
INVESTIGATION

The Statistical Scale Effect as a Source of Positive
Genetic Correlation Between Mean and Variability:
A Simulation Study
Adile Tatliyer,* Isabel Cervantes,†,1 Nora Formoso-Rafferty,† and Juan Pablo Gutiérrez†

*Department of Animal Science, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, Avsar Campus, 46100,
Onikisubat, Kahramanmaras, Turkey and †Department of Animal Production, Faculty of Veterinary, Complutense
University of Madrid, Avda. Puerta de Hierro s/n, E-28040-Madrid, Spain

ORCID IDs: 0000-0002-4239-7072 (A.T.); 0000-0002-0750-6480 (I.C.); 0000-0003-2319-3485 (N.F.-R.); 0000-0003-3142-2356 (J.P.G.)

ABSTRACT The selection objective for animal production is the highest income with the lowest production
cost, while ensuring the highest animal welfare. A selection experiment for environmental variability of birth
weight in mice showed a correlated response in the mean after 20 generations starting from a crossed
panmictic population. The relationship between the birth weight and its environmental variability explained
the correlated response. The scale effect represents a potential cause of this correlation. The relationship
between the mean and the variability implies: the higher the mean, the higher the variability. The study was
to quantify by simulation the genetic correlation between a trait and its environmental variability. This can
be attributable to the scale effect in a range of coefficients of variation and heritabilities between 0.05 and
0.50. The resulting genetic correlation ranged from 0.1335 to 0.7021 being the highest for the highest
heritability and the lowest CV. The scale effect for a trait with heritability between 0.25 and 0.35 and CV
between 0.15 and 0.25 generated a genetic correlation between 0.43 and 0.57. The genetic coefficient of
variation (GCV) affecting residual variability was modulated by the strength reducing the impact of the scale
effect. GCV ranged from 0.0050 to 1.4984. The strength of the scale effect might be in the range between
0 and 1. The scale effect would explain many reported genetic correlation and the additive genetic variance
for the variability. This is relevant when increasing the mean of a trait jointly with the reduction of its
variability.
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Currently, interest is increasing in the genetic control of environmental
variability for application in livestock breeds. Environmental variability
refers to the variation in phenotypes that cannot be explained by genetic
variation or identifiable genetic differences (Hill andMulder 2010). The
importance of genetic control of environmental variability by selection
is increasing, and homogeneity is becoming important as a selection
objective in animal breeding programs (Vandenplas et al. 2013;

Rönnegård et al. 2013; Marjanovic et al. 2016), even with a low
heritability and consequently hard to select. In addition, the homo-
geneity of a population directly affects animal welfare and profit-
ability. Selection for homogeneity would result in more robust
animals facing environmental challenges (Mormede and Terenina
2012). Homogeneity would also improve features related to robust-
ness, such as survival, fertility and litter size (Formoso-Rafferty et al.
2016b), without decreasing the productivity and consequently in-
creasing profitability (Formoso-Rafferty et al. 2018).

Understanding the forces that underlie the importance of the
non-genetic component of phenotypic variance is a broadquestion in
evolutionary biology (Hill and Mulder 2010). Classical selection
methodology could be improved by managing the phenotypic var-
iation that is partially under genetic control (Sorensen and Waage-
petersen 2003). Several authors have focused on this problem and
have estimated genetic parameters regarding residual variance in pigs
(See 1998; Högberg and Rydhmer 2000; Damgaard et al. 2003), dairy
cattle (Jaffrezic et al. 2000) and rabbits (Blasco et al. 2017).
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Genetic correlation is explained by linkage, pleiotropy or a combi-
nation of these factors (Falconer andMackay 1996). On the other hand,
the skewness of the residual distribution provides information about
the genetic correlation between the traits and their variability. Regard-
ing the possible causes of the mean-variability genetic correlation,
Sorensen and Waagepetersen (2003) demonstrated that the skewness
of the distribution of the residuals determines the sign of the genetic
correlation given that points in the skewed tail are more variable when
they are located farther from the mean. Gutiérrez et al. (2006) observed
this effect in litter traits in mice. Yang et al. (2011) demonstrated how a
Box-Cox transformation (Box and Cox 1964) facilitates working with a
non-skewed variable. Previous studies demonstrated that the mean-
variability genetic correlation for litter size trait changed from -0.73
to 0.28 in rabbits and from -0.64 to 0.70 in pigs when the variable was
transformed. However, the transformed variable is difficult to interpret
(Pun et al. 2013). Although the skewness of the distributions can ex-
plain, to an extent, this genetic correlation, its skewness is not so
often present in traits to provide significant and relevant genetic
correlations. Therefore, there must be other reasons that make it
appear in the data. The magnitude and sign of the genetic correla-
tion between trait mean and its environmental variability is a con-
cern given the correlated genetic response on one of them when
selecting for the other. A wide range of genetic correlation estimates
ranging from -0.93 to 0.97 has been reported in the literature
(Hill and Mulder 2010; Formoso-Rafferty 2017).

