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Abstract

Despite a large body of research on response properties of neurons in the inferior temporal

(IT) cortex, studies to date have not yet produced quantitative feature descriptions that can

predict responses to arbitrary objects. This deficit in the research prevents a thorough

understanding of object representation in the IT cortex. Here we propose a fragment-based

approach for finding quantitative feature descriptions of face neurons in the IT cortex. The

development of the proposed method was driven by the assumption that it is possible to

recover features from a set of natural image fragments if the set is sufficiently large. To find

the feature from the set, we compared object responses predicted from each fragment and

responses of neurons to these objects, and search for the fragment that revealed the high-

est correlation with neural object responses. Prediction of object responses of each frag-

ment was made by normalizing Euclidian distance between the fragment and each object to

0 to 1 such that the smaller distance gives the higher value. The distance was calculated at

the space where images were transformed to a local orientation space by a Gabor filter and

a local max operation. The method allowed us to find features with a correlation coefficient

between predicted and neural responses of 0.68 on average (number of object stimuli, 104)

from among 560,000 feature candidates, reliably explaining differential responses among

faces as well as a general preference for faces over to non-face objects. Furthermore, pre-

dicted responses of the resulting features to novel object images were significantly corre-

lated with neural responses to these images. Identification of features comprising specific,

moderately complex combinations of local orientations and colors enabled us to predict

responses to upright and inverted faces, which provided a possible mechanism of face

inversion effects. (292/300).
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Introduction

We recognize objects invariantly across large variations of view, position, photometric condi-

tions, and a shape deformation. This behavioral property is not trivial, because there is an

enormous number of objects belonging to the same category, and typically larger differences

in retinal images arise from variations of an object than from different objects in the same

category.

There is an accumulated body of evidence that objects are represented in the inferior tem-

poral (IT) cortex as combinations of neurons, each encoding a visual feature less complex than

the complete object [1–4]. One hypothetical framework for invariant object recognition is that

various appearances of an object are represented separately from other objects in the visual fea-

ture space in the IT cortex [5]. In support of this thesis, Hung and colleagues recorded neuro-

nal responses to objects of various sizes and positions in monkey IT cortex, and found that

these objects were well-separated in the neural response space [6]. Other studies suggest that

view-invariant representation of faces is achieved by the population responses of neurons in

the most anterior part of the IT cortex [7]. However, we still do not understand the general

property of visual features that is critical to making object representation invariant. Although

an attempt has been made to address this question in terms of position invariance, our under-

standing is still very limited [8].

Quantitative description of the features of IT neurons is essential for developing a funda-

mental understanding of invariant object representation. A previous approach involved

simplification of the best object stimuli to determine the simplest and most effective visual

feature that can activate individual neurons [1,2]. More recently, the recorded responses of

IT neurons to a parameterized artificial stimulus set were analyzed to explore the critical

parameters explaining responses to the stimuli [4]. Although these studies provided insight

into the visual features encoded by IT neurons, they did not sufficiently address object repre-

sentation in the visual feature space. Description of visual features was qualitative in the former

approach, and it is difficult to place real world objects in their parameterized space in the latter

approach.

In this paper, we proposed a fragment-based approach to identify quantitatively described

features of IT neurons. In this approach, we searched for the features in the subset of regions

in natural images, which we considered to be a reasonable strategy for the following reasons.

First, because the IT cortex is essentially dedicated to object vision in natural scenes, it makes

sense to search for features in natural images, even though such images comprise only a small

subset of possible images. Second, these features typically consisting of intermediate complex-

ity can be generalized across object categories if the subset includes a sufficiently large number

of elements [2,3]. Finally, this hypothesis is consistent with previous qualitative studies show-

ing that IT neurons encode moderately complex visual features of object images [1–3,9]. Based

on these considerations, we prepared a natural image fragment set including a huge number of

image fragments where we search for the features of neurons. With this approach, we found

features that explained up to 67% of the variance (45% on average; number of object stimuli,

104) in the object responses of neurons within a face selective region in the anterior IT cortex.

Furthermore, predicted responses of the resulting features to novel object images were signifi-

cantly correlated with neural responses to these images: the correlation coefficient was

0.59 ± 0.06 on average (number of object stimuli, 500) when we searched for the best feature,

and was 0.53 ± 0.07 when we calculated for novel 500 objects with the best feature. To the best

of our knowledge, no previous studies have involved quantitative searching for visual features

that explain object responses for IT neurons. The performance of our method is remarkably

high in comparison to the reasonable approaches used in a study in earlier visual area [10].
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Materials and methods

The physiological dataset

We developed the fragment-based approach using three physiological datasets. Two of them

were obtained from two hemispheres of adult male macaque monkeys (Macaca mulatta) in

the previous study (H1, and H2) [11]. One dataset (H3) was a new dataset obtained from a

hemisphere of another adult male macaque monkey (Macaca mulatta) in a similar way. The

datasets comprised columnar responses to object images from 39 (H1), 36 (H2) and 119 (H3)

sites. The columnar response of a site was calculated by averaging fifteen (H1 and H2) or eight

(H3) multi-unit (MU) activities recorded along the axis perpendicular to the cortical surface.

In the recordings from H1 and H2, we used electrode bundles made of three tungsten micro-

electrodes (shaft diameter, 150 μm; impedance, 1 MΩ; #UEWLEJTMNN1E, FHC) [12]. The

shafts of the electrodes were pasted together with glue to set the tip-to-tip distance of electrodes

to 150 μm. The electrode bundle was penetrated perpendicularly to the cortex surface, and

three MU activities were recorded simultaneously at the tips. We recorded from 5 depths

(every 300 μm step from depth 0 to 1200 μm; here, the depth 0 is defined as the depth where

we encountered the first MU activities when penetrating the electrode bundle), so that alto-

gether we recorded 15 MU activities for each penetration. In H3, we used a commercially

available electrode array (A8×8-5mm200-200-413, Neuronexus Technologies, Inc.). The elec-

trode array consists of 8 shanks and 8 electrical contacts each. The spacing between shanks

and between electrode contacts was 0.2 mm. We used MU activities recorded from 8 contacts

of each shank to calculate a columnar response. We took average of MUs based on our study

showing that average of local MU activities captures the response property common across

neurons in a functional column [12] (see also [13]). During recordings, stimulus images were

presented to the animals and differences between mean firing rates before and during stimulus

presentation were calculated to obtain responses to the stimulus images [11]. The stimulus

images in H1 and H2 comprised 104 object images in six object categories: front view faces

(eight humans and eight monkeys); scrambled faces (four humans and four monkeys); mon-

key hands (n = 16); animal bodies (16 monkeys and 16 other species); foods and vegetables

(n = 16); and artificial objects (n = 16). The stimulus images in H3 comprised 1,000 object

images in seven categories: view-controlled faces (231 humans and 70 monkeys); random-

view faces (one human and 158 monkeys); pictorial plane rotation faces (28 humans and 35

monkeys); size changed faces (4 humans and 5 monkeys); scrambled faces (3 humans and 5

monkeys); pixel shuffled faces (35 monkeys); and randomly chosen 425 non-face objects. The

size of stimulus images for physiological recordings was 400 × 400 pixels (20 × 20 deg. in visual

angle). Objects were placed at the center of the stimulus images and their size was about 10–15

deg. in visual angle. Background of objects was filled with intermediate gray (see S1 File (104

stimuli for H1 and H2) and S2 File (1,000 stimuli for H3) files for the stimulus images).

