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Abstract

Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular

degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concen-

trations thus partially reducing retinol delivery to the retina which decreases bisretinoid syn-

thesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and

optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select

a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation

of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined fol-

lowing oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus

monkeys. Dynamics of plasma RBP4 reduction in response to compound administration

was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-

normalized exposure was significantly higher in NHP than in dog. Baseline concentrations

of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of

canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136

to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both

species correlated with compound exposure. Despite adequate PK and PD characteristics

of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking

precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong

RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved

in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support

the choice of NHP as a non-rodent safety species.

Introduction

Dry (atrophic) form of age-related macular degeneration (AMD) represents a slowly progress-

ing neurodegenerative disorder in which specialized neurons (rod and cone photoreceptors)

die in the central part of the retina called macula [1]. Photoreceptor loss in dry AMD is
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triggered by abnormalities in the retinal pigment epithelium (RPE) that provides critical meta-

bolic support to these light-sensing neurons. Age-dependent accumulation of lipofuscin in the

RPE matches the age-dependent increase in prevalence of dry AMD and thus is frequently

considered as one of pathogenic factors contributing to the disease progression [2–8].

Enhanced accumulation of lipofuscin is believed to be the sole etiological factor in monogenic

Stargardt disease, a genetic form of macular degeneration caused by mutations in the ABCA4
gene [9]. Best Vitelliform Macular Dystrophy (BVMD) is another inherited form of early-

onset macular degeneration characterized by abnormally high levels of retinal lipofuscin [10].

There are no FDA-approved treatments for dry AMD, Stargardt disease and BVMD. Given

that lipofuscin toxicity is mediated by its bisretinoid components such as A2E (Fig 1), it was

suggested that pharmacological inhibition of bisretinoid synthesis may delay or prevent photo-

receptor loss in macular degeneration [11–15]. Bisretinoid synthesis occurs in the retina in a

non-enzymatic manner from visual cycle retinoids such as all-trans- and 11-cis-retinaldehyde

[16–18]. Uptake of retinol from circulation to the RPE fuels the visual retinoid cycle reactions

leading to retinaldehyde synthesis and bisretinoid formation [1]. Given that bisretinoid syn-

thesis depends on the influx of all-trans-retinol from serum to the RPE, it was suggested that

pharmacological reduction of serum retinol may represent a target area in a search for macular

degeneration treatment. Serum retinol is delivered to the RPE by the specific serum carrier

protein, Retinol-Binding Protein 4 (RBP4) [19, 20]. Most of the retinol-RBP4 complex in cir-

culation is bound with another serum protein, transthyretin (TTR) [20–22]. RBP4-TTR inter-

action increases the molecular weight of the retinol-delivery vehicle which is critical for

maintaining serum retinol in circulation. Without complexation with TTR, RBP4-retinol is

rapidly cleared from the bloodstream through glomerular filtration due to its small size, 21

kDa [23, 24]. Retinol binding to RBP4 is required for the formation of the RBP4-TTR complex,

as apo-RBP4 has reduced affinity for TTR [21, 25]. We previously reported the discovery and

characterization of several classes of nonretinoid RBP4 antagonists disrupting retinol-induced

RBP4-TTR interaction [26–30]. One of the advanced analogs, BPN-14136 (Fig 1) has optimal

drug-like characteristics and demonstrates very good in vitro RBP4 binding potency as well as

a strong in vitro ability to antagonize retinol-dependent RBP4 interaction with TTR [27]. The

Fig 1. Chemical structure of RBP4 ligands retinol and BPN-14136 and bisretinoid N-retinylidene-N-

retinylethanolamine (A2E).

https://doi.org/10.1371/journal.pone.0228291.g001
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compound showed good PK characteristics in rodents (mouse and rat) coupled with signifi-

cant in vivo efficacy (plasma RBP4 lowering) in both rodent species [27, 28] which correlated

with a desired partial reduction of retinaldehydes serving as direct bisretinoid precursors [28].

BPN-14136 dosing in the Abca4-/- mouse model of Stargardt disease significantly inhibited bis-

retinoid synthesis and normalized dysregulation of the complement system in the retina [28].