Formoso-Rafferty et al. (2016a) carried out a successful divergent
selection experiment for birth weight environmental variability inmice.
The birth weight trait was normally distributed (Formoso-Rafferty
et al., 2016a), and a positive but low genetic correlation between birth
weight and its environmental variability was observed. The statistical
scale effect can be defined as the relationship between the mean and the
variability of a trait in the sense that the higher the mean of a variable,
the higher its variability. The estimated genetic correlation found by
Formoso-Rafferty et al. (2016a) could be attributed to the statistical
scale effect, which was suggested as a possible cause affecting the cor-
related trend in variability in another experiment to select weight gain
in mice (Moreno et al. 2012).

The scale effect represents a potential cause for the observed corre-
lationbetweena traitmeanand itsvariance.The scaleeffect is causedbya
direct relationship between the mean and variance, for instance when a
trait has a constant coefficient of variation (CV) such that an increase in
the mean also increases the variability. For most distributions the
variance is directly connected to the mean, where the normal distribu-
tion is an important exception. In a Poisson distribution the variance is
equal to the mean and in a Gamma distribution there is a direct
relationship between the mean and CV (Rönnegård and Valdar 2012).

The scale effect is then a consequence of amanmadeway tomeasure
heterogeneity which is a difficult way to express the real natural de-
termining process (Sun et al., 2013). Among the implications of this
mean-variability relationship are the concerns found in studies on
Genome-Wide Association Study in which “gene by gene” and “gene
by environment” interactions are confounded with marker effects on
variability. Several methodologies have been developed to correct the
effect (Rönnegård and Valdar 2012) and particularly the use of CV
(Mackay and Lyman 2005). This and other transformations like
monotonic (Sun et al., 2013) or Box-Cox (Yang et al., 2011) trans-
formations were also essayed, but because of the ongoing debate on
their feasibility it is advised to avoid these transformations (Shen
and Rönnegård 2013).

Thepresenceofanadditivegenetic variance for a trait inapopulation
would imply the possibility of changing the mean by selection of that

trait which would automatically generate the appearance of an addi-
tive genetic variance for the variability originated by the scale effect.

The CV is a statistical parameter defined as the ratio of the standard
deviation (s) to themean (m) to quantify the variability in a dimension-
lessmanner. Thus, for a givenCV, the highermean, the higher standard
deviation. Considering the CV to be fixed allows simplifying the scope
of the study, as there is no natural direct relationship betweenmean and
variability in a normally distributed variable. For a fixed CV, modifying
the mean would automatically increase the standard deviation and vice
versa. Since it is not common to have a CV constant across the whole
range of a trait, a scenario in which the scale effect should bemodulated
was considered. Houle (1992) reported that the value of CV for mea-
suring variability depends on the degree to which they correct for the
relationships that exist between mean and variances. Consequently,
modifying the mean by selection would not automatically change
the variability of the trait to the same extent. Subsequently this would
reduce the strength of the scale effect accordingly and, therefore,
the additive genetic variance generated for the residual variance due
to the scale effect.

The objective of this study was to quantify by simulation up to
what extent the genetic correlation between a trait and its environ-
mental variability could be attributed to the scale effect. The re-
duction of the scale effect due to an incomplete relationship between
mean and variability, understood as the strength of the scale effect,
were also assessed in the resulting additive genetic variance, thus
affecting the residual variance.