In the previous study [11], we found that these recording sites were clustered on the cortex

with respect to object response selectivity. Based on the most preferred object category, we

defined clusters as “face domain” and “monkey-body domain”. We also identified “anti-face

domains” as the cluster with the least responses to face category. In the present study, we

focused on the recording sites in face domains unless otherwise noted. The numbers of the

recording sites in face domains were 16, 19, and 16 sites in hemispheres H1, H2, and H3,

respectively. The face domains potentially correspond to AL face patch in a previous study

according to locations relative to the sulci and in the anterior-posterior coordinate axis [14].

Both the physiological recordings in the previous study and those for the new dataset were

approved by the Experimental Animal Committee of the RIKEN Institute that is authorized to

evaluate the ethics on non-human primate studies, and followed the guidelines of the RIKEN
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Institute and the National Institutes of Health, USA. Before the physiological recordings, tita-

nium post for the head fixation and ring-shaped recording chamber (inner diameter, 18.0

mm) were attached on the skull. The chamber was placed just above the target recording area,

that is, the anterior and dorsal part of IT cortex (TEad) which is located 15.0–20.0 mm anterior

to the ear bar position below the superior temporal sulcus (STS) and just above the anterior

middle temporal sulcus (AMTS) [11]. The bone and dura inside the chamber was removed,

and the exposed cortex was covered with a transparent artificial dura made of silicone rubber

(Arieli et al., 2002). The chamber was then filled with 25 mg/ml agarose (Nacalai Tesque, Aga-

rose-HGS) and covered with a transparent plastic coverslip. During recordings, the transpar-

ent plastic coverslip was replaced with the one with a small hole where a recording electrode

was inserted. During the above surgical procedure and physiological recordings for the new

dataset, we anesthetized the animals with ketamine (5mg/kg body weight, i.m.), droperidol

(0.25 mg/kg body weight, i.m.), and artificially ventilated with a mixture of N2O, O2, and iso-

flurane (70% N2O, 30% O2, isoflurane up to 0.5%). Fentanyl citrate (0.83 g/kg/h) was infused

intravenously and continuously throughout the surgery and recordings to remove pain. EEG,

ECG, expired CO2 concentration, and rectal temperature were monitored throughout the

experiments. Body temperature was maintained at 37.6˚C, and expired CO2 concentration

between 4.0 and 5.0%. In physiological recordings, we additionally gave intravenous injection

of vecuronium bromide (0.067 mg/kg/h) to paralyze the monkeys. In the surgical procedure to

place the chamber in the previous study [11], we anesthetized the monkeys with ketamine

(5mg/kg body weight, i.m.), droperidol (0.25 mg/kg body weight, i.m.) and intraperitoneal

injection of pentobarbital sodium 35 mg/kg at the beginning. We maintained deep anesthesia

by supplemental intravenous injections of pentobarbital sodium 5–10 mg. The condition of

anesthesia in the physiological recordings was the same as described above for the new dataset.

Please also refer to the previous study for the protocol of the physiological recordings [11].

Daily care of the monkeys was handled by the Division of Research Resource Center at RIKEN

Brain Science Institute. The monkeys were from different origins and thus housed in individual

cages (700 mm width, 1536 mm height and 750 mm depth) with other animals visible in the

room. The room light is controlled in a cycle of a 12-hr on and 12-hr off condition. The monkeys

were fed with food pellets (PS-A, Oriental Yeast Co., Ltd., Tokyo, Japan) and water ad libitum,

and fruits (apple, 1/4, banana, 1/2 and one piece of potato) every day. The general health condi-

tion was daily monitored, and body weight of each monkey was recorded once a month. In-house

veterinary doctor monitored and kept the monkeys in a good health condition. At the end of the

entire experiments, the monkeys were sacrificed with intramuscular injection of ketamine hydro-

chloride (10 mg/kg), and intraperitoneal administration of pentobarbitone (50–70 mg/kg).

The size adjustment of stimulus images for feature identification

In the fragment based approach, we resized the stimulus images from 400 × 400 to 200 × 200

pixels using bicubic interpolation. The 200 × 200 pixel images were then embedded into

slightly larger gray background images where the gray level was adjusted to the gray level sur-

rounding the objects. The purpose of this is to apply Gabor filtering and local max operation

to entire 200 × 200 pixels of these images. The size of background images was made large

enough to make it possible.

Natural image fragment sets (standard set)

We searched for features of neurons from the natural image fragment set (standard set) com-

prising image fragments extracted from 7,753 natural images taken from the VOC2010 dataset

[15] (Fig 1). The stimulus images were not included in the standard set.
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As well as the stimulus images, we applied Gabor filtering and local max operation to indi-

vidual fragments on the process of the fragment-based approach. To avoid errors associated

with discontinuity at the edge of each fragment, we first applied the above filtering and max

operation to original 7,753 natural images (Band 1), and then cut out the fragments instead of

applying these operations after cutting out pixel space fragments (see below; see also S1 Fig).

To distinguish these fragments from the ones at pixel space, we use a term, ‘feature candidates’

or simply ‘features’ for the fragments cut out after Gabor filtering and local max operation.

The feature candidates were in the shapes of squares (8 × 8, 12 × 12, 16 × 16, and 20 × 20 pixels

for images) and rectangles with height-to-width ratios of 1:4 (2 × 8, 3 × 12, 4 × 16, 5 × 20), 1:2

(4 × 8, 6 × 12, 8 × 16, 10 × 20), 3:4 (6 × 8, 9 × 12, 12 × 16, and 15 × 20), 4:1 (8 × 2, 12 × 3,

16 × 4, and 20 × 5), 2:1 (8 × 4, 12 × 6, 16 × 8, and 20 × 10), and 4:3 (8 × 6, 12 × 9, 16 × 12, and

20 × 15), resulting in a total of 28 feature types by shape and size. The features were cut out

from the natural images without gap among them to collect as many as possible features. Please

also keep in mind that there is neither partial overlap among features nor inclusion of a feature

in another. (see S1 Fig for representative natural images in which fragments are indicated).

Altogether, there were 560,000 feature candidates resulting from 28 types and 20,000 for each.

Outline of the fragment-based approach

Our method involves the following three steps (Fig 2). Step I is the preprocessing of natural

images to prepare feature candidates and of stimulus images. The preprocessing is essentially

to convert pixel-based images into representations based on local orientations and colors. In

Step II, we calculated the similarity between feature candidates and the preprocessed stimulus

Fig 1. Representative natural images from which fragments were extracted. Red rectangles indicate image regions in which the best features

were identified. Many other candidate fragments were cut out from each image but are not explicitly indicated (See Materials and Methods).