To advance BPN-14136 characterization, we describe here an evaluation of its PK and PD

properties in two non-rodent species, beagle dog and cynomolgus monkey, along with evalua-

tion of additional relevant in vitro ADME (absorption, distribution, metabolism, and excre-

tion) properties. The important objective of the PK-PD and in vitro ADME studies was the

selection of the appropriate non-rodent species suitable for a formal evaluation of BPN-14136

safety in GLP studies as well as confirmation that canine retinal degeneration models, such as

the cmr model of BVMD, can be used in accessing pre-clinical efficacy of BPN-14136 and simi-

lar compounds.

Materials and methods

BPN-14136 Synthesis and in vitro ADME tests

BPN-14136 was synthesized as described previously [27, 28]. In vitro ADME tests were con-

ducted at AMRI, Albany, NY. Plasma protein binding for BPN-14136 was determined (in trip-

licates) by equilibrium dialysis of plasma against phosphate buffered saline (pH 7.4). Plasma

spiked with BPN-14136 at a concentration of 1 μM was loaded to one side (donor) of the dialy-

sis device insert, and phosphate buffered saline was loaded to the other side (receiver). After

four hours, the concentration of BPN-14136 was assessed in both the donor and receiver sides.

Metabolic stability determinations for BPN-14136 and testosterone (positive control) were

conducted in the presence of human, dog, and cynomolgus monkey liver microsomes. All

measurements were done in duplicate. Pooled mixed gender human donor microsomes, male

beagle dog microsomes and male cynomolgus monkey were obtained from BioIVT (Balti-

more, MD). BPN-14136 was prepared as a 10 mM stock solution in DMSO. A mixture con-

taining 50 mM potassium phosphate buffer pH 7.4 and 1 mg/mL liver microsomes was pre-

warmed for 10 min at 37˚C in a shaking water bath, followed by the addition of test com-

pound. Final DMSO concentration in the reaction mix was 0.1%. Reactions with cofactor were

initiated by adding a NADPH-regenerating system to the incubation mixtures (final concen-

trations of 1.3 mM NADP+, 3.3 mM glucose-6-phosphate, and 0.4 U/mL glucose-6-phosphate

dehydrogenase). The final volume of the reaction mixture was 800 μL, containing 1 mg/mL

liver microsomes, and 1 μM test compound. Aliquots (100 μL) of reaction mixtures were

removed from the incubation plate at pre-defined timepoints and mixed with 150 μL of ice-

cold acetonitrile, incubated on ice for 15 min, and samples were centrifuged (3,600 rpm, 10

min, 4˚C) to precipitate protein. The supernatants were diluted 1:1 (v/v) with water containing

the internal standard and subjected to the LC/MS analysis. The low limit of quantitation for

BPN-14136 was0.01 μg/ml.

Metabolic clearance in hepatocytes experiments were conducted to assess BPN-14136 sta-

bility in the presence of human, dog, and cynomolgus monkey hepatocytes. All measurements

were done in duplicate. Testosterone and 7-hydroxycoumarin were used as positive controls.

Pooled cryopreserved human hepatocytes, cryopreserved male beagle dog hepatocytes, and

cryopreserved male cynomolgus monkey hepatocytes were obtained from BioIVT (Baltimore,

MD). Compound at 1 μM was incubated with 1 x 106 cells. Final DMSO concentration in the

reaction mix was 0.1%. Aliquots (100 μL) of reaction mixtures were removed from the incuba-

tion plate at different timepoints and mixed with 150 μL of ice-cold acetonitrile. After incuba-

tion on ice for 15 min, the samples were centrifuged (3,600 rpm, 10 min, 4˚C) to precipitate
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protein. The supernatants were diluted 1:1 (v/v) with water containing internal standards and

subjected to the LC/MS analysis. Hepatic clearance was calculated using the well-stirred liver

model [31]

Pharmacokinetic studies

Pharmacokinetic studies were conducted in male beagle dogs and male cynomolgus monkeys

at SRI International, Menlo Park, CA. General procedures for animal care and housing were

in accordance with the National Research Council (NRC) Guide for the Care and Use of Labo-

ratory Animals (1996) and the Animal Welfare Standards incorporated in 9 CFR Part 3, 1991

and complied with guidelines set forth by the ARVO Animal Statement for the Use of Animals

in Ophthalmic and Vision Research. During the course of the PK experiments, cynomolgus

monkeys were individually housed in stainless steel primary enclosures in an AAALAC-

accredited facility. Animals were fed a commercial monkey chow, and supplemental food was

provided (fresh fruits, vegetables, seeds, and nuts). Reverse osmosis-purified drinking water

was available at all times. Cynomolgus monkeys were maintained on a 12:12 hour light:dark

cycle at the 64–84˚F temperature and 30–70% humidity. Monkeys had access to enrichment

opportunities (grooming devices, foraging devices, activity panels and mirrors) and were pro-

vided auditory stimuli and human interaction enrichment throughout the study. Blood sam-

ples were collected by venipuncture of a peripheral vein. Animals were acclimated to the

squeeze back mechanism in their home cage by repeated, short periods of restraint during gen-

eral husbandry procedures for at least 2 weeks prior to dosing. Animal were not removed from

their cages for collection, and no anesthesia/analgesic agents were used for blood collection.