MATERIALS AND METHODS
The heteroscedastic model (HE) proposed by SanCristobal-Gaudy et al.
(1998) was assumed to derive the additive genetic value vi affect-
ing the residual variability, which has a Gaussian distribution, i.e.,
vi� Nð0;s2

vÞ. Under this model, the residual variance is heterogeneous
and partially under genetic control. The simplest HE model was used:

yi ¼ mþ ui þ e
1
2 ðhþviÞei

where yi is the record i, m is the mean of the trait, ui the additive
genetic effect, eh is the residual variance (s2

e ) in the model HO, and ei
is a non-scaled residual with a Gaussian distribution of ei� Nð0; 1Þ. It
is assumed in this model that the corresponding vectors of additive
genetic effects u and v can be correlated as follows:

�
u
v

�
� N

��
0
0

�
;

�
s2
u rsusv

rsusv s2
v

�
5A

�

where A is the additive genetic relationship matrix, r is the genetic
correlation and 5 is the Kronecker product. Note that the average
value of v does not correspond with the mean residual variance due to
the exponential nature of the model (Mulder et al. 2007).

The scale effect shows the relationship between the mean and the
variability so that the higher the mean of a variable, the higher its
variability. Thus, for instance, the standard deviation of a variable
multiplied by a constant k is in turn multiplied by k, with its CV un-
altered. This relationship between the level of a trait and its variability
was assumed here to be for the performance level of each animal. Two
simulation analyses were performed to explore the influence the scale
effect can have on the genetic correlation between a trait and its resid-
ual variability. The first analysis was performed to compute the genetic
correlation between a trait and the variability that occurs as a conse-
quence of the scale effect. The second analysis was performed to as-
sess the strength of the scale effect originating from the incomplete
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determination that the CV would have on the modulation of the mag-
nitude of the additive genetic variance generated for the variability
based on the scale effect.

(i) Mean-variability genetic correlation generated by the
scale effect
A total of 100 scenarios were simulated for the values of CV and h2

ranging from 0.05 to 0.50 at 0.05 increments. Single records were
simulated for a trait with a mean value (m) of 100. The values for m,
CV and h2 were fixed, but all the other parameters were derived
from them. But for the sake of simplicity, residual and additive
genetic effects were assumed to be the only random effects in the
model. Simulations were performed in such a manner that higher
phenotypes would have higher variance keeping the CV constant as
expected by the scale effect. Phenotypic variance (s2

p), residual var-
iance (s2

e ) and additive genetic variance (s2
u) were initially defined

as follows:

s2
p ¼ ðCV � mÞ2

s2
e ¼

�
12 h2

� � s2
p

s2
u ¼ h2 � s2

p

These reference varianceswere initially considered to be homogeneous
to simulate the trait level for each individual, and then they were
considered heterogeneous and modulated by the trait level as a direct
consequence of the scale effect. The simulations were performed in
three steps:

1. First, each record yi of an animal i was simulated assuming a
classical homoscedastic model (HO):

yi ¼ mþ ai þ ei

where ai is the additive genetic effect and ei the residual effect that
were randomly obtained from the following Gaussian distributions
with unique variances:

ai � N
�
0;s2

u

�
ei � N

�
0;s2

e

�

2. Second, the simulated record yi described the level of the pheno-
type of the individual i, and the equivalent residual standard de-
viation in this individual (sei) with CV and h2 remaining constant.
The scaled phenotypic standard deviation was no longer unique
and dependant on the magnitude of yi describing the performance
level:

spi ¼
�
CV � yi

�

The phenotypic standard deviation was, therefore, considered het-
erogeneous thus transferring this heterogeneity proportionally to
both residual and additive genetic standard deviations that also
became heterogeneous. The scaled residual standard deviation was
then derived from the scaled phenotypic standard deviation and the
heritability:

sei ¼ spi �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 h2

p

The additive genetic variance also became heterogeneous in the
simulation and also dependant on the scale effect. This is contrary
to the definition of the HE model above, but necessary to avoid
obtaining some possible residual variances higher than the phenotypic

variance of the HO model used as reference. Therefore, the additive
genetic standard deviation for the individual i (sui) also became scaled:

sui ¼
�
CV � yi

� � ffiffiffiffiffi
h2

p

Some minor negative phenotypes can accidentally be simulated for
high CV values, resulting in negative values for sei. When this
occurred, sei was changed to a positive value. This happened for
CV values higher than 0.25 with a maximum of 2.3% of the records
in some replicates for CV = 0.5. This was empirically checked to
confirm the effect on the genetic correlation was negligible.