Images with single and double asterisks include fragments, where the best features of multiple recording sites were identified. These fragments

include part of faces.

https://doi.org/10.1371/journal.pone.0201192.g001
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Fig 2. Outline of procedure for searching for visual features that explain neural responses. The physiological dataset comprises neural responses of each site to

stimulus images, which are used to construct a neural response vector (right blue-shaded vertical array). Similarities between preprocessed feature candidates and

stimulus images provide a table of feature-based responses in which each vertical column corresponds to a feature-based response vector (left green-shaded vertical

array). We calculate the correlation coefficients between the neural response vector and all feature-based response vectors to determine the feature with the maximum

correlation coefficient (lower panel). Please note that the natural images for extracting feature candidates and the stimulus images for neural recordings are completely

independent sets.

https://doi.org/10.1371/journal.pone.0201192.g002
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images. We use a term, ‘feature-based response’ for the score of similarity between a feature

candidate and a stimulus image, and define a feature-based response vector of each feature as

the set of feature-based responses for all stimulus images (Fig 2, vertical array colored green in

the left). In contrast, ‘neural response vector’ defined for each recording site indicates a vector

where each element represents the neural response to a stimulus image (Fig 2, vertical array

colored blue). Finally, in Step III, we selected the feature with the maximum correlation coeffi-

cient (c.c.) between the feature-based response vectors and the neural response vector [16].

We justified the result using delete-half jackknife resampling [17] and stimulus-shuffling test.

Details of each step are given below.

Preprocessing of visual feature candidates (step I)

Visual stimuli are preprocessed by neurons in the primary visual cortex which extract local

edges and color with some position invariance from visual stimuli [18]. These preprocessing

can be emulated by Gabor function and local MAX operation. Therefore, we preprocessed

both the stimulus images and the natural images in terms of orientation and color (Fig 3). We

used the Cortical Network Simulator (CNS) for these calculations [19].

To preprocess images with respect to orientation, images were converted to gray scale and

then convolved using the Gabor function F(x,y):

F x; yð Þ ¼ exp �
x2

0
þ 0:32y2

0

2s2

� �

cos
2p

l
x0

� �

; ð1Þ

where

x0

y0

 !

¼
cosy siny

� siny cosy

 !
x

y

 !

:

and θ represents the orientation channel (θ = 0,45,90,135 deg.). The convolved images were

fed to a spatially local max operation following a previous study [20]. There were eight spatial

scales coded as Band b (b = 1,2,� � �,8) for Gabor filtering and the local max operation. The

Gabor function parameters (unit, pixels) to the respective Band 1–8 images were 7 × 7,

11 × 11, 15 × 15, 19 × 19, 23 × 23, 27 × 27, 31 × 31, 35 × 35 for filter size, 2.8, 4.5, 6.3, 8.2, 10.2,

12.3, 14.6, 17.0 for σ, and 3.5, 5.6, 7.9, 10.3, 12.7, 15.4, 18.2, 21.2 for λ.

Fig 3. Preprocessing of a stimulus image (top) and an image fragment (bottom). Left panel, a representative stimulus image and a fragment. Right panel, a

preprocessed image and a fragment with four orientations and three color matrices (Band 1). Magnitudes of elements in each matrix are given in a gray scale

(see Materials and Methods). Please note that the stimulus images were also preprocessed with other scale bands as well.

https://doi.org/10.1371/journal.pone.0201192.g003
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These parameters were chosen to take into account the property of neurons in primary

visual cortex. For example, filter size, 7 × 7, with σ = 2.8 and λ = 3.5 corresponds to filter size,

0.7 × 0.7 deg., with σ = 0.28 deg. and λ = 0.35 deg. in visual angle. These parameters in visual

angle are within an observed range of neurons in monkey visual cortex. After the Gabor func-

tion to each pixel, we applied the local max operation. The window sizes of local max operation

over position for Bands 1–8 were 8 × 8, 10 × 10, 12 × 12, 14 × 14, 16 × 16, 18 × 18, 20 × 20, and

22 × 22, in pixels, respectively. The strides for the max operation were 4, 5, 6, 7, 8, 9, 10, and 11

pixels for Bands 1–8, respectively.

To preprocess images with respect to color, we applied local spatial averaging to each color

component (R, G, or B with pixel values ranging from 0 to 255) of the images to be preprocessed.

The local averaging operation was conducted independently at the eight spatial scales (Bands

1–8). We set the window size and overlap between windows of the local averaging operation to be

the same as the corresponding values used in the local max operation in the orientation channels.

The natural images were preprocessed only in the Band 1 spatial scale and then natural

image fragments were cut out as described above. On the other hand, the stimulus images

were preprocessed independently at eight spatial scales coded as Band b (b = 1,2,� � �,8), result-

ing in eight preprocessed images, which we refer to as the Band b images. We used these band

images to take into account scale invariance of IT neurons as described in the following section

(see Eq (2)). We defined α as a parameter indicating the relative weight between orientation

and color channels and the scale-range, Sk, as the set of consecutive scale bands (Bands 1 to 8),

where k specifies a combination. The scale-ranges included combinations of one to eight band

(s). There are 8 scale-ranges with one band: Band 1, Band 2,. . ., and Band 8). The number of

scale-ranges with two consecutive scale bands is 7: Bands 1 and 2, Bands 2 and 3,. . ., and

Bands 7 and 8. Similarly, the numbers of scale-ranges with three, four, five, six, seven, and

eight are 6, 5, 4, 3, 2, and 1, respectively. The total number of possible consecutive combina-

tions is 36 (8+7+6+5+4+3+2+1). The number of elements (bands) in each set ranged from one

to eight. We assigned a range Sk to each preprocessed fragment and calculate the responses of

a preprocessed fragment to stimulus images using the scale bands specified by Sk.

Altogether, each preprocessed fragment was characterized by a region in a natural image, a

relative weight between orientation and color channels (α), and a scale-range (Sk) assigned to

the fragment.

Calculating responses of features to stimulus images (step II)

We calculated an estimated response to the j-th preprocessed stimulus image based on the i-th

feature candidate (feature-based response, Ra;Sk
i;j ) using a radial basis function as follows:

Ra;Sk
i;j ¼ max

b2Sk
max
xb;yb

exp ½� fajdOri:
i;j;bðxb; ybÞj

2
þ ð1 � aÞjdCol:

i;j;bðxb; ybÞj
2
g� ð2Þ

where dOri:
i;j;b and dCol:

i;j;b represent vectors whose elements are the Euclidean distances between the

feature candidate and the preprocessed stimulus image in terms of the four orientations and

three color matrices, respectively. The relative weight between the orientation and color chan-

nels, α, takes eleven possible values (α = 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0). We define b as

an element in the set Sk that specifies one of the eight scale bands (b = 1,� � �,8). The coordinates

of the center of the feature candidate in the preprocessed stimulus image are indicated by xb

and yb. To account for the position invariance of IT cells [21,22], we conducted the max opera-

tion for xb, yb, for each band in the set Sk. Then, to account for scale invariance [23], we applied

the max operation to the consecutive bands defined by Sk. The calculation of feature-based

responses was also conducted using CNS [19].
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Please note that we omitted presenting three color matrices in figures in case the relative

weight, α, equal to one since they do not contribute to the calculation of the feature-based

response (Eq (2)). There were no cases that the best feature with α = 0.

