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As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines
entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes
markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model
to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy
compared to constructing clade specific vaccines, which would take considerable time to manufacture and test
in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF) and South Africa (SA) and
projected effectiveness of three vaccination strategies: i) immediate intervention with a 20–40% vaccine efficacy
(VE) non-matched vaccine, ii) delayed intervention by developing a 50%VE clade-specific vaccine, and iii) imme-
diate intervention with a non-matched vaccine replaced by a clade-specific vaccinewhen developed. Immediate
vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new
infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and
12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass
the impact of immediate 40%VE vaccination over 30 years. Replacing a 30%VEwith a 50%VE vaccine after 5 years
reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with
reducedVE in high risk communities appears desirable over a short time line but higherVE should be thepursued
to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers
(correlates of protection) to allow bridging types of immunogenicity studies to support more rapid assessment
of clade specific vaccines.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

While progress in the treatment and prevention of human immu-
nodeficiency virus (HIV) in the past decade has resulted in signifi-
cant reductions in the number of HIV-related deaths and new
infections especially among infants, most authorities acknowledge
that long term effective control will require the development of an
effective HIV vaccine (Corey et al., 2011; Fauci and Marston, 2014).
The promise of an HIV-1 vaccine received an important boost with
the finding of partial efficacy in the RV144 trial (Rerks-Ngarm et al.,
NHP, non-human primates; SF,
antiretroviral therapy.
Box 19024, Mail-stop E3-300,

jkublin@fredhutch.org
fredhutch.org (L. Corey).

. This is an open access article under
2009). The initial results of this moderately effective pox-protein
prime-boost strategy were met with considerable skepticism. How-
ever, additional investigations evaluating correlates of protection
have shown persons with enhanced responses to several HIV-1 pep-
tides or immunogens exhibit 58–75% efficacy (Rolland et al., 2012;
Gartland et al., 2014; Li et al., 2014; Yates et al., 2014). Antibody re-
sponses to such proteins and peptides tend to be clade specific. As
such, most candidate HIV vaccine regimens now entering efficacy tri-
als are mainly based upon a single clade design. While expanding the
breadth of vaccine responses by designing a more universal immuno-
gen is under investigation; these approaches are primarily focused on
expanding the T-cell rather than B-cell responses (Santra et al., 2010;
Borthwick et al., 2014).Antibody responses to circulating strains of vi-
ruses in a population with such approaches still vary considerably by
clade and strain and most immune correlates associated with HIV ac-
quisition are antibody related (Tomaras et al., 2013; Gottardo et al.,
2013; Haynes et al., 2012).
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A likely scenario for the immediate future in the HIV vaccine field
will be the development of an HIV vaccine with proven efficacy against
a specific clade. One of the critical questions that emerges from this is
whether to support the immediate introduction of a clade matched
vaccine in regions where other clades are prevalent with possible loss
of efficacy or to allocate resources toward the development of a new
vaccine specific to each particular region. Given the time and financial
cost required for vaccine development, it is important to consider the
human and economic costs involved in immediate use of lower efficacy
vaccination compared towaiting for vaccines specifically based on clade
prevalence (Anon., 2010).

Mathematicalmodels have been used to project the potential impact
of moderately effective vaccines with waning protection and to study
their cost-effectiveness alongwith the expected epidemiological impact
(Andersson and Stover, 2011; Gray et al., 2011; Nagelkerke et al., 2011;
Hontelez et al., 2011; Kaldor andWilson, 2010; Long and Owens, 2011;
Schneider et al., 2011; Stover et al., 2007; Andersson et al., 2011). We
use a model to address the question of implementation of a clade
specific vaccine by simulating the HIV epidemic in the men-who-
have-sex-with-men (MSM) population in San Francisco (SF) and in
the general population in South Africa (SA).