3. Based on the HE model equation described above, the additive
genetic value of individual i affecting variability (vi), would pro-
portionally modify the residual variance in model HO (s2

e ), which
is used as a reference model, could lead to s2

ei

.
s2
e
. Using an ex-

ponential model, the corresponding environmental additive ge-
netic value of the individual i (vi) was then obtained from the
following equation:

vi ¼ 2 � ln
�
sei

se

�

To accommodate the additive genetic value affecting the trait, the
ai simulated by the HO model was rescaled:

ui ¼ ai
sui
su

The genetic correlations between the additive genetic values for trait
(u) and for the variability (v) were directly computed from the sim-
ulated values since they were available from the simulation. The mean
genetic correlation of 10 independent replicates was computed within
a scenario and 100,000 individuals were simulated for each scenario.

(ii) Additive genetic variance of variability s2
v generated

by the scale effect strength
It is assumed that the simulation described above has the scale effect
proportional to the value of the trait, but this assumption could be
unrealistic. A direct determination of the variability from the level of the
trait and theCVwould then seem tobe unrealistic, leading in addition to
unreliable values for s2

v , particularly when the CVwas higher than 0.25
(Hill and Mulder 2010). This second analysis was performed to study
the strength of the scale effect due to an incomplete determination of
v from the scale effect by defining a new parameter r (0, r# 1). This
new parameter r would weaken the scale effect if it is less than 1; as a
consequence the scale effect strength reduces the absolute value of the
environmental additive genetic effect of the individual i as follows:

vi ¼ 2 � r � ln
�
sei

se

�

Neither the value of the heritability (h2) nor the value of rwill affect the
genetic correlation between mean and residual variance, but the ad-
ditive genetic variance of the variability s2

v will be reduced by r2. In
addition, this variance is dependent on themagnitude of the CV of the
trait. This is a simple way to model the incomplete determination
of the variability from the level of the trait, but many other models are
possible.

Again, 10 replicates of 100,000 individuals were simulated per
scenario. In this case, 200 scenarios were considered according to the
values of CV and r. Here, CV ranged from 0.05 to 0.50, and r ranged
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from 0.05 to 1. Both variables were altered in increments of 0.05. Ge-
netic coefficient of variation for environmental variance (GCV) is a
measure of evolvability (Houle 1992). Therefore, for explanatory pur-
poses, instead of presenting s2

v , the average of its square root value was
computed across replicates within a scenario given that this value
roughly represents the genetic coefficient of variation (GCV � ffiffiffiffiffi

s2
v

p
)

of the variability (Hill and Mulder 2010).
The present work was motivated in the light of the correlated trend

observed in the real scenario provided by the mice divergent selec-
tion experiment for birth weight environmental variance carried out by
Formoso-Rafferty et al. (2016b). The information from this experiment
was then used to discuss some aspects of the simulations regarding a
real scenario. Estimated genetic parameters in this population were
used as a reference to compare with simulations. In addition, the mean,
standard deviation and CV were computed within five intervals of the
data after the records were sorted for two different traits: birth weight
and litter size. Based on this study design, the consistency of a unique
CV value across the range of several variables will be discussed.

Data availability
All simulations are available at https://gsajournals.figshare.com/s/
30bbcbd31850ea2e18cf. Supplemental material available at FigShare:
https://doi.org/10.25386/genetics.8862317.

RESULTS
Theaveragesof the environmental variabilitygenetic correlationswithin
scenarios combining CV and heritability are reported in Table 1. The
results ranged from 0.1335 to 0.7021. Standard errors of the means are
not presented but ranged from 0.0009 to 0.0085. Figure 1 shows
the genetic correlations obtained by the scale effect across heritability
(Figure 1a) and across CV (Figure 1b). A growing trend of the genetic
correlation across heritability was observed, and a decreasing trend
was observed as the CV increased. The maximum value of genetic
correlation was attained when heritability was maximal (0.50) and
CV was minimal (0.05), and the minimum value resulted when heri-
tabilities were minimal (0.05) and CV was maximal (0.50) (Table 1).
Values obtained for CV higher than 0.25might be slightly biased by the
anomalous appearance of some minor negative residual variances,
while the other scenarios were not affected by this artifact, when
approaching the lines themselves for high CV values (Figure 1a). In a
similar way, the negative trend of the genetic correlations across the CV
became smoother after this CV threshold of 0.25 (Figure 1b).

