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Abstract: For this work, europium monosulfide (EuS) powders were prepared by sulfurizing Eu2O3

powder with CS2 gas. The synthesized EuS powders were sintered by SPS at temperatures in the
800–1600 ◦C range for 0.33–1 h at 50 MPa under vacuum conditions. The influences of Yb doping
and sintering conditions on the magnetocaloric and mechanical properties of EuS were investigated
systematically. An increase in sintering temperature caused the rise of lattice parameters of EuS,
whereas Yb doping caused them to drop. SEM showed that the grain size of the EuS increased
with sintering temperatures in the 1000–1400 ◦C range. Higher sintering temperatures can enlarge
the magnetizability and saturation magnetization of EuS compact. On the contrary, Yb doping can
weaken the magnetizability and saturation magnetization of EuS compact. All sintered polycrystalline
EuS compacts had weaker thermomagnetic irreversibility and lower magnetic anisotropy.

Keywords: polycrystalline EuS; magnetocaloric effect; magnetization; heat capacity

1. Introduction

Magnetic refrigeration (MR) is a type of refrigeration technology that is based upon
the magnetocaloric effect [1]. It has traditionally been researched for use in refrigeration
at approximately room temperature [2]; however, current MR research has focused on an
objective temperature of approximately 20 K using hydrogen liquefaction [3–5]. Liquidizing
hydrogen is an efficient method for the application of hydrogen fuel [6–9]. A magnetic
coolant required a phase transition near the liquefaction temperature of the liquid hydro-
gen [10,11]. Medium and heavy rare-earth compounds with high specific temperatures
meet the practical requirements for magnetic refrigerant materials [10,12].

Recently, single-crystal ferromagnetic semiconductor cubic europium monosulfide
(EuS) demonstrated substantial reversible magnetocaloric effects, with maximum magnetic
entropy changes of 37 J·Kg−1·K−1 at 18.5 K for a magnetic field shift of 5 T; they can
therefore be regarded as a possible magnetic refrigerant material for hydrogen liquefac-
tion [13]. EuS with an NaCl structure is isotropic according to the result of single-crystal
EuS [14,15]; thus, polycrystalline EuS can be used as a magnetic refrigerant material for
hydrogen liquefaction.

Concerning the preparation of EuS, the current research is focused on the wet chemical
synthesis of EuS nanoparticles [16,17] or the preparation of EuS films [15]. EuS nanoparticles
have been synthesized by the thermolysis and colloidal routes and by the decomposition
of single-source precursors [18]. Moreover, EuS nanoparticles from different precursors
show different magnetic behaviors (ferromagnetic or paramagnetic) at 10 K [19–21]. The re-
lationship between EuS magnetic properties and particle size and composition has been
investigated based on the regulation of the preparation process of nanostructured EuS [22].
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In our previous work, we achieved the controlled synthesis of EuS powder by a gas–
solid chemical reduction method using nano-Eu2O3 powder with different morphological
characteristics than the raw material [23].

The sintering process is a critical step in the industrial application of sulfides as energy
storage materials. Regarding rare-earth sulfide sintering, the most common method is the
growth of a single crystal of rare-earth sulfide by the closed-tube method [24,25]. Ebisu et al.
systematically studied the growth of Ln2S3 (Nd2S3, Pr2S3, Tb2S3, Dy2S3 [26]) single crystals
and their low-temperature physical properties. To overcome the high melting point of
sulfide, the single-crystal growth process requires the addition of sintering aids. Hirai et al.
synthesized CeS from a mixture of Ce2S3 and CeH3 as raw materials using a hot pressing
method [27]. Yuan et al. sintered Gd2S3 and Ho2S3 using discharge plasma sintering and
studied their thermoelectric properties [28].

As opposed to the sintering of Ln2S3, EuS having an NaCl-type structure causes
it to crack easily during sintering. To systematically study the sintering properties, EuS
compacts were sintered at temperatures in the 1273–1873 K range by spark plasma sintering.
Sintering temperature, pressure, holding duration, heating rate, and other factors all have
an impact on the performance of sintering EuS. Sintering temperature not only affects the
chemical composition of the compact, but also influences the valence of Eu. The mechanical
strength of sintered EuS cannot be guaranteed if the density of the sintered EuS bulk is too
low. A longer keeping time can improve the uniformity of compact EuS and reduces the
residual sulfur in the sulfurized EuS powder. The heating rate determines the formation
of microcracks.

