear operations, which are equivalent to com-
mon operations in conventional artificial neural networks, such as convolutions
and matrix-vector multiplications. Therefore, DNN-like physical computations
can be composed of various physical systems with different parameters.

Back-propagation algorithms are regarded as a key point for efficient training
and good generalization of conventional artificial neural networks. The gradients
of transformation in physical systems are required to apply back-propagation al-
gorithms toPNN training. However, these gradients can onlybe approximated us-
ing a finite-difference approach, which makes the training slow for PNNs with a
large number of parameters. To overcome the above constraints, in silico training
that performs training within numerical simulations is adopted, whereby a differ-
entiable digital model, fmodel , is established to approximate the physical systems.
Thus, both forward calculation and back-propagation can be computed quickly in
simulations. In this way, the training process will be carried out solely on the com-
puter. And then the trained parameters will be loaded into the physical systems
for evaluation.

Because of errors between fmodel and the real physical system, it is difficult to
directly transfer the trained parameters to real devices for expected performance.
To solve this problem, a hybrid algorithm PAT is proposed, which involves com-
putations in both physical and digital domains (Figure 1D). Specifically, the phys-
ical system is used to perform the forward pass, which can produce more accu-
rate output than fmodel in silico training. And the differentiable digitalmodel fmodel is
used only in the backward pass to calculate the gradients of transformation in the
physical system. The universality of PAT algorithms is demonstrated by the suc-
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cessful training of three PNNs composed of different physical systems (see Fig-
ure 1C). And the effectiveness of the PNNs is verified through the implementation
of image and vowel classification. The experimental results show that the PNN is
not only an accurate hierarchical classifier that uses each system’s unique phys-
ical transformations but also performsmachine learning faster andmore energy-
efficiently compared with conventional electronic processors.
It should be noted that the proposed PAT can only be used to train PNNs

composed of adjustable nonlinear physical systems. And it is difficult to integrate
such physical systems in a small size. Thus, the stabilities and integrations of
adjustable nonlinear physical structures remain critical challenges. In model
training, data collection needs to be performed on the basis of the physical sys-
tems, which presents obstacles to apply parallel computing to themodel training.
Consequently, it will take a prohibitive amount of time to train PNNs for complex
tasks using the proposed PAT. Notwithstanding these limitations, this work is of
assistance to the application of DNN-based analog computing hardware plat-
forms, particularly those in which physical data, rather than digital data, are pro-
cessed or produced. PNNs perform partial computations on data within their
physical domain, so smart sensors can pre-process physical information before
conversion to the electronic domain (such as wave imaging and object recog-
nizing through a multiple-scattering environment). PNNs can be further incorpo-
rated into hybrid sensing systems composed of a trainable physical front end and
an all-digital machine learning-based back end.5 The spatial and temporal
information carried by thewave fields is first encodedby the physicalmechanism
during themeasurement process. Then the collected data can be decoded using
machine learning to extract the desired information. The hybrid system can be
regarded as a collaboration framework of analog computing and digital
computing, which can be jointly trained through the error back-propagation be-
tween the physical front end and the digital DNN-based back end. Therefore,
the physical front-end can be interpreted as a trainable layer of the machine
learning model. And the jointly learned measurement and processing settings
can yield considerably higher speed of operation and processing efficiency and
lower power consumption, particularly when practical data originate from mea-
surement operations with a large number of analog sensors. The hybrid sensing
system will break down more barriers in conventional sensing to provide more
useful information that could not be captured before.
Although this work focuses on a classification model, the proposed method

can also be extended to a regression model, even to a deep reinforcement
learningmodel. Even though the physical realizations of PNNs remain a limitation,
this work opens a new approach to analog computing with a wide range of po-
tential applications.
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