Searching for features with the highest correlation coefficient (step III)

For each feature candidate, we calculated responses to all stimulus images and constructed a

“feature-based response vector.” Then, for each recording site, we calculated the c.c. between

the neural response vector and all feature-based response vectors. As feature candidates essen-

tially comprise a random collection of natural images, only a small fraction of feature candi-

dates revealed significant correlation between neural and feature-based response vectors. For

example, among 221,760,000 feature candidates (560,000 fragments × 11 relative weights

between orientation and color × 36 consecutive scale bands), only 479,792 (0.0021%), 427,762

(0.0019%), 82,809 (0.00037%), and 36,032 (0.00016%) feature candidates had significant corre-

lations with the neural response vector for sites cc, P, hh, and Q, respectively (Fig 4; p< 0.01,

Bonferroni-corrected). We made the quantitative calculation for 16 (H1), 19 (H2), and 16

(H3), and the median values of the number of feature candidates with significant correlation

was 2,112 (IQR 418–34,849), 3287 (IQR76.5–4842.5), and 6.64 × 107(IQR 5.08 × 107–

6.81 × 107), respectively. In the case of H3, the number of fragment with significant correlation

was larger than H1 and H2. This is because the value of correlation coefficient with p< 0.01

depends on the number of stimuli.

Since our interest was on the features with the highest correlation with the neural response

vector, among those feature candidates with significant correlation, we selected top hundred

feature-candidates for further analyses.

First, to confirm that the obtained high correlation coefficient was not due to outliers of

vector elements, we employed delete-half jackknife resampling [17] and calculated Pearson’s

correlation coefficient between resampled neural and feature-based response vectors for each

feature candidate. Delete-half jackknife resampling is a method for obtaining the sampling dis-

tribution of an estimator (Pearson’s correlation coefficient) by taking half of a sample (here,

pairs of neural and feature-based response vectors) and calculating the estimate iteratively.

We statistically evaluated significant difference of the mean correlation coefficient between

feature candidates (Welch’s t-test, p< 0.01) using the distribution of correlation coefficient of

resampled response vectors (although the normality of the distribution did not meet the crite-

ria of Kolmogolov-Smirnov test, the large number of samples (> = 200) justified the use of t-

test). The number of iteration was increased until when we found the single best feature with

the mean correlation coefficient significantly higher than those of the others. We evaluated sig-

nificant differences every 200 iterations of resampling. For the sites where the number of the

best features with no significant difference did not decrease for additional 1,000 iterations, we

quit resampling and assigned all of these features as the best. The total number of iterations

was different from site to site and the range was from 400 to 7,200.

In practice, to save calculation time, we divided the stimulus images into ten segments

based on response magnitude and sampled a half number of images from each segment (strati-

fied resampling) instead of employing entirely random resampling. We compared the distribu-

tion of correlation coefficients between the random and stratified resampling for some of the

recording sites (sites cc, hh, and P) with 10,000 iterations and the difference in the mean corre-

lation coefficient of the best feature was smaller than 1%: the mean values of the correlation

coefficients obtained using random and stratified resampling, respectively, were 0.813 and

0.816 (site cc), 0.733 and 0.738 (site hh), and 0.767 and 0.769 (site P). Then, we compared the

distributions of c.c.’s for feature candidates and the best feature, namely, the feature candidate
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with the maximum mean c.c.. Multiple feature candidates tended to have distribution of c.c.

similar to each other; therefore, we analyzed all feature candidates for which the mean c.c. is

not significantly different from that of the candidate with the maximum value (Welch’s t-test,

p< 0.01).

Second, to examine whether our search method extracted features specific to neural

response vectors regardless of the high degree of freedom in our search, we generated artificial

response vectors by shuffling stimulus images against neural responses (n = 100) and statisti-

cally evaluated whether we could find features as good as those for neural response vectors

(stimulus-shuffling test). The null hypothesis of this test was that the distribution of the corre-

lation coefficient of the best feature for the neural response vector is the same as the distribu-

tion of the correlation coefficients of the best features for the artificial response vectors.

Fig 4. Frequency distribution of feature candidates for determining the value of c.c. in four representative sites. The red line and number with an

arrow in each panel indicates the c.c. with the best feature candidate. The red dotted line and number with an arrow in each panel indicates the

correlation coefficient that gives significant correlation coefficient (p = 0.01).

https://doi.org/10.1371/journal.pone.0201192.g004
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Additional sets for feature candidates

To address fragment set dependency on feature identification, we prepared five additional sets

for feature candidates (Fig 5).

Gabor patch set. The Gabor patch set comprised feature candidates based on 18 Gabor

patch source images, as defined by Eq (1), produced at a 28 × 28 pixel filter size with α = 2.8, λ
= 3.5, and θ = 0,10,20,� � �,170 deg. (Fig 5, panel 1). The top left squares (2 × 2) of the Band 1

images (3 × 3) of the 18 Gabor patches were used as the feature candidates.

Full-face sets. The human and monkey full-face sets comprised feature candidates whose

source images were human (n = 570) and monkey (n = 764) whole faces taken respectively

from the CVL Face [24] and PrimFace databases (Fig 5, panels 2 and 3). The face images were

cropped into square regions containing only heads and resized to 200 × 200 pixels, as was

done in the facial-part set construction, with the entire Band 1 images, which were in the

shape of 46 × 46 pixel squares, used as feature candidates.

Facial-part sets. Feature candidates of human and monkey facial-part sets were extracted

from source images of 570 human faces taken from the CVL Face Database and of 764 monkey

faces taken from the PrimFace database, respectively. The face images were cropped into

square regions containing only heads and resized to 200 × 200 pixels using bicubic interpola-

tion. As in the standard set, we extracted features from the overall Band 1 face images and pro-

duced 28 feature size-and-shape types. To increase feature variety, we allowed partial overlap

among features (Fig 5, panels 4 and 5). For each set, 2,000 features of each type were produced,

resulting in a total of 56,000 features, each for the human and monkey facial-part sets.

1K Gabor patch set. The 1K Gabor patch set comprised feature candidates based on

1,080 Gabor patch source images, as defined by Eq (1), produced at a 28 × 28 pixel filter size

Fig 5. Representative fragments in five additional feature candidate sets. (1) Gabor patch set (n = 18) (2) human

full-face set (n = 570) (3) monkey full-face set (n = 764) (4) human facial-part set (n = 56,000) (5) monkey facial-part

set (n = 56,000) (6) 1K Gabor patch set (n = 1,080) White rectangles in (4) and (5) show regions chosen as feature

candidates. To increase the variety of feature candidates, we allowed partial overlapping of feature candidates in the

facial-part sets.

https://doi.org/10.1371/journal.pone.0201192.g005
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with σ = 0.8,1.8,2.8,3.8,4.8, λ = 1.5,2.5,3.5,4.5,5.5,6.5, and θ = 0,5,10,� � �,175 deg. (Fig 5, panel

6). The top left squares (2 × 2) of the Band 1 images (3 × 3) of the 1,080 Gabor patches were

used as the feature candidates.