Monkeys were observed at each study blood collection time point and twice daily at least 6

hours apart (a.m. and p.m.). None of the cynomolgus monkeys became ill during the course of

the study and all primates returned to the home colony after the completion of the study. For

PK experiments, beagle dogs were individually housed in enclosed run (� 4 ft x 6 ft). Dogs

were exposed to their daily ration of food, Harlan Teklad 2025C Certified Global 25% Protein

Dog Diet. Water was provided from the public water supply (municipal tap water) ad libitum.

Dogs were maintained on a 12:12 hour light:dark cycle at the 72–73˚F temperature and 40–

71% humidity. Every effort was made to minimize, if not eliminate, pain and suffering in all

animals in this study. No restraining devices were used in blood collecting procedures. Dogs

were gentle hand-held to restrain by trained technicians with the dogs foreleg extended for

sample collection of blood from cephalic vein. Animals were awake during blood sample col-

lection with no anesthesia/analgesic agents used, and positive reinforcement by the technician

was provided following collection. No animals were required to be euthanized during this

study due to their health status. All dogs were released back to the colony after the study was

completed. Male beagle dogs and male cynomolgus monkey received a single i.v. dose of a test

compound at 0.5 mg kg−1 (dog) and 1 mg kg−1 (monkey) or a single p.o. dose of a test com-

pound of at 2 mg kg−1 (dog) and 5 mg kg−1 (monkey). The number of animals that was used in

PK experiments is 3 per study group. Intravenous administration vehicle was 3% DMA/45%

PEG300/12% ethanol/40% sterile water; p.o. vehicle was 2% Tween 80 in 0.9% saline. Blood

was collected from dogs and monkeys at pre-dose and at 5, 15 and 30 min, and 1, 2, 4, 6, 8, 12,

24, 36 and 48 h post-dose in the i.v. arms and at 15 and 30 min, and 1, 2, 4, 6, 8, 12, 24, 36 and

48 h post-dose in the p.o. arm. Blood samples were processed to plasma. Following protein

extraction with acetonitrile, compound concentrations in plasma were measured by LC-MS/

MS. The plasma drug level data were analyzed using WinNonlin software package; Model 201

(for i.v. bolus administration);was used for the analysis of i.v. data, and Model 200 (for extra-

vascular administration) was used for the analysis of the p.o. data. Aliquots of pre-dose plasma
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samples, as well as aliquots of plasma PK samples, were used for the analysis of the plasmabio-

marker, RBP4.

Plasma RBP4 Measurements and Immunoblotting

Concentrations of RBP4 in cynomolgus monkey plasma samples (diluted 1:5000) were mea-

sured using the RBP4 (Human) ELISA kit (catalog number AG-45A-0035YTP-KI01, Adipo-

Gen, Switzerland) following the manufacturer’s instructions. RBP4 concentrations in dog

plasma samples at the 1:3000 dilution were measured using the Canine RBP4 ELISA kit (cata-

log number NBP2-60464, Novus Biologicals, Centennial, CO) following the manufacturer’s

instructions.

For Western blotting, serum and plasma proteins were separated by NuPAGE Bis-Tris gels

(4%–12%) (Novex, Life Technologies) and transferred to PVDF (Novex, Life Technologies).

After blocking, membranes were incubated with rabbit polyclonal anti-human RBP4 antibod-

ies (1:500, catalog number A0040, Dako) overnight at 4˚C. Membranes were washed 3 times

for 10 min in Tris-buffered saline (pH 7.5) containing 0.2% Tween (TBST), and then incu-

bated in goat anti-rabbit IgG-HRP secondary antibody (1:1000; sc-2004; Santa Cruz Biotech-

nology Inc.) for 1 hour at room temperature. After washing, the protein bands were visualized

with enhanced chemiluminescence labeling using the ECL immunoblotting detection system

(catalog number 32106, ThermoFisher Scientific). The developed films were scanned and the

pixel volumes of the bands were determined by using NIH’s ImageJ software, with the values

in ratios of intensity. Transferrin loading control was detected using rabbit anti-human trans-

ferrin polyclonal antibodies (1:1000, catalog number ADI-VAP-EN004-D, Enzo). HEK293-

expressed purified dog RBP4 (catalog number 70006-D08H, Sino Biological) and HEK293-

expressed purified human RBP4 (catalog number 10354-H08H, Sino Biological) were used as

control of antibody specificity in Western blot experiments.