2. Materials and Methods

2.1. Transmission Model

Compartmental mathematical models of HIV transmission in
heterosexual and MSM populations are developed to study the effec-
tiveness of different vaccine development strategies (Fig. 1). We used
these models to simulate HIV epidemics in the MSM population in SF
and the general population in SA. Both populations have been
extensively studied over time and data on the extent of the epidemics
in these populations were available. Populations are stratified in com-
partments by gender (men and women), by HIV status as susceptible,
infectedwithHIV and individualswhodevelop AIDS, and by vaccination
status. Adolescents who become sexually active join the susceptible
class at constant rates, which are selected to ensure the population
growth observed in the simulated populations. Different immigration
rates into the MSM community in SF are explored assuming that HIV
prevalence among migrants is the average prevalence recorded in the
largest 21 MSM populations in US (CDC, 2010). The rates at which
individuals acquire HIV, i.e., forces of infections for different classes,
are derived from standard binomial models based on the number of
partners per susceptible person, the number of sex acts per partnership,
the fraction of sex acts protected by condoms, the protection provided
Fig. 1. Flow diagram of the model of HIV transmission under the replacement vaccination
strategy. Simulated population is stratified in compartments byHIV and vaccination status
as susceptibles (S), susceptibles vaccinated with non-matched (V) or clade-specific
vaccines (Vn), HIV-positive who become infected when unvaccinated (I) or vaccinated
(Iv), and individuals with AIDS (A). Non-matched vaccine (red flows) is used initially
and replaced with clade-specific vaccine (blue flows) when it becomes available in all
new vaccinations (vaccination rate ν) and revaccinations (revaccination rate γ).
by the vaccine and the HIV acquisition risk per vaginalor anal
intercourse for men and women. A complete description of the models
is presented in the Supplementary Materials. The data for the SF model
included a relatively high prevalence of antiretroviral therapy (ART)
usage in the population and hence lower rates of transmission over
time. As SA has a national plan for HIV and AIDS (South African National
Aids Council (SANAC), 2011), our model includes a sensitivity analysis
exploring the effects of circumcision in SA as well as modeling the
increasing prevalence of ART use among those newly diagnosed with
HIV infection.

2.2. Epidemic Settings and Public-Health Metrics

Demographic, behavior and epidemiological data representative for
SA (UNAIDS/WHO, 2009; Morgan et al., 2002; Porter and Zaba, 2004;
Johnson et al., 2009; Kalichman et al., 2009; Todd et al., 2009) and SF
(CDC, 2010; McFarland, 2006; San Francisco Department of Public
Health, 2012; Scheer et al., 2008; Volk et al., 2012) including population
growth, number of partners per year, frequency of sex acts, fraction of
protected sex acts, and time to remain sexually active is used to identify
realistic ranges for the pre-intervention parameters of our models (see
Tables S1 and S2). Acquisition probabilities per vaginal and anal sex
acts with an HIV infected partner are obtained from meta-analyses of
the observational data from developing and developed countries
(Boily et al., 2009; Baggaley et al., 2010).The models are calibrated to
fit the HIV prevalence and HIV incidence as well as population growth
reported among the general population in SA and the MSM population
in San Francisco (details in the SupplementaryMaterials). The effective-
ness of different vaccine development strategies ismeasured in terms of
the cumulative number and fraction of infections prevented as well as
the reduction in HIV prevalence and incidence over up to 30 years
using the simulated epidemics in the absence of a vaccine as a baseline.
The economic impact of the vaccination is evaluated by calculating the
lifetime treatment cost avoided for the prevented infections over 20
years. The cost of development of a novel clade specific vaccine and
the implementation of an effective HIV vaccine on a country wide
basis is currently unknown and implementation strategies vary greatly.
As such, the economic analyses we present here are directed to inform
how much could be spent on vaccine development based on the
projected savings. We recognize that other biomedical interventions
can be utilized to reduce acquisition; however their long-term
population effect is under much study and debate (Abbas et al., 2013;
Dimitrov et al., 2010). As such, our initial analysis has been conducted
without modeling such interventions. Simulations defining such inter-
ventions can be performed once cost, utilization and effectiveness are
known and then placed into our model.