Doping is an effective way to improve the physical properties and electronic structure
of EuS. Ferromagnetic coupling is weakened in the smaller europium sulfide nanoparticles,
so increasing Tc with electron doping is of interest to study [22]. Gd-doped EuS nanocrystals
resulted in enhancements of their magnetic properties and Curie temperature Tc [29]. The
sodium-doped EuS (Eu1−xNaxS, x < 0.5) was synthesized via purposely introducing NaOH
or NaCl to Eu2O3 [22]. Similarly, the Tc and paramagnetic Curie temperature, θp, rose
dramatically as a result of the doping concentration in Eu1−xGdxS with gadolinium doping,
although the data did not follow a smooth distribution [29]. As ytterbium (Yb) has similar
variation characteristics, the focus has been predominantly on Yb. Understanding and
regulating the variance of Tc requires research into the impact of Yb doping on the phase
transition temperature of EuS.

In this study, polycrystalline EuS compacts were sintered in various sintering condi-
tions and analyzed. We systematically measured the magnetic susceptibility, magnetization,
and specific heat of polycrystalline EuS. The temperature and field dependences of the
magnetic entropy change were calculated from the magnetization. The sintering process
influences the grain growth of EuS; the effect of the grain size of EuS on the specific heat
and phase transformation temperature was studied by sintering EuS at different sintering
temperatures. The mechanical properties of EuS compacts were also investigated.

2. Results
2.1. Sintering of EuS and Yb-Doped EuS

Figure 1a shows typical XRD patterns of synthetics by spark plasma sintering. For all
sintering temperature ranges, single-phase EuS compacts might have been formed; there
was no distinctive peak for Eu2O2S. On the other hand, characteristic peaks of EuS tended
to have small angles following an increase in sintering temperature, indicating that the
lattice constants increased with a rise in sintering temperature.
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Figure 1. XRD patterns (left side, a) and SEM images (right side, b) of EuS bulks prepared by SPS. 

Table 1 shows the lattice constants of EuS and Yb-doped EuS synthesized under 
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change in sintering temperature not only affected the grain size (refer to Figure 1b for 
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Yb0.02EuS 1000 °C 5.971716 
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Yb0.02EuS 1400 °C 5.971736 

SEM micrographs of cross-sections of the synthesized EuS sections with the different 
sintered temperatures for 3 h are displayed in Figure 1b. The visible grain growth of EuS 
could be observed with increasing sintering temperature. The structure of the EuS that 
was sintered by SPS was dense and homogeneous. Some brittle fractures could be ob-
served at the grain boundary, indicating that the cleavage plane should be attributed to 
the crack in the sintered EuS. 

Figure 1. XRD patterns (left side, a) and SEM images (right side, b) of EuS bulks prepared by SPS.

Table 1 shows the lattice constants of EuS and Yb-doped EuS synthesized under
different sintering conditions. The lattice constant of compact EuS increased with the
increase in temperature. The lattice constant of Yb-doped EuS decreased after doping. The
change in sintering temperature not only affected the grain size (refer to Figure 1b for SEM
results), but also affected the mixed valence state of the Eu, which could be explained by
magnetic data (Figures 2 and 3).

Table 1. Sulfurization conditions, sintering conditions, and lattice parameters of sintered EuS and
Yb-doped EuS.

Sample Sulf. Condition Lattice Constant

EuS 1000 ◦C 5.959182
EuS 1200 ◦C 5.969099
EuS 1400 ◦C 5.979182

Yb0.02EuS 1000 ◦C 5.971716
Yb0.02EuS 1200 ◦C 5.962835
Yb0.02EuS 1400 ◦C 5.971736
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heating (FH) states under the presence of an applied magnetic field. Figure 2 shows that 
all sintered polycrystalline EuS compacts had almost the same FC and FH curves 
throughout the entire temperature range. There were weaker or smaller tempera-
ture-dependent irreversibilities and magnetic asymmetries. The paramagnetic to ferro-
magnetic transition for polycrystalline EuS occurred at 18.2 K. 

Table 2 lists the magnetization at 2 K, Curie temperature (Tc), and Curie parameters 
of EuS sintered at temperatures in the 1000–1600 °C range. The sintering temperature had 
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maximum magnetization value. The polycrystalline EuS prepared by spark plasma sin-
tering had a similar magnetization value as the reported single-crystal EuS [13]. The 
magnetization of EuS sintered at 1600 °C was the lowest. The main factors that affected 
magnetization were the grain size and impurity content of the EuS. 