Results

As previously reported, BPN-14136 exhibits very good in vitro RBP4 binding potency (IC50 =

12.8 nM in SPA binding assay) as well as the superb in vitro ability to antagonize retinol-

dependent RBP4 interaction with transthyretin (IC50 = 43.6 nM in HTRF RBP4-TTR interac-

tion assay) [27]. The compound did not inhibit standard cytochrome (CYP) P450 enzymes (all

CYP inhibition IC50 values > 34 μM), displayed very good stability in human and rat liver

microsomes (>90% remaining at 30 min.), no PXR activation, and no significant off-target

activity at the hERG channel or within a standard screening panel of fifty-five GPCRs,

enzymes, ion channels, and transporters [27]. The compound showed a good pharmacokinetic

(PK) profile in rat [27] and mouse [28] and normalized disease phenotype in the mouse model

of Stargardt disease [28]. Encouraged by very good rodent PK characteristics and good pre-

clinical efficacy in the Stargardt disease model, we conducted PK and PD studies of BPN-

14136 in dogs and non-human primates and extended in vitro ADME characterization of this

compound.

In vitro ADME and pharmacokinetic (PK) characteristics of BPN-14136 in

dog and cynomolgus monkey

In light of good in vitro ADME characteristics in rodents [27] we extended BPN-14136 charac-

terization and performed similar in vitro ADME studies in dog and non-human primate. The

pharmacological profile of BPN-14136 is presented in Table 1.

BPN-14136 exhibited very good stability in human, dog and cynomolgus monkey liver

microsomes. The observed CLint values in hepatocytes suggest very low predicted hepatic

PK-PD study of BPN-14136 in dog and monkey

PLOS ONE | https://doi.org/10.1371/journal.pone.0228291 January 24, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0228291


clearance. The extent of plasma protein binding was in the high range for all three species with

low fraction unbound. Satisfactory in vitro ADME characteristics justified BPN-14146 charac-

terization in dog and non-human primate PK studies. Single dose PK studies were conducted

with cynomolgus monkeys at 2 mg kg−1 i.v. and 5 mg kg−1 p.o. and with beagle dogs at 0.5 mg

kg−1 i.v. and 2 mg kg−1 p.o. BPN-14136 possessed favorable PK profiles in cynomolgus mon-

key and dog (Table 2).

In non-human primates, BPN-14136 exhibited very low plasma clearance, with low Vss val-

ues and a half-life of 17.8 h after oral dosing (Table 2). The compound was well absorbed and

slowly eliminated from plasma after oral administration with an observed Cmax of 31.5 μg/ml

and corresponding Tmax at 1.67 h. High exposures were observed (AUCinf was 676.2 hr•μg/ml)

and the estimated bioavailability was 84.3%. Comparably to cynomolgus monkey, BPN-14136

was rapidly absorbed in dog reaching the peak concentration of 7.5 μg/ml at 0.33 hr after post

oral dose. CL and Vss values were higher in dog than in cynomolgus monkey (Table 2). The

observed plasma exposures (AUCinf) in dog ranged between 10.3 hr•μg/ml for i.v. dosing and

35.4 hr•μg/ml for oral administration. The oral bioavailabilities (%F) for BPN14136 for both

species was around 84%. BPN-14136 exhibited overall good PK profile in both species (good

oral bioavailability, moderate to low clearance and adequate exposure). The overall good PK

profile of the compound in dog and NHP is consistent with good PK characteristics that BPN-

14136 exhibited in our previous rat [27] and mouse [28] studies. Because the single oral dose

Table 1. In vitro ADME Profile for BPN-14136.