ThemeanGCVvalues obtained from 10 replicates under each of the
different simulated CV values considering all the ranges of scale effect
strength, are presented in Table 2. They increased linearly across the

values considered for the strength of the scale effect defined by r, with
growing slopes according to the growing CV. The values ranged from
0.0050 to 1.4854. Standard errors are not shown but also increased as
simulated values of CV and r increased. The maximum was 0.0305
for CV = 0.50 and r = 1. Some of the GCV values obtained were higher
than 0.69 and were inconsistent with the parameters reported in the
literature.

DISCUSSION
The results show that the scale effect canpartly justify at least the positive
genetic correlations estimated between themean and the environmental
variability for some traits in some populations. As a consequence,
modifying the mean of a trait by selection can bring about a change
in the variability, as well as the reverse, modifying the variability might
imply amodification of themean in the samedirection as a consequence
of the scale effect. The genetic correlation generated by the scale effect
assuming a constant CV would range from 0.13 to 0.70 depending on
the heritability andCV in a range from 0.05 to 0.50 for both parameters.
The additive genetic variance for the environmental variability, due to
the scale effect, couldbeconsideredas an incompletedetermination thus
reducing its strength.

The genetic correlation between the mean and the variability is a
matter for concern given that the environmental variability can be
modified by correlated selection (Damgaard et al. 2003; Huby et al.
2003). In fact, correlated responses exhibit variability when selecting to
increase the mean (Moreno et al. 2012), and changes in the mean trait
are also present when selecting for variability (Formoso-Rafferty et al.
2016a). Hill and Mulder (2010) reviewed estimations of genetic corre-
lations, reporting any value within the possible range. A more recent
review suggests that this parameter tends to be more frequently posi-
tive, i.e., birth weight, 0.42 and 0.44 in cattle (Neves et al. 2011; Fina
et al. 2013), 0.55 and 0.62 in pigs (Sell-Kubiak et al. 2015b), also positive
for adult weight, 0.30 and 0.79 in rainbow trout (Sae-Lim et al. 2015)
and 0.58 in tilapia (Marjanovic et al. 2016); milk yield, 0.60 in dairy
cattle (Rönnegård et al. 2013); teat count, 0.80 in pigs (Felleki and
Lundeheim 2015); litter size, 0.49 in pigs (Sell-Kubiak et al. 2015a).
Lower positive values were observed for other traits such as morphol-
ogy traits in tilapia (0.11-0.37 (Marjanovic et al. 2016) or 0.06 for
conformation scores in cattle (Neves et al. 2011). Other traits exhibited
different signs andmagnitudes, ranging from -0.06 to 0.43 for egg color
(Mulder et al. 2016). Alternatively, lower magnitude values for weight
gain were observed in different periods: 0.17, 0.02 and -0.09 (Neves
et al. 2011). Finally, negative values were also identified, such as -0.52
for litter size in pigs (Felleki et al. 2012), -0.23 to -0.45 for chicken birth
(Mulder et al. 2009;Wolc et al. 2009) and -0.16 for adult body weight in

n Table 1 Mean environmental variability genetic correlation (r) derived from scenarios combining coefficient of variation (CV) and
heritability (h2)