At temperatures above the Tc, the inverse susceptibility curve, 1/χ, was linear and 
conformed to the modified Curie–Wiess law, χ(T) = χ0 + C/(T − θp), where C stands for the 
Curie constant, θp represents the paramagnetic Curie temperature, and χ0 is the temper-
ature-independent term. The M(T) function follows the Curie–Weiss law, and the calcu-
lations of the paramagnetic Curie temperature θP also showed this. 

Figure 2. The relationship between FH and FC magnetization of the prepared EuS and tempera-
ture: (a) the temperature dependence of magnetization M(T); (b) the inverse susceptibility curve,
1/χ, for sintered polycrystalline EuS; the magnetic data of single-crystal EuS along (100) and (110)
directions [13] were added to compare the difference between single-crystal and polycrystalline EuS
magnetic data.
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Figure 3. Magnetization of polycrystalline undoped EuS (a) and Yb-doped EuS (b) as a function of
the field.

SEM micrographs of cross-sections of the synthesized EuS sections with the different
sintered temperatures for 3 h are displayed in Figure 1b. The visible grain growth of EuS
could be observed with increasing sintering temperature. The structure of the EuS that was
sintered by SPS was dense and homogeneous. Some brittle fractures could be observed at
the grain boundary, indicating that the cleavage plane should be attributed to the crack in
the sintered EuS.

2.2. Magnetizations of EuS and Yb-Doped EuS Bulks

The temperature dependences of magnetization M(T) for sintered polycrystalline
EuS bulks were measured under a 100-Oe magnetic field and the magnetic data of single-
crystal EuS along (100) and (110) directions [13] were added for comparison as shown
in Figure 2. Temperature-dependent magnetizations were examined in cooling (FC) and
heating (FH) states under the presence of an applied magnetic field. Figure 2 shows
that all sintered polycrystalline EuS compacts had almost the same FC and FH curves
throughout the entire temperature range. There were weaker or smaller temperature-
dependent irreversibilities and magnetic asymmetries. The paramagnetic to ferromagnetic
transition for polycrystalline EuS occurred at 18.2 K.

Table 2 lists the magnetization at 2 K, Curie temperature (Tc), and Curie parameters
of EuS sintered at temperatures in the 1000–1600 ◦C range. The sintering temperature
had an effect on the magnetization at low temperatures. The EuS sintered at 1400 ◦C had
the maximum magnetization value. The polycrystalline EuS prepared by spark plasma
sintering had a similar magnetization value as the reported single-crystal EuS [13]. The
magnetization of EuS sintered at 1600 ◦C was the lowest. The main factors that affected
magnetization were the grain size and impurity content of the EuS.

Table 2. Magnetization at 2 K, Curie temperature (Tc), and Curie parameters of EuS sintered at
temperatures in the 1000–1600 ◦C range.

Sintering Temperature M(2 K) [emu/g] Tc [K] C θp [K] µeff (µB)

1000 ◦C 0.0500 18.0 8.13 18.8 8.06
1400 ◦C 0.0681 18.0 8.54 19.6 8.26
1600 ◦C 0.0001 18.2 6.48 17.0 7.20

Single-crystal EuS (100) plane [13] 0.0430 19.0 7.58 17.2 7.79
Single-crystal EuS (110) plane [13] 0.0500 19.0 16.9 7.91

At temperatures above the Tc, the inverse susceptibility curve, 1/χ, was linear and
conformed to the modified Curie–Wiess law, χ(T) = χ0 + C/(T − θp), where C stands
for the Curie constant, θp represents the paramagnetic Curie temperature, and χ0 is the
temperature-independent term. The M(T) function follows the Curie–Weiss law, and the
calculations of the paramagnetic Curie temperature θP also showed this.
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The single-crystal EuS Curie temperature (16.8 K) was comparable with that of the
sintered EuS. The Curie temperature gradually increased as the sintering temperature rose.
Due to substantial indirect interaction between the impurity electron and the localized 4f
states, Curie temperatures as a function of electron concentration in ferromagnetic EuS
crystals rise quickly [30]. These results were consistent with the reported Curie temperature
(18 K) of EuS [31].