Microsomal Stabilitya %PPBb Hepatocyte CLint
c

(μl/min/106 cells)(% Remaining at 30 min)

Human Dog Cyno Human Dog Cyno Human Dog Cyno

94 93 95 99.9 ±0.1 99.7 ±0.0 99.9 ±0.0 <0.7 <0.7 0.7

aCompound stability in liver microsomes
b%PPB, plasma protein binding (data are shown as average and standard deviation)
cHepatocyte intrinsic clearance

https://doi.org/10.1371/journal.pone.0228291.t001

Table 2. In vivo PK data for BPN-14136 following i.v. and p.o. administration in beagle dog and cynomolgus monkey.

Species Dose CLa Cmax
b Tmax

c T1/2
d Vss

e (mL/Kg) AUClast
f AUCinf

g %Fh

(mL/h/kg) (μg/mL) (h) (h) (hr• μg/mL) (hr• μg/mL)

Cyno 1.0 mg kg−1 (i.v.) 5.25 ± 1.10 11.4 ± 0.6i 0.083 15.6 ± 3.3 113.0 ± 4.0 171.1 ± 27.0 196.2 ±42.2 84.3 ± 24.8

5.0 mg kg−1 (p.o.) NC 31.5 ± 0.2 1.67 ± 0.58 17.8 ± 4.2 NC 676.2 ± 128.9 826.6 ± 243.1

Dog 0.5 mg kg−1 (i.v.) 47.0 ± 2.2 2.7 ± 0.1i 0.083 2.6 ± 0.2 622.0 ± 3.4 10.3 ± 0.5 10.7 ± 0.5 84.2 ± 10.4

2.0 mg kg−1 (p.o.) NC 7.5 ± 0.2 0.33 ± 0.14 2.9 ± 0.4 NC 35.4 ± 0.4 35.9 ± 4.4

Dosing groups consisted of three male beagle dogs or male cynomolgus monkeys. Data represented as mean ± SD.
aTotal body clearance.
bMaximum observed concentration of compound in plasma.
cTime of maximum observed concentration of compound in plasma. For the i.v. group, the first plasma collection time is listed as the Tmax.
dApparent half-life of the terminal phase of elimination of compound from plasma.
eVolume of distribution at steady state.
fArea under the compound plasma concentration versus time curve from 0 to the last time point compound was quantifiable in plasma.
gArea under the compound plasma concentration versus time curve from 0 to infinity
hBioavailability; F = (AUCINFpo × Doseiv)� AUCINFiv × Dosepo). NC, not calculated
iMaximum observed concentration at first time point

https://doi.org/10.1371/journal.pone.0228291.t002
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administered in the dog PK study (2 mg kg−1) was lower than in PK experiments conducted in

three other species (5 mg kg−1 in rat, mouse, and NHP) we compared exposure in four species

by analyzing dose-normalized AUCinf and Cmax values (Fig 2). Dose-normalized AUCinf and

Cmax values (AUCinf /dose and Cmax/dose) were highest in cynomolgus monkey and rat while

lower exposures were seen in mouse and dog PK studies (Fig 2). Given that high exposures

may be needed to enable identification of target organ toxicity for BPN-14136 in future GLP

toxicology studies, it seems reasonable to suggest that rat and NHP should be selected as

rodent and non-rodent safety species, respectively.

Steady-state concentrations of serum RBP4 in dog and cynomolgus

monkey

It has been previously reported that in contrast to other mammals, dogs and other carnivores

deliver vitamin A to the target tissues predominantly as retinyl esters associated with lipopro-

tein fractions [32], while RBP4-TTR route of retinol delivery plays a secondary role. We

wanted to assess whether this peculiarity of vitamin A trafficking in dogs may have an effect

on pharmacodynamics of the RBP4 antagonist. As a first step, we compared steady-state RBP4

concentrations in dog and non-human primate plasma. Given that specific antibodies against

canine RBP4 are not available, we performed Western blot analysis with rabbit polyclonal anti-

bodies against human RBP4 (Dako, catlog number A0040). As shown in Fig 3A, this antibody

demonstrated equal specificity for human and dog RBP4 when we probed a fixed amount of

purified heterologously-expressed preparations of human and dog RBP4. Given that amino

acid sequence of human RBP4 is 99% identical to the monkey orthologue, this immunoblot

analysis of purified proteins confirmed that the antibodies are suitable for comparing concen-

trations of RBP4 in dog and NHP plasma. The analysis revealed a significant difference

Fig 2. Comparison of dose-normalized exposure in four species after oral administration of BPN-14136. BPN-14136 was orally administered at the 5 mg kg−1 dose

in cynomolgus monkey, rat and mouse and at the 2 mg kg−1 dose in dog. A, AUCinf, Area under the compound plasma concentration versus time curve from 0 to

infinity normalized to the oral dose. B, Cmax, maximal plasma concentration of BPN14-136 normalized to the oral dose. Colored bars show data means; error bars show

standard deviations. Each data point on the graph represents AUCinf or Cmax determined for an individual animal.