2.3. Vaccine Efficacy and Vaccine Development Strategies

Licensure requirementswith regulatory agencies have utilized a 50%
reduction in acquisition over an 18–36 month time period as the
requirement for regulatory approval (Rerks-Ngarm et al., 2009;
Chen et al., 2011; Hankins et al., 2010). As such, we modeled a clade-
specific vaccine that is 50% effective against the predominant circulating
HIV strains in the two populationswe analyzed: clade C for SA and clade
B for MSM in SF. We assume reduced efficacy of the vaccine against
otherHIV strains and therefore explore the range of 20%–40%protection
when the vaccine is used in regions with different dominant HIV
subtypes, e.g., the clade C vaccine in SF and a clade B vaccine in SA.
We evaluate and compare the effectiveness of three vaccine develop-
ment strategies: i) Immediate strategy, in which a non-matched vaccine
(20%–40% effective) is introduced immediately and used for 30 years; ii)
Delayed strategy in which a matched vaccine (50% effective) is intro-
duced after an initial period of development/testing and iii) Replacement
strategy inwhich the original non-matched vaccine (20%–40% effective)
is introduced immediately but replaced by a clade-specific vaccine (50%
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effective) whenever it becomes available after an initial period of devel-
opment. Comparablewith the RV144 results, the protection provided by
all vaccines is waning over time and a vaccine booster is required every
three years. We assumed that the vaccine regimen was rolled out
over an initial 3-year period with 20% of the uninfected population vac-
cinated per year. Afterward, an effort is made to vaccinate 50% of the
adolescents who become sexually active and 5% of the uninfected pop-
ulation to secure stable level of vaccination coverage between 40% and
50%with an 80% revaccination rate (see Fig. S1).When thematched vac-
cine becomes available it is immediately used instead of the original
vaccine in all vaccinations and revaccinations (see Fig. 1). Theoretically,
a candidate HIV vaccine would reduce the viral load invaccinated indi-
viduals who acquire HIV and potentially decrease their transmission
of the virus, adding an additional level of population effectiveness to
an HIV vaccine program. However no evidence of this was seen in
RV144 and as such this mechanism is not included in our models. All
vaccination assumptions are summarized in Table S3.

3. Results

Without the implementation of an HIV vaccine, our model indicates
that the HIV epidemics will remain relatively stable in SA and SF over
the next 3 decades. We project 5.20, 10.37 and 15.55 million new HIV
infections over the next 10, 20 and 30 years in SA (Fig. 2a) where an
estimated 27 million people are in a sexually active age (15–49 years
old), with HIV prevalence above 15% and HIV incidence between 2%
and 2.4% over the entire 30-year period (Fig. 3c & e, solid black lines).
In SF, with estimated 58,300 MSMs, we predict 8800, 18,700 and
29,600 new HIV infections over the next 10, 20 and 30 years (Fig. 2b)
with HIV prevalence between 22% and 24% and HIV incidence around
1.7% (Fig. 3d & f, solid black lines). Our analysis suggests that vaccinating
50% of the population assuming a 50% vaccine efficacy will have a
substantial impact on the HIV epidemics both in SA and among MSMs
in SF (see Fig. 2).

3.1. Immediate vs. Delayed Strategies

The immediate introduction of a non-matching vaccinewith efficacy
of 20%–40% will prevent 16.8%–32.2% of the infections in SA (Fig. 3a)
and 10.7%–21.2% of the infections among MSMs in SF (Fig. 3b) over 30
years. Immediate vaccination with a non-matching vaccine is projected
Fig. 2. Projected number of HIV infections over 10, 20 and 30 years in a) South Africa and b) San
50% effective vaccine is available immediately (red) and vaccination coverage projected in Fig. S
by 1000 epidemic simulations representative of each epidemic setting. All scenarios assume no
to reduce the HIV prevalence 3–7 percentage points in SA versus 2–4
percentage points in SF (Fig. 3c & d) over the same period. It will also
result in a 29–51% lower HIV incidence in SA versus a 15–29% incidence
reduction in SF. A vaccination strategy in which a 50% effective clade-
specific vaccine is introduced after delay for development is projected
to achieve a better incidence reduction over 30 years but may not be
able to prevent as many infections over 30 years as the non-matching
vaccine introduced immediately, especially if the difference in the
protection provided by the two vaccines is small (Fig. 3a & b, green vs.
dashed black lines).