Results

We summarize the step-by-step results of the fragment-based approach for representative

sites, cc, P, hh, and Q (Figs 6 and 7). The neural response vector of site cc was characterized by

a response tuning curve in Fig 6A, and the feature with the highest c.c. with the neural

response vector is shown in Fig 6B. The scattergrams (Fig 6C) revealed a close correlation

between neural and feature-based responses for subsampled stimulus sets. In particular, the

correlation coefficients were almost the same for the subsampled sets where no overlapping

samples across the sets (complementary sets) (iterations #1 and #2, and iterations #799 and

#800). The distributions of c.c. of all subsampled stimulus sets for top five feature candidates

revealed a significant correlation between the neural and feature-based response vectors

regardless of sampled stimuli (800 iterations; p< 0.0001), meaning that correlation between

neural and feature-based responses was not due to outliers within the stimulus images (Fig 6D,

upper panel). The mean c.c. of the best feature (0.82) was statistically significantly different

from that for all other feature candidates. Similarly, we identified one unique feature in site P

(Fig 7A). In site hh (H1), however, seven features did not significantly differ from the best in

terms of mean c.c. values (Fig 7B). These features differed in terms of scale-ranges (inset, solid

red lines) or α values (inset, the broken red line), but originated from the same region of a nat-

ural image. Furthermore, features with different scale-ranges shared a common scale band.

Therefore, these features are structurally similar. In fact, correlation of neural response vectors

between the best feature and seven features was 0.998 ± 0.002 (mean ± SD). For simplicity, we

regarded the features originating from the same region of a natural image as one feature.

Based on this, we identified one feature as site cc (H1), hh (H1), or P (H1) for 18 out of 35 sites

(H1 and H2). There were also sites where features originated from different regions of natural

images had no significant differences from the best (Fig 7C; site Q). In site Q, for example, we

found the best feature (upper left) whose mean c.c. value was 0.70 (the distribution of c.c. was

indicated by the broken red line). There were three other features whose mean c.c. values

(solid red lines) were not significantly different from the value for the best feature. These three

features originated from the same region of a natural image (upper right) with different scale

ranges; by definition, three features are considered as a feature. The correlation of neural

response vectors among three features was 0.999, while correlation of neural response vectors

between the best feature in Fig 7C left and the feature in Fig 7C right with maximum c.c. was

0.716. Therefore, we identified two features (Fig 7C, left and right) in site Q. For 17 sites

among 35 sites (H1 and H2), we identified multiple features derived from different natural

images as site Q (H1). Even though the regions where features are derived from were different,

these features may share the same structure. Alternatively, they may represent subsets of neu-

rons within a recording site representing different features or multiple feature representation

by a single cell, as suggested by a previous study [12]. Since we do not have unambiguous ways

to quantify similarity among features, it remains for a future study to address which is the case.

Specificity of the search method to neural response vectors

The stimulus-shuffling test revealed that none of the best features obtained for artificial

response vectors reached the c.c. of the best feature for the neural response vectors (Figs 6D

and 7, bottom of each panel), indicating that our search method is specific to response vectors
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derived from neurons. In 32 of 35 sites, the c.c. of the best feature was significantly larger than

that for the artificial response vector (Z-test, p< 0.01).

Generalization to the novel stimulus images

The scattergrams (Fig 6C) show that the best feature candidate for a half of 104 stimuli was

also good for no-overlapping other half of stimuli. However, considering feature complexity,

Fig 6. Identification and verification of the best feature for site cc (H1). (A) The object response tuning curve (Insets, representative objects). The site

preferred monkey to human faces on top of a general preference for faces over non-face objects. Horizontal axis shows stimulus images ranked in order of

stimulus-evoked responses. Vertical axis shows stimulus-evoked responses of the site. The horizontal broken line indicates no evoked responses. (B) The best

feature for site cc (right) and a natural image from which the feature was extracted (left). The feature was extracted from the outlined region in the natural

image and was characterized by four edges (arrows and arrow heads) and no color information (α = 1). Please note that the arrows and arrow heads in the left

and right panels point to corresponding spatial positions. The left inset shows the face stimulus that evoked the strongest neural response. The red contour

indicates the region for which the feature gave the maximum response within the face stimulus. Gabor filter angles are given in the upper right corner. (C)

Scattergrams between neural and feature-based responses for subsampled stimulus images (52 among 104 objects). Upper and lower panels are complementary

stimulus sets. Data points represent different stimuli. There was a significant correlation between neural and feature-based responses for all four iterations

(inset, c.c., r; t-test for Pearson’s c.c., p< 0.0001). (D) (Upper panel) distributions of c.c. for 800 iterations of the delete-half jackknife resampling. The

distributions of the top five features among 560,000 candidates are given as representatives. The distribution of the best feature (red) has a mean value

statistically significantly different from the mean values of the other distributions (blue) (mean ± s.d. of the best, 0.82 ± 0.03; Welch’s t-test, p = 0.0034). (Lower

panel) Results of the stimulus-shuffling test showing distribution of c.c.’s of the best features identified for artificial response vectors generated by shuffling

stimulus images against neural responses (mean ± s.d., 0.47 ± 0.03; n = 100). The broken line indicates the value of c.c. with p = 0.01 (c.c., 0.55). The red line

indicates the mean c.c. of the best feature for the neural response vectors.

https://doi.org/10.1371/journal.pone.0201192.g006
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the number of stimuli might not be enough to evaluate generalization performance. To further

examine generalization performance, we examined the physiological dataset obtained from

H3, where neural responses were recorded for 1,000 object stimuli. We used randomly chosen

500 of them (training set) to search for the best feature as in Figs 6 and 7 (Fig 8). In the repre-

sentative site M from H3, the c.c. between neural and feature-based response vectors for the

best feature was 0.67, while c.c. for the best feature obtained with artificial response vectors

was 0.00 ± 0.05. This number is even smaller than what we obtained in Figs 6 and 7. This is

due to increasing the number of stimuli. Please note that we did not find such big changes in c.

c. between neural response and feature-based response vectors. With this feature, the c.c.

between fragment and neural response vectors for unused 500 stimuli (test set) was 0.62. The

value is not largely different from c.c. value for the training set, suggesting that performance

we obtained for the training set can be generalized to novel stimuli. The scattergrams between

neural and feature-based response vectors are given in D (Fig 8). Although we did not apply

delete-half jackknife resampling for the test set, distributions suggest that it is less possible that

the observed c.c. was due to outliers within the stimulus images. Fig 8E revealed c.c. of training

and test sets for examined 16 sites. The mean c.c. and standard deviation across 16 sites was

0.59 ± 0.06 for the training set and 0.53 ± 0.07 for the test set, providing consistent results with

site M.