https://doi.org/10.1371/journal.pone.0228291.g002
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Fig 3. Western blots and a histogram showing steady-state levels of serum RBP4 in cynomolgus monkey and dog. . A, Western blotting confirms equal cross-

reactivity of polyclonal rabbit anti-human RBP4 antibodies for dog and human RBP4. Samples (65 ng) of heterologously-expressed affinity-purified preparations of

histidine-tagged dog (lane 1) and human (lane 2) RBP4 were probed with the antibodies. B, The representative immunoblot comparing RBP4 levels in 10 μl plasma

samples from three dogs (lanes 2–4) and three cynomolgus monkeys (lanes 5–7). Human plasma sample (lane 1) was loaded as a reference control. Transferrin

antibody was used to re-probe the Western blot to confirm equal loading of plasma samples (lower panel). C, The histogram representing pixel volumes of RBP4

bands. The bars represent pixel volume means ± S.D. of the scanned bands on the immunoblot in arbitrary units.

https://doi.org/10.1371/journal.pone.0228291.g003
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between dog and monkey plasma in concentration of RBP4 (Fig 3B). Consistent with the sec-

ondary role of the RBP4-TTR system for retinol delivery in dog, the canine plasma concentra-

tions of RBP4 were approximately 5 times lower than those of monkey (Fig 3C).

Pharmacodynamics (PD) of BPN-14136, and PK-PD correlations

Displacement of retinol from serum RBP4 by an RBP4 antagonist induces dissociation of the

RBP4-TTR complex followed by renal clearance of RBP4 from circulation. Measurements of

serum RBP4 concentrations represent a convenient pharmacodynamic marker for assessing

the target engagement and in vivo potency of RBP4 antagonists. In order to compare in vivo
RBP4-lowering efficacy of BPN-14136 in dog and cynomolgus monkey, we studied the effect

of a single dose of the compound on concentrations of plasma RBP4. Aliquots of plasma sam-

ples collected during the PK experiments were used to analyze plasma RBP4 concentrations in

the ELISA assay. After a single 5 mg kg−1 oral dose of BPN-14136 in NHP, a maximum of 99%

decrease in plasma RBP4 was observed at 12 hours after dosing while maximal 60% plasma

RBP4 reduction at 8 hours post-dosing was achieved following the 2 mg kg−1 oral administra-

tion of BPN-14136 in dogs (Fig 4A). The 1 mg kg−1 i.v. dose administered to monkey induced

the 84% plasma RBP4 reduction while a lower 0.5 mg kg−1 i.v. dose used in dog yielded 50%

plasma RBP4 lowering (Fig 4B). The dynamics of in vivo RBP4 lowering after oral and intrave-

nous dosing of BPN-14136 in both species showed a general correlation between the presence

of BPN-14136 in circulation (Fig 4C and 4D) and a reduction in serum RBP4 (Fig 4A and 4B).

Very high Cmax, long exposure and slow clearance of BPN-14136 achieved after a single oral

dose in cynomolgus monkey (Table 2) correlated very well with the magnitude and duration

of the RBP4 lowering effect (97%, 94%, and 91% RBP4 reduction seen at the 24 h, 36 h, and 48

h time points, respectively). Consistent with lower Cmax, faster clearance and lower exposure

achieved in dog PK experiments (Table 2), diminished RBP4-lowering effect was seen after

oral and intravenous BPN-14136 administrations in beagle dogs (Fig 4A and 4B). However,

appreciable concentrations of BPN-14136 within the 0.07–0.5 μg/mL range were detected in

dog plasma at 24, 36, and 48 hours after oral dosing which correlated with the measurable

reduction of RBP4 at these later time points (53%, 42% and 39% at 24 h, 36 h, and 48 h, respec-

tively). Overall, our data provides evidence for a generally good PK-PD relationship between

BPN-14136 exposure and biological response in both non-rodent species.