CV

h2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.05 0.2227 0.3140 0.3853 0.4462 0.4983 0.5451 0.5895 0.6309 0.6674 0.7021
0.10 0.2179 0.3098 0.3814 0.4395 0.4913 0.5376 0.5797 0.6194 0.6576 0.6935
0.15 0.2135 0.3014 0.3736 0.4276 0.4791 0.5245 0.5651 0.6052 0.6421 0.6743
0.20 0.2087 0.2912 0.3564 0.4118 0.4616 0.5026 0.5436 0.5816 0.6146 0.6488
0.25 0.1955 0.2734 0.3375 0.3858 0.4340 0.4715 0.5114 0.5437 0.5783 0.6079
0.30 0.1756 0.2502 0.3042 0.3523 0.3937 0.4318 0.4651 0.4954 0.5233 0.5494
0.35 0.1596 0.2265 0.2730 0.3202 0.3562 0.3863 0.4160 0.4438 0.4707 0.4960
0.40 0.1442 0.2053 0.2516 0.2896 0.3224 0.3538 0.3818 0.4038 0.4286 0.4483
0.45 0.1381 0.1942 0.2364 0.2712 0.3046 0.3327 0.3566 0.3811 0.4013 0.4207
0.50 0.1335 0.1899 0.2304 0.2629 0.2909 0.3201 0.3426 0.3649 0.3830 0.4025
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rainbow trout (Janhunen et al. 2012). The sign and magnitude of any
genetic correlation was classically explained by linkage, pleiotropy or a
combination of both (Falconer and Mackay 1996). Regarding the re-
lationship between the mean level and the variability, a type of pleio-
tropic correlation would occur from the skewed distribution of the trait
(Yang et al. 2011; Sorensen and Waagepetersen 2003; Ros et al. 2004;
Gutiérrez et al. 2006). From this brief review, there is clearly an in-
creased frequency of positive correlations between the mean of a trait
and its variability suggesting that the scale effect could be generating
these effects, but the effects seem to be different for different type of
traits. For example, individual weight traits or dairy traits seem to be
related to positive correlations while negative values appear more fre-
quently in reproductive traits. Some populations with an important
selection success would have had those animals with a prospect of
low performance culled. In litter size, for instance, with repeated mea-
sures, some animals with low performance records would affect the
mean litter size and these animals would not be selected, thus reducing
the variability while increasing the mean value. Therefore, the final
genetic correlation in each scenario would depend on the population

status concerning selection, the trait and the influence of other causes
affecting genetic correlation, but the scale effect seems to be present in
many of them. In addition, assumptions established in these simula-
tions, even when looking realistic, are only theoretical and avoid com-
plexity. In fact the closer evolution lines of Figure 1a suggest that high
values of variability are not easily supported by nature.

This simulation study revealed that the genetic correlation generated
by the scale effect would range from 0.15 to 0.70 depending on the
heritability and CV values of the trait in a particular population. The
mouse experimentmotivating this researchhad an undesired correlated
genetic response for variability that appeared in the mean birth weight
when selecting for environmental variability (Formoso-Rafferty et al.
2016a). An updated estimation of the genetic parameters in this popu-
lation after 18 generations of selection under the reported methodology
provided a genetic correlation of 0.3169 with a global heritability of
0.1329 (Formoso-Rafferty et al. 2017), and the trait had a computed
CV of 0.1470. According to the values reported in Table 1, the expected
genetic correlation generated by the scale effect for a heritability of 0.15
and a CV of 0.15 was 0.3736. Thus, the scale effect would explain the

Figure 1 Evolution of mean-variability
genetic correlation generated by the
scale effect, across heritability (a) and
across coefficient of variation (CV) (b).
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estimated genetic correlation in this case in which the relationship be-
tween mean and variability is assumed to be a constant as it directly
depends on CV. In general, for a weight type trait with heritability be-
tween 0.25 and 0.35 and a CV between 0.15 and 0.25, the genetic corre-
lation generated by the scale effect would range from0.43 to 0.57. Instead,
a litter size type trait, with heritability under 0.10 and CV between 0.10
and 0.15, the expected genetic correlation generated by this effect would
be between 0.21 and 0.31. The lowest expected genetic correlations gen-
erated by this effect would be defined for low heritability traits with high
CV, and the highest would be inversely high heritabilities with low CV.

The simulation performed in this research to define the phenotypic
standard deviation as directly proportional to the mean and CV lead to
the appearance of an additive genetic variance affecting the environ-
mental variability. Using the square root as an approach for GCV, a
simulated scenario of h2 and CV equal to 0.15 resulted in a GCV of
0.3094, but the estimated value by Formoso-Rafferty et al. (2016a)
updated to the 18th generation was 0.1929, which is significantly dif-
ferent to that obtained by simulation. This indicated that there was
a lower sensitivity, suggesting that the assumed proportionality be-
tweenmean and standard deviation would be incomplete. For example,
Figure 2 presents the evolution of the mean, standard deviation and
CV of birth weight (Figure 2a), and litter size (Figure 2b) across five
sorted groups with the same number of records ordered by the trait
value in this experiment. A visual scale effect can be observed for birth
weight with increased standard deviation accompanying the increase in
the mean value. However, the evolution of the standard deviation is not
proportional to themean, leading to a reduction in the CV. The pattern
of the trend for the case of the litter size is different. The scale effect
has a greater effect for low values of the trait with an increase in the
standard deviation. The effect stabilizes for intermediate values and
decreases for high values of litter size. The scale effect would be
surpassed by other causes of genetic correlation between the trait
and variability; thus, for highly selected populations for litter size in
prolific species, a negative genetic correlation would exist between
this trait and its environmental variability as reported by Sorensen