If the non-matching vaccine has low efficacy (20%) then a clade-
specific vaccine delayed for five years will need only 5–6 years (total
time of 10–11 years) to match the number of infections prevented
(see Fig. 4). The break-even times increase significantly if the clade-
specific vaccine does not provide substantial improvement in protec-
tion. For instance, after 18 years use (21 years in total) of a 50% effective
vaccine in SA delayed only three years is still lagging behind a 40%
effective vaccine in prevented infections, while a five-year delay
makes it impossible to break even over the 30-year period (Fig. 4a,
green). Similarly, if a clade-specific vaccine is introduced in SF after a
five-year delay it needs 22 years (27 in total) to catch up with a 40%
effective vaccine used immediately but only five years (ten in total) to
match a 20% effective vaccine (Fig. 4b). Delayed vaccinations with a
clade-specific vaccine need shorter time to match the reduction in HIV
prevalence of the non-matching vaccine introduced without delay
(Fig. 4c & d). Note that when a clade-specific vaccine provides little im-
provement in protection (50% vs. 40%) it is able to match the reduction
in HIV prevalence substantially faster than the reduction in number of
infections.

3.2. Replacement Strategy

We find that the replacement strategy allows for additional time to
develop a clade-specific vaccine without losing effectiveness (Fig. 5a &
b). Assuming no changes in sexual behavior after the vaccine becomes
available; the eight-year replacement strategy (light green) is as benefi-
cial as a three-year delayed vaccination strategy (dark blue). The imme-
diate use of a 30% effective vaccine, replaced by a 50% effective vaccine
in three years, promises to have the greatest impact on the HIV
epidemics in both SF and SA, preventing 10–12% more HIV infections
than continuous use of a 30% effective vaccine for the entire 30-year
Francisco. Epidemic projectionswithout vaccine (blue) are compared to scenarios inwhich
1. Bars (whiskers) representmean (90% uncertainty interval) of the projections generated
changes in sexual behavior due to vaccine use.



Fig. 3. Effectiveness of different vaccine interventions in South Africa (left) and San Francisco (right) measured by a–b) cumulative fraction of HIV infections prevented; c–d) reduction in
HIV prevalence and e–f) reduction inHIV incidence over a period of 30 years. Epidemic projectionswithout vaccine (solid black lines) are compared to scenarios inwhich 20–40% effective
non-specific vaccine is available immediately (dashed and dotted black lines) and scenarios inwhich 50% effective clade-specific vaccine becomes available after a development delay of 3
to 8 years (colored lines). All lines represent median projections generated by 1000 epidemic settings representative of each epidemic setting. All scenarios assume no changes in sexual
behavior due to vaccine use.
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period (Fig. 5a & b, light blue vs. white). However, reduced condom use
by vaccinated individuals may decrease the effectiveness of all vaccina-
tion programs and erase the advantage of the replacement strategy (see
next section).A comparison of different impact metrics for the
immediate, delayed and replacement vaccination strategies over 10,
20 and 30 years assuming no changes in sexual behavior is presented
in Table 1. The economic savings based upon just ART cost avoided
due to infections prevented over 20 years are shown in Table 2. We
estimate that the immediate vaccination strategy in SA could save
between 5.1 and 19.5 billion USD over 20 years. The same strategy
could save 0.7–1.1 billion USD in SF over the same period.

3.3. Sensitivity Analysis

The reduction in the number of protected sex acts by the vaccinated
individuals has strongest impact when a less effective vaccine is



Fig. 4. Time needed (break even time) for a 50% effective clade-specific vaccine introduced in South Africa (left) and San Francisco (right) after a development delay of 1 to 10 years to
surpass a 20–40% effective non-matched vaccine introduced immediately in a–b) number of new infections prevented and c–d) reduction in HIV prevalence. Mean projections generated
by 1000 epidemic settings representative of the HIV epidemic in South Africa and San Francisco. Break-even times are consistent across simulated epidemics with all projections being
within 1-year difference from the mean (not shown). All scenarios assume no changes in sexual behavior due to vaccine use.
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introduced immediately because in those scenarios a highly effective
preventionmethod (condom) is replacedwith anotherwith significant-
ly lower protection (vaccine) over long periods of time (Fig. S2 black
box plots). For instance, 21% and 38% less infections will be prevented
by a 30% effective vaccine over 30 years if vaccinated individuals reduce
their condom use by 20% in SA and SF, respectively. The effectiveness of
the vaccination will be reduced by 54% in SA and 92% in SF if condom
use is half that compared to pre-vaccinationwith 10% of the simulations
in SA and 42% of the simulation in SF projecting negative overall impact.
In comparison, five-year delayed intervention with 50% efficacious
vaccine will lose only 9% and 22% of its effectiveness in SA due to a
20% and 50% reduction in condom use, respectively (Fig. S2A, red
boxes). Note that 50% condom replacement is enough to erase the
projected advantage of the replacement over delayed vaccination
(Fig. S2, yellow vs. white boxes). This suggests that the use of a vaccine
with low efficacy may be justified only if an effort is made to prevent
riskier sexual behavior by the vaccines.