Discussion

Biosynthesis of lipofuscin bisretinoids depends on the influx of serum retinol from circulation

to the retina. Synthetic RBP4 ligands, such as BPN-14136, displace retinol from RBP4 and

antagonize retinol-dependent RBP4-TTR interactions which induces rapid renal clearance of

RBP4 diminishing retinol supply to the retina and causing inhibition of bisretinoid formation

[33]. We previously established that BPN-14136 (Fig 1), which has very good in vitro RBP4

binding and RBP4-TTR antagonizing potency, was able to significantly reduce serum RBP4 in

rat and mouse while showing good pharmacokinetic profiles in these two rodent species [27,

28]. Given that BPN-14136 significantly inhibited bisretinoid synthesis and normalized retinal

complement system dysregulation in the mouse genetic model of Stargardt disease [28], this

compound may be considered as a potential treatment candidate for dry AMD and other

maculopathies. As the next step in advancing characterization of BPN-14136, we conducted

PK-PD studies of this compound in two non-rodent species that could be selected for perform-

ing formal evaluation of BPN-14136 safety in GLP toxicology studies. Evaluation of relevant in

vitro ADME properties such as metabolic stability in liver microsomes, hepatocyte clearance,

and plasma protein binding (Table 1) did not reveal issues that could prevent conducting

PK-PD study of BPN-14136 in dog and monkey

PLOS ONE | https://doi.org/10.1371/journal.pone.0228291 January 24, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0228291


PK-PD studies of BPN-14136 in dogs and cynomolgus monkey. The PK study conducted in

cynomolgus monkey established that BPN-14136 can be very well absorbed resulting in oral

bioavailability of about 84% with very slow elimination, long half-life, high exposure (AUCINF

of 196.2 μg /ml�hr), and an observed Cmax of 31.4 μg/ml after oral administration and corre-

sponding Tmax at 1.67 h (Table 2). Bioavailability of BPN-14136 in dog, 84%, was similar to the
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Fig 4. Pharmacodynamic and pharmacokinetic properties of BPN-14136 in cynomolgus monkey and beagle dog. Plasma RBP4 concentrations in monkeys

and dogs following a single oral (A) and a single intravenous (B) administration of BPN-14136. (C, D) Plasma compound concentrations following

administration of a single oral dose (C) and an intravenous dose (D) of BPN14136. Oral doses were 5 mg kg−1 in monkey and 2 mg kg−1 in dog experiments.

Intravenous doses were 1 mg kg−1 in monkey and 0.5 mg kg−1 in dog experiments. Each dosing group consisted of three drug-naive adult males. Cynomolgus

monkey graphs are plotted in red circles; beagle dog graphs are shown as blue squares. Each data point represents a mean of measurements from three animals

±SD.

https://doi.org/10.1371/journal.pone.0228291.g004
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one seen in the NHP study. However, BPN-14136 clearance in dog was faster than in cynomol-

gus monkey with maximal plasma concentration (Cmax) of 7.5 μg/ml achieved at Tmax of 0.33

h post oral dose (Table 2). Given that a single oral dose administered in the dog PK study (2

mg kg−1) was lower than in PK experiments conducted in cynomolgus monkey as well as in

two rodent species that we studied earlier (5 mg kg−1 in rat, mouse, and NHP) we compared

exposure in four species by analyzing dose-normalized AUCinf and Cmax values (Fig 2). Dose-

normalized exposure was significantly higher in cynomolgus monkey than in dog (Fig 2). As

part of the safety assessment of new drugs, the use of two species (a rodent and a non-rodent)

for regulatory toxicology studies is the typical approach taken for small molecules. To reveal all

potential toxicities, these regulatory safety studies are conducted at doses that guarantee large

exposure multiples over potential clinical exposures in humans. Based on the analysis of dose-

normalized exposure of BPN-14136 in four species (Fig 2), it seems that cynomolgus monkey

and rat may represent the optimal combination of non-rodent and rodent safety species in

which highest exposure margins can be accomplished. One other criterion in selecting the

appropriate species for non-clinical safety assessment is the presence of intended pharmacol-

ogy. Serum retinol levels in humans and cynomolgus monkey are reported to be identical, and

RBP4-TTR system seems to be the major route of retinoid delivery to vitamin A-dependent tis-

sues [34]. In contrast, the majority of plasma vitamin A in dog (70%) is transported as retinyl

esters associated with lipoproteins, and only 30% as retinol bound to RBP4 [32]. Predominant

reliance on lipoprotein bound retinyl esters for delivery of vitamin A to target organs is a pecu-

liarity of members of the canid family that clearly distinguishes them from other mammals

[35]. Consistent with the reports that only 30% of serum vitamin A is transported in dog as