Potential biases owing to the sources of feature candidates

To test potential biases owing to feature candidate sets, instead of extractions from natural

images, we examined for 16 recording sites (H1) preprocessed Gabor patches, full-faces, and

facial parts as feature candidates (Fig 5). To increase feature variety, we allowed facial-part fea-

ture candidates to overlap. As shown in Fig 9A, the c.c. for the best feature was far below those

derived from the standard set for all 16 sites when the Gabor patch (indicated by circles in the

figure) or full-face set (squares) were used as the source of features (left to the line of equality

in the figure). Unlike the best features extracted from the standard set, the best Gabor patch

and full-face features did not even show significant correlation between neural and feature-

based response vectors for some sites (t-test for Pearson’s c.c., p> 0.05). This result with

Gabor patch and full-face sets may be due to imbalance in the number of feature candidates

among the sets. To test this possibility, we made an additional analysis where the numbers of

candidates were set to 560, 1080, 570, and 764 for the standard set (subsampled), 1K Gabor

patch set, human full-face set, and monkey full-face set, respectively (Fig 9B–9D). In H1 (Fig

9B) and H2 (Fig 9C), we found that the best features obtained from both 1K Gabor patches

and facial parts had still lower scores than those of the best feature derived from the standard

Fig 7. The best features for three other representative sites: P, hh, and Q (H1). Conventions are the same as in Fig 6B and 6D. (A) The

best feature for site P (mean ± s.d., 0.77 ± 0.03). The mean value of c.c. of the best feature is significantly different from the other feature

candidates (Welch’s t-test, p = 0.0068). The c.c. of the best feature for artificial response vectors is 0.44 ± 0.03 (mean ± s.d.; n = 100). (B)

Identified features for site hh. Seven features are not significantly different in terms of mean c.c. value from the best (distributions in red;

mean ± s.d., 0.74 ± 0.03). These were derived from the same region of a natural image (upper left) and are characterized by local

orientations (upper right four matrices from the top) and color (fifth matrix from the top in upper right). While those in red solid lines

differ over a consecutive scale range, the feature indicated with red broken line differs in terms of color channel contribution (with α =

0.5 for the indicated feature versus 0.6 for the others). The distributions of four features that are significantly different from the best are

shown in blue (Welch’s t-test, p = 0.0004). Some of the distributions shown in red overlap and are indistinguishable in this panel. The c.c.

of the best feature for artificial response vectors is 0.45 ± 0.03 (mean ± s.d.; n = 100). (C) Identified features for site Q. The best feature

originated from a natural image in the upper left and represents a combination of local orientations (mean ± s.d., 0.70 ± 0.04; red broken

line). The other three features do not differ significantly in terms of mean c.c. value from the best (red solid line). They originated from a

natural image different from the best and are composed of orientation and color channel components (α = 0.8) (upper right). The c.c.

distributions of the identified features differ significantly from the distributions of the others (blue) (Welch’s t-test, p = 0.0022). The c.c. of

the best feature for artificial response vectors is 0.51 ± 0.02 (mean ± s.d.; n = 100).

https://doi.org/10.1371/journal.pone.0201192.g007
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set (symbols representing individual sites were located left side of the orthogonal line). In the

case of H3, we divided neural response vectors into training and test sets as in Fig 8. The corre-

lation coefficient for the test set revealed the same tendency as in H1 and H2 except for a small

number of sites (Fig 9D).

These results reveal that the simplest and most complex features—Gabor patches and faces,

respectively—cannot be explanatory features for individual sites in the face domains.

On the other hand, the best features extracted from the facial parts (facial-part set) pro-

duced c.c.’s nearly identical to those from the standard set (triangle symbols in the figure).

However, they were never better than those from the standard set. Furthermore, while the

standard set included faces, the identified features from the standard originated from faces for

only three out of 35 sites (Fig 1). Thus, using the correlation between neural and feature-based

response vectors as the criterion to evaluate features allows good features to be selected from

non-face images, suggesting that a sufficiently large set of natural image fragments can provide

a library of features that can be used in the representation of various object categories.

Characterization of features represented by columns in the face domains

The feature identified by the fragment-based approach revealed unique aspects of features of

columns in the face domains. Generally, the combinations of local orientation and colors were

relatively complex and differed among sites (Fig 10A). Inspection of the locations in the stimu-

lus images at which the identified feature provides maximum similarity revealed that some of

the best features detected local part of faces, including sites M, S, V, and hh, while other fea-

tures captured global structures of faces such as sites cc, P, and ii. The global structures com-

prise a facial configuration and local features of faces. In site cc, for example, the identified

feature contains long and short horizontal orientations (arrow heads) derived from horizontal

fence bars (Fig 6B). The long and short horizontal orientations are well matched to horizontal

dark regions derived from the two eyes and mouth (arrow heads) in a monkey face (Inset to

the left). In addition, the feature of site cc also contains two oblique orientations (arrows)

derived from a pelican beak and a vertical fence bar in the natural image (Fig 6B). These local

features cause this site to respond differently to monkey and human faces (Fig 6A). The identi-

fied feature in site P contains three clusters of local horizontal orientations arranged in a top-

heavy configuration. In the best face stimulus, the feature detects structure of left and right

side of the hair line covering the head and nose line (Fig 7A). Interestingly, inspection of top

eight face stimuli revealed that the feature tended to detect the two eyes and nose in a face (Fig

11). Similar to site cc, the feature of site P contains vertical and 45 degree orientations at the

upper left and lower right, respectively, causing the site to respond to faces with particular sets

of facial lines (Fig 7A). Finally, in site Q (Fig 7C), the feature in the left represents a specific

hair line (arrow) in addition to an eye and mouth representation (arrow heads). Altogether,

the features that captured global structures of faces concurrently represented feature elements

arranged in facial configuration and those differentiating faces. In the same way, we visualized

Fig 8. Identification and verification of the best feature for a representative site from which responses to 1,000 stimulus images were recorded. (A) The object

response tuning curve shows characteristics of the neural response vector of site M. (B) The best feature for site M (H3). The image fragment from which the best

feature was derived is outlined in red. The feature was matched to the entire stimulus image, where the upper-left part of the feature was matched to complex shapes

around the eyes of the monkey, and the upper-right part of the feature was matched to the edge between the monkey face and background at the same area in the

stimulus image. The best feature does not require color channels (α = 1.0). Conventions are the same as in Fig 6B. (C) (Upper panel) Distribution of correlation

coefficients for 200 delete-half jackknife iterations for the best feature (mean ± s.d., 0.67 ± 0.03). Please note that the standard deviation of the distribution is smaller

than in the cases shown in Figs 6 and 7 because of the larger number of stimulus images. (Lower panel) The distribution of the correlation coefficient for 100 artificial

response vectors generated by shuffling stimulus images against neural responses (mean ± s.d., 0.00 ± 0.05). The red line indicates the average of the correlation

coefficients of the 200 delete-half jackknife iterations for the best feature. (D) Scattergrams between the neural and feature-based responses for the training (upper)

and test (lower) set. (E) The c.c. value for the training and test set for all examined sites (n = 16).

https://doi.org/10.1371/journal.pone.0201192.g008
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the fragments and features obtained from H2 and H3 according to their coverage in Fig 10B

and 10C, respectively.