The least square fits from Tc to 300 K yielded effective moments (µeff) of 8.06 µB/Eu
and 8.26 µB/Eu for EuS prepared at 1000 ◦C and 1400 ◦C, respectively. The µeff of sintered
EuS was slightly larger than 7.2 µB/Eu for EuS sintered at 1600 ◦C and 7.9 µB/Eu for single-
crystal EuS. Compared to single-crystal EuS, polycrystalline EuS has a lower magnetization.
The occupied 4f electrons in the majority spin channel define the µeff of Eu, which is equal
to 7.9 µB, in theory. The calculated magnetic moment, µeff/Eu, was 6.93 µB and µeff/Eu
was found to be 6.9 µB throughout the EuS/Bi2Se3 film [14]. Similar to the EuS/InAs film,
the magnetic part was mostly concentrated in the EuS thin film with a restriction of the Eu
moment in the EuS layer closest to the InAs [32].

Figure 3a depicts the connection between temperature or magnetic field and isother-
mal magnetism M(H, T)/M(H, B) of sintered EuS. As seen in Figure 3, M(H, T) showed
ferromagnetic behavior at low temperatures; however, polycrystalline EuS sintered at
1600 ◦C had larger values than that of EuS prepared at 1000 ◦C under a given field and
temperature, which was consistent with the grain size of EuS (as shown in Figure 1b).
Higher sintering temperatures led to a larger grain size in EuS. Similar results were ob-
served in EuS nanocrystals (NCs, with an average size of 44 nm) and nanorods (NDs, with
an average size of 7.5 nm). The EuS NCs had much stronger magnetizations than those of
the EuS NDs [33]. Compared with the magnetization of single-crystal EuS following the
orientations in (100) and (110) as shown in Figure 2, both magnetizations of EuS sintered
at 1000 ◦C (less than 160 emu/g) and 1600 ◦C (less than 190 emu/g) were weaker than
that of single-crystal EuS (above 200 emu/g). This might be explained by the presence of
impurities left behind in the EuS powders after the sulfurization process of Eu2O3, such as
residual carbon or oxygen atoms.

At low temperatures, the saturation point of the magnetization was achieved before
1 T. After the temperature rose, this pattern weakened. With an increase in the magnetic
field over 22 K, the magnetization rose almost linearly. For a certain field, magnetization
decreased as the temperature rose.

Figure 3b displays the magnetization of Yb-doped EuS as a function of temperature
at different magnetic fields. Compared with undoped EuS compacts, a small amount of
Yb doping had little influence on the relationship between magnetization and temper-
ature/magnetic field (similar to what is shown in Figure 3a). However, the saturation
magnetization of Yb-doped EuS obviously decreased. It was presumed that the coupling
of 4f14 local electrons of Yb2+ and 4f7 electronic layer of Eu2+ led to the enhancement of
electron local hybridization and the decrease in magnetization. M tended to saturate at
about 1.0 × 104 emu/moL at low temperatures.

The inflection point that appears in the Arrott plot for the polycrystalline EuS in
Figure 4 revealed that there was a magnetic change from disordered paramagnetic to the
ordered ferromagnetic arrangement at a temperature that exceeded the Tc. The Arrott plot’s
positive slope (M2 vs. H/M) indicated that the phase change was of second order.

A magnetic entropy change, ∆S, can be obtained using the Maxwell relation:
∆S(T, H) =

∫ H
0 ( ∂M

∂T )HdH. Figure 4d shows the variation in magnetic entropy of poly-
crystalline EuS and Yb-doped EuS and its relation to temperature for various magnetic
fields. The total amount of ∆S for EuS sintered at 1600 ◦C grew first before starting to
decline when an upper limit was reached. Additionally, the maximum ∆S was obtained at
a slightly higher temperature of 17.97 K for ∆H = 5 T than it was at 17.47 K for ∆H = 1 T.
Above the Curie temperature, a sizable MCE was provided. The peak ∆S values were 2.02,
3.57, and 6.32 J/mol/K for applied fields of 1, 2, and 5 T, respectively.
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Figure 4. The Arrott plots (M2 versus H/M) of polycrystalline undoped EuS sintered at 1000 ◦C
(a) and 1600 ◦C (b); Yb-doped EuS (c); and the relationship between temperature and magnetic
entropy variations of sintered EuS (d).

The entropy changes in EuS sintered at 1600 ◦C were larger than those of EuS sintered
at 1000 ◦C and Yb-doped EuS. The fact that the reported ∆S value for polycrystalline
EuS prepared by spark plasma sintering was comparable to that of single-crystal EuS
generated via a more difficult procedure must be emphasized. Rare-earth monosulfide or
sesquisulfide crystals seldom exhibit a ∆S with such a high magnitude.