RBP4-retinol, we determined that serum RBP4 concentrations in dog were significantly lower

than that in cynomolgus monkey (Fig 3). Despite the lower steady state RBP4 concentrations

in dog in comparison to monkey, the dynamics of plasma RBP4 concentrations in response to

BPN-14136 administration was generally similar in both species. Significant 99% RBP4 reduc-

tion was achieved in cynomolgus monkey after administration of a single 5 mg kg−1 oral dose

of BPN-14136 while 60% plasma RBP4 lowering was achieved in dog following administration

of the lower 2 mg kg−1 oral dose (Fig 4). The magnitude and duration of in vivo RBP4 lowering

after oral and intravenous dosing of BPN-14136 in dog and monkey seems to correlate well

with the compound exposure in these two non-rodent species (Table 2 and Fig 4). Even though

the PD response and PK characteristics in dog were satisfactory, this species may not be opti-

mal for the assessment of on-target toxicities, given that dog predominantly relies on non-

RBP4 mechanisms of vitamin A supply to the target organs. The reliance of dog on plasma

lipoprotein-retinyl ester complexes for vitamin A delivery also indicates that canine models of

retinal degeneration may not be used in assessing pre-clinical efficacy of RBP4 antagonists.

We previously established very good efficacy of BPN-14136 in the mouse model of Stargardt

disease [28], and it would be very interesting to assess this compound in relevant models of

other genetic forms of macular degeneration, such as Best diseases. To date, the cmr dog

model is the only reliable and well-studied model that mimics significant aspects of Best vitelli-

form macular degeneration [36]. However, BPN-14136 and other RBP4 antagonists may not

be able to significantly inhibit bisretinoid synthesis in the canine model, given that retinoid

delivery in dog is largely RBP4-independent.

A single oral dose of BPN-14136 in cynomolgus monkey induced a 99% reduction in serum

concentrations of RBP4 (Fig 4), suggesting a complete pharmacological blockade of the

RBP4-TTR-mediated retinol transport. Even though a lesser extent of RBP4 reduction may be

required for clinical efficacy in dry AMD [37], this significant RBP4 lowering raises a concern

on whether a highly potent RBP4 antagonist may induce clinically significant adverse effects

due to systemic vitamin A deficiency. However, pharmacological suppression of serum RBP4

PK-PD study of BPN-14136 in dog and monkey
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cannot be considered as similar to systemic vitamin A deprivation. While the RBP4-TTR com-

plex is the primary transporter for retinol in the blood, retinoids are also supplied to vitamin

A-dependent tissues through alternative, RBP4-indipendent routes [38–43]. Following absorp-

tion from the gut, dietary retinoids are packaged in chylomicrons, which are delivered primar-

ily to the liver. However, 25–33% of retinol-laden chylomicrons are taken by extrahepatic

tissues such as the retina [38]. Additionally, retinoic acid can also be transported to target

organs in a complex with serum albumin [39]. De novo biosynthesis of vitamin A from dietary

β-carotene in RPE cells and other tissues has also been reported [39, 44] highlighting yet

another RBP4-independent route of retinoid supply. Patients without RBP4 in their blood due

to compound heterozygous missense mutations in RBP4 display no clinical symptoms of sys-

temic vitamin A deficiency [42]. Genetic ablation of Rbp4 in mice does not lead to systemic

abnormalities [38, 40, 41] or histological signs of retinal degeneration [45]. We recently

reported that administration of BPN-14136 in mice at doses inducing 90% serum RBP4 lower-

ing partially reduced the retinoid load in the retina and significantly inhibited bisretinoid syn-

thesis without inhibiting the rate of the visual cycle or affecting retinal function as assessed by

electroretinography [28]. It therefore seems unlikely that partial pharmacological reduction of

serum RBP4 by RBP4 antagonists to precipitate symptoms of systemic vitamin A deficiency in

individuals who maintain a standard vitamin A- and β-carotene-sufficient diet.

In summary, we report that despite adequate PK characteristics and good PD response of

BPN-14136 in dog, this species is not optimal for conducting safety assessment of RBP4 antag-

onists due to the predominant reliance of canines on non-RBP4 mechanisms of retinoid traf-

ficking which precludes evaluation of on-target toxicities for BPN-14136 and similar

compounds. Significant RBP4 lowering and good PK characteristics with very high BPN-

14136 exposure achieved in NHP, along with standard biology of retinoid trafficking, support

the choice of NHP as a non-rodent safety species.
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