These unique arrangements of local elements in these features may provide a neural basis

for face inversion effects in which recognition of faces with subtle differences is lost or

degraded when they are inverted [25,26]. To test this possibility, we calculated feature-based

responses to upright and inverted faces in 19 sites for which the upright face responses differ

Fig 9. Comparison between c.c. values for the best features extracted from the standard set and those extracted from the other

sets. Different symbols represent different fragment sets, while different points with the same symbol represent different sites (n = 16

for H1 and H3; n = 19 for H2). The red lines parallel to the horizontal and vertical axes indicate the correlation coefficient that gives

significant correlation coefficient (c.c. = 0.35 for A-C, 0.12 for D; p = 0.01). (A) The result from H1. The number of feature

candidates are 560000, 18, 570, and 764 for the standard set, Gabor patch set, human full-face set, and monkey full-face set,

respectively (B-D) The number of feature candidates are 560, 1080, 570, and 764 for the standard set, 1K Gabor patch set, human

full-face set, and monkey full-face set, respectively. For the standard set, feature candidates (n = 560) were randomly subsampled

from the standard set consisting of 560,000 candidates. The c.c. value for the best fragment (vertical axis) gives average of 10 different

subsampled sets. The result from H1, H2, and H3 are given in B, C, and D, respectively. (C, D) The results from H2 (C) and H3 (D).

Please note that in H3 (D), the neural response vectors are divided into training and test sets, and the result from the test set is given

as in Fig 8.

https://doi.org/10.1371/journal.pone.0201192.g009
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significantly between humans and monkey faces (Wilcoxon signed-rank test, p< 0.05). We

found that the absolute difference in feature-based response between monkey and human

faces in the upright condition was statistically significantly larger than those in the inverted

condition in 12 of the 19 sites (63.2%, single-sided Wilcoxon signed-rank test, p< 0.05) (see

Fig 12 for a representative site). Although there could be multiple mechanisms for the face

inversion effect, the above quantitative description and response estimation results suggest

one possible mechanism. Consistent with this, a recent physiological study examined the

responses of face neurons to upright and inverted faces and found that neuronal information

about the fine category (facial identity and expression) decreased when faces were inverted

[27].

Discussion

In the present study, we showed that features explaining the response variance of face neurons

can be recovered from the set of natural image fragments if the set is sufficiently large.

Although the combinatorial number of pixel configurations in the size of the fragments is

huge, the combinations in the natural image fragments are of limited complexity. Thus, our

search procedure uses the fact that image fragments coming from natural configurations cover

only a small part of this large space.

A unique feature of our method is that we can mathematically calculate responses to arbi-

trary objects according to Eq (2). Correlation coefficient between responses predicted from the

recovered features and the object responses of individual sites was very high. For example, the

identified feature for site M in H3 explains 38% of the variance in object responses (with a c.c.

value of 0.62 in the test set). On average, c.c. values between neural and feature-based response

vectors was 0.53 for H3 for the test set.

In the present study, we focused on the features of functional columns. This is because pre-

vious studies have suggested that IT cortex is organized in functional columns [12,13]. For

example, Sato and colleagues [12] densely recorded object responses of neurons from a puta-

tive columnar region and found that object response tuning curves of individual neurons are

scattered around the vicinity of a common response tuning curve. They also found that the

common response tuning curve of a columnar region is largely different from that of nearby

columnar regions. In the present study, we took average of MU responses as the common

Fig 10. Columns in the face domains detect global and local structures of faces. The best fragments and the region within the best face

stimulus where the fragments had the best match (red rectangles) are indicated for 16 sites in H1 (A), 19 sites in H2 (B) and 16 sites in H3

(C). The format of the feature representation is given in upper right (box with broken line in blue). In cases in which color information is

critical, the relative weight between orientation and color channels, α, is indicated. Multiple fragments are represented in some sites such

as Q in which multiple fragments do not significantly differ. Fragments detecting a local part and those detecting the global structure are

grouped by eye and shown separately in left and right. The sites where both fragments with a local part and the global structure were

detected were shown in both left and right.

https://doi.org/10.1371/journal.pone.0201192.g010

Fig 11. Site P detects a top-heavy configuration of faces typically consisting of two eyes and a nose below. The pictures represent eight faces that evoked the

best (left) to eighth best (right) neural responses in site P. The red contour indicates the region for which the feature gave the maximum response, and arrows

and an arrowhead point critical points of the feature (see Fig 7A).

https://doi.org/10.1371/journal.pone.0201192.g011
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response tuning curve, and developed the fragment-based approach for the averaged response

tuning curves. However, in principle, the method will be applicable to tuning curves of indi-

vidual neurons. Fragment-based approach for individual neurons as well as columns would

enable us to address how responses of individual neurons are related to the columnar response.

We identified multiple features that were not visually similar to each other in some sites, such

as site Q (Figs 7C and 10). This may indicate subsets of neurons within a recording site repre-

senting different features, or multiple feature representation by a single cell, as suggested by a

previous study [12]. Fragment-based approach for individual neurons within a column and

comparison with the feature of the column remain for future investigations.

Our procedure was corroborated using two statistical tests: delete-half jackknife resampling

and stimulus-shuffling. Delete-half jackknife resampling confirmed that the high c.c. values

Fig 12. Predicted responses to upright and inverted faces provide a possible explanation of inversion effects.

Upper panel, mean feature-based responses to eight monkey (Mo) and eight human (Hu) faces in upright and inverted

conditions for site cc (H1). Error bars indicate standard deviation. Responsive regions in the representative faces are

given below in red. Lower panel, average of absolute differences between responses to monkey and human faces in

upright (left) and inverted conditions (right). Error bars indicate the standard error of the mean. The numbers indicate

p-values (Wilcoxon signed-rank test).

https://doi.org/10.1371/journal.pone.0201192.g012
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were not biased to partial neural properties or feature-based response vectors (Fig 6C). The

stimulus-shuffling test confirmed the specificity of our method to neural response vectors, as

the c.c. values of the best features for artificial response vectors were very low and had no sig-

nificant correlation (Figs 6D and 7). A more conclusive test would be to examine whether

identified features activate neurons. Doing so, however, would require reconverting the identi-

fied features in preprocessed form back to pixel-based images before showing them to mon-

keys. As a preprocessed fragment will not produce a unique pixel-based image, such

conversion is not mathematically simple. Thus, we are limited to developing a strategy to find

features that mimic the response of the recording site reasonably well.