2.3. Specific Heat of EuS and Yb-Doped EuS

The investigations of the temperature dependences of the specific heat C(T) of Yb-
doped and undoped EuS were conducted in the absence of magnetic fields, as shown in
Figure 5a. A significant peak can be seen on the C(T) curve at about 16.4 K in the zero field.
For polycrystalline EuS, as the sintering temperature increased from 1000 ◦C to 1400 ◦C,
the characteristic peak decreased from 16.4 K to 15.7 K. The transformation temperature
shifted to a small angle and the specific heat decreased as the sintering temperature rose.
The change in characteristic peak of the Yb-doped EuS was not obvious.

To estimate the magnetic entropy change based on the Maxwell relation and compute
the adiabatic temperature change ∆Tad, the C/T vs. T2 of EuS sintered at 1600 ◦C was
determined in magnetic fields of 0 and 5 T. The plots of C/T vs. T2 of EuS are shown in
Figure 5b. At about 16.4 K, the C/T vs. T2 of EuS displayed a significant peak at the zero
field. The peak weakened and disappeared as the magnetic field grew stronger.
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Figure 5. Temperature dependences of the specific heat, C(T), of Yb-doped EuS and undoped
EuS [13] (a); plots of C/T vs. T2 for EuS (b) and Yb-doped EuS (c); the temperature dependence of
(C − γT)/T3 (d).

The plots of C/T vs. T2 of EuS and Yb-doped EuS sintered at temperatures in the
1000–1400 ◦C range are shown in Figure 5c. Similar to EuS sintered at 1600 ◦C, the peak
of phase transition of EuS occurred near 16.8 K at the zero magnetic field. With increas-
ing sintering temperature and Yb doping, the Curie temperature of the phase transition
of EuS decreased. As the antiferromagnetic transition takes place at low temperatures,
it was challenging to estimate the Sommerfeld coefficient of the electronic specific heat, γ.
By linearly fitting experimental data at 10–20 K, it was feasible to estimate the electronic
specific heat parameter, γ. The findings unambiguously demonstrated that for all EuS and
Yb-doped EuS, the intercept γ was positive and nonzero; this demonstrated the presence of
some conduction electrons, which is similar to that of GdS [34] and YbS [35]. The following
formula estimates the Debye temperature, θD:

θD = (12π4Rgn/5β)1/3 (1)

where Rg represents the gas constant, and the unit for the lattice term β is J·mol−1·K−4.
Using the Debye model for EuS and Yb-doped EuS, the temperature dependency of

the lattice contribution, Clat, was assessed. The following equation can be used to express
the Clat:

Clat= 9NAδkB

(
T
θD

)3∫ θD/T

0

z4ez

(e z−1)2 dz (2)

where δ is the quantity of atoms in a formula unit. The Boltzman’s constant, kB, and the
Avogadro constant, NA, are both used. The temperature dependency of (C − γT)/T3 is
shown in Figure 5d. The θD for EuS sintered at temperatures in the 1000–1400 ◦C range was
different. The coefficients for the T and T3 terms of the specified temperature dependency of
the heat capacity can be obtained from Figure 5d. For polycrystalline EuS, the θD increased
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from 175 K to 204 K following a rise in the sintering temperature. These values were close
to the reported θD of 208 K [36]. Yb doping had a weaker influence on the θD of EuS.

2.4. The Influence of Sintering Conditions on the Mechanical Properties of EuS

Mechanical strength, hardness, and density are important for the ceramic forming
process and the possibility of industrial application. An optical photograph of EuS is
shown in Figure S1. Figure 6 shows the hardnesses of EuS compacts sintered at different
conditions. The hardness of EuS enlarged with a rise in sintering temperature and duration.
The hardness of sintered EuS was highest at 1400 ◦C for 5 h, but sintered EuS bulk was easy
to break after sintering. Complete compact EuS could be obtained after sintering at 1600 ◦C
(diameter 20 mm × thickness 4.5 mm).
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3. Discussion