Widespread use of ART in a population does not affect the model's
conclusion (see Fig. S3). The total number of cases and HIV prevalence
over 30 years may be reduced substantively but the effectiveness of all
vaccine regimens is slightly lower and the break-even times between
vaccine strategies remain unchanged. Similarly, scenarios assuming
improved circumcision coverage among South African males lead to
smaller HIV epidemics over 30 years but do not alter the basic differ-
ences in vaccine strategies outlined above (see Fig. S4). If the vaccine
provides longer protection, the expected reduction of the number of
infections and in HIV prevalence is marginally better compared to the
scenarios in the main text (see Fig. S5). The projected times needed
for delayed clade specific vaccination to break-even with immediate
non-matching vaccination in this scenario increased by a year.

4. Discussion

Our model indicates that rapid deployment of a non-clade matched
vaccine would be an effective public health strategy for reducing HIV
infection in both high risk populations in the US and within a general-
ized epidemic in sub-Saharan Africa. We demonstrate that despite
reductions in vaccine efficacy, a considerable number of HIV



Fig. 5. Comparison of immediate, delayed and replacement vaccination strategies. Projected effectiveness in terms of proportion of new infections prevented over 10, 20 and 30 years in
a) South Africa and b) San Francisco. The bars represent themedian projections generated by 1000 epidemic settings representative of theHIV epidemic in South Africa and San Francisco.
All scenarios assume no changes in sexual behavior due to vaccine use.
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acquisitions can still be prevented. Our analyses also indicate that the
pursuit of large incremental increases (N20%) in vaccine efficacy is jus-
tified and will result in better long term effectiveness. Our data suggest
that the most effective vaccination strategy is to employ non-clade
Table 1
Long-term modeling projections of the HIV epidemics in South Africa and San Francisco under

Epidemic projections (median [90% UI]a)

Over 10 years Over 20 years

South Africa
Strategy Number of

new infections
(millions)

HIV prevalence
at the end of
the period (%)

HIV incidence
at the end of
the period (%)

Number of
new of
infections
(millions)

H
a
t

No vaccination 5.20
[5.07–5.32]

15.9
[15.7–16.3]

2.16
[2.09–2.24]

10.4
[10.1–10.7]

1
[

Immediateb

(Effectiveness)e
4.39
[4.28–4.48]
(16%)

14.0
[13.8–14.3]
(12%)

1.65
[1.61–1.71]
(24%)

8.21
[8.00–8.46]
(21%)

1
[
(

Delayedc

(Effectiveness)e
4.70
[4.58–4.80]
(10%)

14.4
[14.3–14.8]
(9%)

1.52
[1.48–1.57]
(30%)

8.02
[7.83–8.26]
(23%)

1
[
(

Replacementd

(Effectiveness)e
4.21
[4.11–4.30]
(19%)

13.5
[13.3–13.8]
(15%)

1.42
[1.39–1.47]
(34%)

7.38
[7.20–7.59]
(29%)

9
(

San Francisco
Strategy Number of

new infections
(thousands)

HIV prevalence
at the end of
the period (%)

HIV incidence
at the end of
the period (%)

Number of
new of
infections
(thousands)

H
a
t

No vaccination 8.81
[8.22–9.21]

22.3
[21.8–23.1]

1.64
[1.51–1.74]

18.8
[17.5–19.8]

2
[

Immediateb

(Effectiveness)e
7.67
[7.17–8.02]
(13%)

21.1
[20.6–21.9]
(5%)

1.37
[1.26–1.45]
(16%)

16.0
[14.9–16.9]
(15%)

2
[
(

Delayedc

(Effectiveness)e
8.00
[7.48–8.37]
(9%)