We investigated whether correlation between feature-based and neural response vectors

can be affected by the difference in the shapes of neural response tuning curves, for example,

sharpness of the tuning curves. To quantify shapes of the tuning curves, we used the sparseness

index [28]. The response sparseness is defined as

a ¼ ð
X

i¼1;n
ri=nÞ2=

X

i¼1;n
ðr2

i =nÞ

where ri the firing rate to i-th stimulus in the set of n stimuli. With regard to the spontaneous

firing rate, the negative responses were clipped to 0 [28]. We examined for 16 sites in H1 and

19 sites in H2 where the number of the stimuli were the same. There was no significant corre-

lation between the sparseness indices and c.c. for the best features (correlation coefficient,

-0.263 (p = 0.324) for H1, and correlation coefficient, -0.162 (p = 0.507) for H2) (Fig 13). The

results showed that our approach successfully extracts features regardless of whether neurons

are broadly or sharply tuned to object stimuli.

Our method seems to be the only one to date that provides features that explain the variance

of natural object responses of IT neurons in a reasonably satisfactory manner. Brincat and

Connor modeled critical features of IT neurons as linear and nonlinear combinations of curva-

tures [4]. Their model explained 49% (average c.c. = 0.7) of the variance of responses to artifi-

cial stimuli composed of curvatures. Because their model is specific to curvatures, we cannot

address how well it explains responses to natural images. With respect to natural images,

David and colleagues proposed a model for V4 neurons in terms of the spectral receptive field

[10]. This model closely explains previous findings that V4 neurons respond to angled or

curved contour features. However, the average c.c. between their model-predicted responses

Fig 13. Scattergram between the sparseness index and c.c. of the best feature for 16 sites in H1 (A) and 19 sites in H2 (B). Different

points represent different sites.

https://doi.org/10.1371/journal.pone.0201192.g013
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and actual neural responses to natural images was 0.32, meaning that only 10% of the response

variance was explained. In general, finding features that explain large variances of neural

response to natural images remain difficult and, to our knowledge, there had been no attempt

to explain the natural image responses of IT cells prior to this study. Our research reveals that

searching for features among natural image fragments is an effective method for overcoming

this difficulty.

Our method shares some common aspects with several appearance-based object recogni-

tion computer vision algorithms, including SIFT [29], HOG [30], and HMAX [20]. In a man-

ner similar to the preprocessing used in our search method, these algorithms extract local

gradient or orientation information with small position invariance at the first stage. In general,

low-level feature processing is an essential step in object recognition, and modifying our pre-

processing so that no orientation channels are used (α = 0) and the color channels were gray-

scaled reduces the c.c. between neural and best feature-based response vectors to 0.50 ± 0.06

(mean ± s.d. across 16 sites in H1).

Prior implementation of a fragment-based scheme [31] demonstrated that object recogni-

tion requires image fragments of intermediate complexity. In this study, we showed that the

best fragments are not as simple as Gabor patches or as complex as entire faces (Fig 9). Previ-

ous physiological studies also suggested that IT cells encode features with intermediate com-

plexity [1–4,9,21]. These findings corroborate the results from this study suggesting that

features with intermediate complexity are essential in object representation. Considering the

complexity of identified features, the number of identified features is still small to draw a pic-

ture of general property of features represented by IT columns. Nevertheless, it is noteworthy

that completely identical features (Fig 1, natural images with asterisks) could be identified in

other sites and in two hemispheres even though there were 560,000 possible candidates: a nat-

ural image fragment containing a single asterisk gave the best feature for sites J (H1) and F

(H2), while a natural image fragment containing double asterisks gave the best feature for sites

ii and ff in H1 and site O in H2 (Fig 1).

The central issue of object vision is where and how objects are represented invariantly. IT

cortex is the most plausible cortical area to have the invariant representation. For example, the

receptive field of IT neurons is relatively large [21,22]. Since the fragment based approach

takes the large receptive field into account (Eq (2)), identified features as well as neurons pro-

vide a substrate for position invariance. Previous studies have shown that object images are

represented by combinations of neurons in IT cortex and combinations are essential for

invariant object representation [2,3,5,6,14]. Therefore, combinations of the features identified

for face neurons could explain view invariant face representation. Interaction across cortices

may also be involved in the mechanisms of invariant object recognition. For example, previous

studies suggested involvement of feedback interaction with earlier visual cortices in figure-

ground segregation [32,33]. The remaining problems for future studies are (1) to what extent

the combinations of features with the specific arrangement of local orientations and colors

explain invariant face representation and (2) in what degree cortico-cortical interaction is

required. The present study provides a good platform to address these questions because our

fragment-based approach provides features of neurons in a mathematically manipulable form.

One obvious question is whether we can extend our fragment-based approach to neurons

responding to non-face objects rather than faces. A preliminary analysis revealed that there

was significant correlation between neural and feature-based response vectors as well as the

sites in the face domains (Fig 14). However, the values of c.c. for the sites outside of the face

domains were not as high as those in the face domain so that we may take additional factors

into account. Further analyses of these sites remain for future investigations.
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Deep convolutional neural networks (DCNNs) have recently attracted interest owing to

their significantly high performance in invariant object categorization (for example, see [34]).

DCNNs are hierarchical neural networks in which each stage comprises linear and nonlinear

transforming layers that are similar to the simple and complex cells in V1. The hierarchical

structure of DCNN is analogous to the primate ventral visual pathway and, in fact, the object

responses of the highest object representation layer of a DCNN have been compared to IT neu-

ral responses by Yamins and colleagues, who found that the object responses of the DCNN

layer explained 49% of the variance of IT neuron responses [35]. DCNNs may share common

principles with the ventral visual pathway in terms of invariant object recognition. However,

visual feature extraction from objects through the network hierarchy remains poorly charac-

terized for both systems, and our method should be usable for the characterization of units in

the DCNN object representation layer. This potential application, together with the ability of

our method to extract features from IT neurons using large datasets, may serve as a stepping

stone to addressing the common principles of invariant object recognition.

Supporting information

S1 Fig. Representative images (A and B) of the standard set showing how feature candi-

dates were cut out from the natural images. A natural image (left) was preprocessed to repre-

sent the image in a local orientation and color space consisting of 4 orientations and 3 colors

(right). As indicated by a grid, feature candidates were cut out from the preprocessed image

throughout 4 orientations and 3 colors. Seventy feature candidates of 16 × 8 type were cut out

in A, and thirty feature candidates of 4 × 16 type and thirty-five feature candidates of 12 × 16

were cut out in B. As indicated in red boxes, we showed natural image fragments in the main

text that correspond to the feature candidates in the right.

(PDF)

Fig 14. The mean c.c. value of the best features for all recording sites in H1 that include sites responding to non-face images. The color

indicates different sub-regions of IT cortex defined by similarity in object responses, such as red for face domain, blue for monkey-body

domain, and green for anti-face domain [11]. Particular object categories could not be identified for the other domains [11].

https://doi.org/10.1371/journal.pone.0201192.g014
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S1 File. 104 stimulus images for H1 and H2.

(ZIP)

S2 File. 1,000 stimulus images for H3.

(ZIP)
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