An essential factor of a magnetic refrigerant material is its relative cooling power
(RCP), which is typically given as RCP, where Smax represents the peak of ∆S from Figure 6
and δTFWHM stands for the effective length at half of the maximum of the matching ∆S.
The aforementioned equation was used to calculate the ∆Smax and RCP, as illustrated in
Figure 7. The very large values of ∆Smax and RCP, which grew monotonically with in-
creasing ∆H, showed that polycrystalline EuS exhibited exceptional magnetic refrigeration
properties. The ∆Smax for EuS was larger than that of ErFeSi (5.8 J/mol/K) [10], PrNi
(1.2 J/mol/K) [37], DyNi2 (5.96 J/mol/K) [38], and HoN(5.04 J/mol/K) [39] for applied
fields of 5 T. For EuS prepared at 1000 ◦C and 1600 ◦C, the RCP levels were 94.6 and
125.4 J/mol at ∆H = 5 T, respectively. The RCP for polycrystalline EuS prepared by spark
plasma sintering was a little lower than that for a single crystal (143.94 J/mol at ∆H = 5 T).
The RCP for polycrystalline EuS was superior to that of ErFeSi (117.5 J/mol) [10], PrNi
(12.1 J/mol/K) [37], DyNi2 (123.3 J/mol/K) [38], and HoN(100.9 J/mol/K) [39] for applied
fields of 5 T.
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Heat capacities for polycrystalline and single-crystal EuS under various magnetic
fields were examined, as illustrated in Figure S3, to further understand the differences
in the magnetocaloric characteristics between both types of EuS. At temperatures below
20 K without magnetic fields, the specific heat values were nearly identical. In comparison
to single-crystal EuS, the paramagnetic polycrystalline EuS phase had a somewhat lower
heat capacity.

Rare-earth element Yb-doped EuS had the advantage of being able to easily form a
solid solution; however, its effect on magnetic modulation was not obvious, which might
be related to the electronic structure of Yb 4f14. The doping of magnetic transition metal
elements Fe and Co will be considered in the future. SEM images and EDS analysis of
Yb-doped EuS are shown in Figure S2. Compared with the results of EuS in Figure 2, Yb
doping with a low melting point (819 ◦C) could improve the denseness of EuS bulk.

4. Materials and Methods

The preparation process of EuS powder was described in our previous report [40].
Synthetic EuS powders were directly sintered at temperatures in the 800–1600 ◦C range for
0.33–5 h via spark plasma sintering, at less than 50 MPa (Model SPS-511L, Sumitomo Coal
Mining Co., Ltd., Tokyo, Japan). A constant heating rate of 0.42 K·s−1 was adopted. The
vacuum was less than 7 × 10−3 Pa during sintering. Cold pressing was performed on all
samples with a 25 MPa uniaxial applied stress.

The synthesized compounds were identified by X-ray diffraction (XRD), Model Rint-
Ultima+, Rigaku Corp., Tokyo, Japan, with monochromatic Cu-Kα radiation at an accelerat-
ing voltage of 40 kV and a filament electric current of 20 mA. Scanning electron microscopy
was used to characterize the morphology of the compacts (SEM, JSM-5310LV, JEOL Ltd.,
Tokyo, Japan).

A superconducting quantum interference device (SQUID, Quantum Design, San Diego,
CA, USA ) magnetometer was used to detect magnetization as a function of temperature
(between 2 and 300 K) and magnetic field (between 0 and 5 T). Utilizing the physical
properties of the measuring equipment, the thermal relaxation approach was used to detect
specific heat in the temperature range between 2 and 50 K (PPMS, Quantum Design).

5. Conclusions

EuS and Yb-doped EuS compacts were sintered at temperatures in the 800–1600 ◦C
range by SPS. The lattice parameters of undoped EuS increased with sintering tempera-
ture, while Yb-doped EuS compacts changed without regularity. The grains of EuS grew
obviously with an increase in temperature. At the same magnetic field strength, the in-
duction magnetization and saturation magnetization increased with an increase in EuS
grain size. On the contrary, Yb doping could decrease the induction magnetization and
saturation magnetization of EuS. Magnetic entropy changes and heat capacity displayed
similar trends. It should be noted that the current study demonstrated a novel material
approach for hydrogen liquefaction. Finally, it is hoped that the Curie temperature of EuS
will be adjusted to around 20 K by element doping in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27175660/s1, Figure S1. The optical photograph of EuS;
Figure S2. SEM images and EDS analysis of Yb doped EuS; Figure S3. Comparison of heat capacity
for polycrystalline and single crystal EuS under zero field (a); 1T (b); 3 T (c); and 5 T (d).
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