21.4
[20.8–22.1]
(4%)

1.23
[1.14–1.31]
(25%)

15.4
[14.4–16.2]
(18%)

1
[
(

Replacementd

(Effectiveness)e
7.40
[6.92–7.74]
(16%)

20.8
[20.3–22.5]
(7%)

1.22
[1.13–1.29]
(26%)

14.8
[13.8–15.5]
(21%)

1
[
(

a Median value and 90% uncertainty interval based on 1 000 simulations of epidemic setting
b Intervention with 30% effective non-matching vaccine introduced immediately.
c Intervention with 50% effective clade-specific vaccine introduced after a development dela
d Intervention with 30% effective non-matching vaccine introduced immediately replaced b
e The effectiveness of each vaccination strategy is measured as a percentage reduction in ea
matched vaccines in highest risk populations immediately followed by
the rapid development of a more effective clade matched prototype.
We recognize that HIV vaccine efficacy trials are costly; typically enroll
from 2000 to 4000 persons and take 4–5 years to conduct. Such trials
different vaccination scenarios.

Over 30 years

IV prevalence
t the end of
he period (%)

HIV incidence
at the end of
the period (%)

Number of
new of
infections
(millions)

HIV prevalence
at the end of
the period (%)

HIV incidence
at the end of
the period (%)

4.9
14.6–15.7]

2.03
[1.95–2.14]

15.5
[15.1–16.1]

14.4
[13.9–15.4]

1.94
[1.86–2.10]

1.4
11.2–12.0]
23%)

1.35
[1.31–1.43]
(33%)

11.7
[11.4–12.1]
(25%)

9.7 [9.4–10.4]
(33%)

1.14
[1.10–1.24]
(41%)

0.6
10.3–11.1]
29%)

1.12
[1.08–1.18]
(45%)

10.8
[10.5–11.2]
(30%)

8.0 [7.8–8.6]
(44%)

0.85
[0.82–0.92]
(56%)

.9 [9.7–10.4]
34%)

1.05
[1.02–1.11]
(48%)

10.0 [9.8–10.4]
(35%)

7.6 [7.3–8.1]
(47%)

0.81
[0.77–0.87]
(58%)

IV prevalence
t the end of
he period (%)

HIV incidence
at the end of
the period (%)

Number of
new of
infections
(thousands)

HIV prevalence
at the end of
the period (%)

HIV incidence
at the end of
the period (%)

2.7
21.7–23.9]

1.66
[1.51–1.79]

29.7
[27.6–31.5]

23.2
[22.0–24.8]

1.69
[1.53–1.85]

0.5
19.7–21.6]
10%)

1.33
[1.21–1.43]
(20%)

24.9
[23.2–26.4]
(16%)

20.3
[19.3–21.7]
(13%)

1.31
[1.19–1.43]
(22%)

9.8
19.0–20.8]
13%)

1.16
[1.06–1.25]
(30%)

23.2
[21.6–24.6]
(22%)

19.0
[18.1–20.2]
(18%)

1.11
[1.01–1.21]
(34%)

9.5
18.7–20.5]
14%)

1.15
[1.05–1.23]
(31%)

22.5
[21.0–23.8]
(24%)

18.8
[17.9–20.0]
(19%)

1.10
[1.00–1.20]
(35%)

s representative for the HIV epidemics in South Africa and San Francisco.

y of 5 years.
y 50% effective clade-specific vaccine after a development delay of 5 years.
ch metric compared to scenarios with no vaccination.



Table 2
Infections prevented and ART cost averted by different vaccination strategies over 20 years.

Strategy South Africa San Francisco

Number of new
infections prevented
(millions)

ART cost avoided in
billions USD (low
estimatea)

ART cost avoided in
billions USD (high
estimateb)

Number of new
infections prevented
(thousands)

ART cost avoided in
billions USD (low
estimatec)

ART cost avoided in
billions USD (high
estimatec)

Immediated 2.19 5.1027 19.491 2.8 0.7084 1.1256
Delayede 2.38 5.5454 21.182 3.4 0.8602 1.3668
Replacementf 3.02 7.0366 26.878 4 1.012 1.608

a Based on $2330 lifetime cost of care for HIV-infected person in South Africa assuming that HIV infection is detected via background screening (on average, every ten years) orwith the
development of severe opportunistic diseases (Walensky et al., 2011).

b Based on $8900 lifetime cost of care for HIV-infected person in South Africa assuming that need for treatment begins eight years after infection and annual survival on first and second
line is assumed to be 92% to 99% depending on the patient's CD4 count at treatment initiation (International AIDS Vaccine Initiative (IAVI), 2012).

c Based on $253,000–$402,000 lifetime cost of care for HIV-infected person in US, assuming all persons were infected at an average age of 35 years, CD4 count at infection was between
750 and 900 cells/mL and ART initiation for a CD4 count below 500 cells/mL (Farnham et al., 2013).

d Intervention with 30% effective non-matching vaccine introduced immediately.
e Intervention with 50% effective clade-specific vaccine introduced after a development delay of 5 years.
f Intervention with 30% effective non-matching vaccine introduced immediately replaced by 50% effective clade-specific vaccine after a development delay of 5 years.
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would be even larger andmore costly to demonstrate enhanced efficacy
over a 40% effective vaccine and hence achievingmaximal effectiveness
for developing a clade matched vaccine within 3 years is a formidable
hurdle. Developing surrogate markers of protection would greatly en-
hance the ability to plan, conduct and implement the optimal
effectiveness strategy suggested by our model.

Developing an HIV vaccine that would have similar efficacy in all
regions of the world and in all high risk groups would be optimal
(Corey et al., 2011). Achieving such a goal for antibody mediated vacci-
nation strategies appears at present challenging. Hence our article
points to the creation of a mindset that recognizes the benefit of short
term, non-clade matched vaccines and the long term advantages of
developing an optimal highly effective vaccine (70–90% efficacy).
Certainly for both the US and sub-Saharan Africa there is a mind
set for developing clade B and C vaccines, respectively. Our analyses
suggest that if a candidateHIV vaccine regiment is proven to be effective
in a clade-matched population, its subsequent evaluation in a non-
matched population should be considered.

Importantly, our analyses indicate that development of reliable
surrogate markers of vaccine efficacy (correlates and/or surrogates
of protection) would markedly speed the global development of in-
crementally effective HIV vaccines (Haynes et al., 2012). Efficacy
trials of HIV vaccines should be conducted with the operational
characteristics, sample collections and funding for defining such
biomarkers. It is also possible that enhanced efficacy might be ob-
served in the replacement vaccine in prior vaccinated versus newly
vaccinated recipients. This may be especially important if immune
escape and hence reduced efficacy to the initial vaccine occurs over
prolonged time and use. One of the issues raised by our replacement
strategy is the assumption that prior receipt of the non-clade
matched vaccine would not reduce the efficacy of the next genera-
tion higher efficacy vaccine. We recognize that this may be an issue
with some but not all approaches.

The mathematical models used here are simplistic representations
of modeled epidemics and as such their projections, although compara-
ble with the results of other modeling studies in similar populations
(Gray et al., 2011; Hontelez et al., 2011; Andersson et al., 2011),
shouldn't be perceived as comprehensive prediction of the epidemic
dynamics over the next 20–30 years of HIV infection in SF or SA. Other
simplifying assumptions, integrated in the model may also affect
the epidemic projections. For instance, ART of the infected individ-
uals was not modeled separately. It was incorporated indirectly in
the model by reducing the average transmission probability per act
and increasing the survival time on HIV. These parameters (among
other) were selected to represent the observed population and
epidemic dynamics. We have focused on modeling stable epidemics,
which resemble the epidemics in South Africa and San Francisco.
However, alternative scenarios exploring epidemics with decreasing
HIV prevalence and incidence showed similar to our main results
(Figs. S3 and S4).

5. Conclusions

Our goal was to outline the issues associatedwith the deployment of
what we hope are first generation HIV vaccines, which are likely to be
partially effective, of reasonable durability and boostable, and allow
predictive evaluation of reduced HIV acquisition over time. HIV is an
active field of investigation and as population based therapy of HIV
moves forward, some of the absolute numbers we quote may be
reduced. However, the concept that emanates from our analyses that
immediate deployment of non-clade specific vaccines should be seri-
ously evaluated as an effective public health approach is still operant
with other forms of biomedical intervention.
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