and Waagepetersen (2003) and Felleki et al. (2012) in pigs and
Ibáñez-Escriche et al. (2008) in rabbits. Part of these genetic corre-
lations can be attributed to the skewness of the distribution of re-
siduals. Yang et al. (2011) estimated negative genetic correlations in
untransformed litter size in pigs and rabbits that became positive
after a Box-Cox transformation. However, the genetic correlation
would remain positive in the previously mentioned mice population
(Formoso-Rafferty et al. 2016a).

To account for the impact of the scale effect, the second simulation
was performed to demonstrate different strengths of the scale effect (r).
Different positive r values were employed to determine how GCV
would be affected. For the sake of simplicity, a constant value for the
entire range of the trait was assumed although the value of r can differ
for different values of the interval (Figure 2a) or even be asymmetric.
Thus, it is possible for some values of the trait to be positive, whereas
others are negative (Figure 2b).

Table 2 presents the GCV observed for the simulated scenarios
with different scale effect strength (r) and CV values. The CV values
ranged from 0.0050 (r = 0.05 and CV = 0.05), increasing with the
value of the simulated parameters up to 1.4854 (r = 1.00 and CV =
0.50). Compared with the values reviewed by Hill and Mulder
(2010), the estimations of the posterior revision reported above
(Neves et al. 2011; Felleki et al. 2012; Janhunen et al. 2012;
Rönnegård et al. 2013; Fina et al. 2013; Sae-Lim et al. 2015;
Felleki and Lundeheim 2015; Sell-Kubiak et al. 2015a; Sell-Kubiak
et al. 2015b; Mulder et al. 2016; Marjanovic et al. 2016) and with the
exception of the anomalous unreliable estimation for birth weight in
mice by Gutiérrez et al. (2006) as justified by Pun et al. (2013), GCV
values greater than 0.69 were never reported and might even be
considered meaningless (Hill and Mulder 2010). High-scale effect
strength is not typical and would never be possible in the context of
high CV values. The value of 0.1929 was estimated for GCV in the
mice experiment (Formoso-Rafferty et al. 2016a) based on a CV
value of 0.1470; these values roughly approach 0.1857 (r = 0.60)
and 0.2008 (r = 0.65) from Table 2 for a CV = 0.15. This strength

n Table 2 Genetic coefficient of variation (GCV) observed in simulated scenarios with different scale effect strength (r) and coefficient of
variation (CV) values

r

CV

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.05 0.0050 0.0101 0.0154 0.0212 0.0278 0.0359 0.0460 0.0563 0.0660 0.0742
0.10 0.0100 0.0203 0.0309 0.0423 0.0555 0.0724 0.0916 0.1135 0.1329 0.1483
0.15 0.0150 0.0304 0.0463 0.0637 0.0835 0.1078 0.1382 0.1685 0.1980 0.2244
0.20 0.0201 0.0405 0.0619 0.0849 0.1113 0.1447 0.1842 0.2253 0.2645 0.2985
0.25 0.0250 0.0507 0.0775 0.1059 0.1385 0.1803 0.2320 0.2838 0.3319 0.3709
0.30 0.0301 0.0607 0.0925 0.1273 0.1671 0.2167 0.2764 0.3407 0.3973 0.4469
0.35 0.0351 0.0709 0.1085 0.1483 0.1946 0.2521 0.3222 0.3952 0.4612 0.5193
0.40 0.0401 0.0810 0.1239 0.1695 0.2222 0.2899 0.3704 0.4513 0.5313 0.5932
0.45 0.0451 0.0909 0.1392 0.1906 0.2509 0.3254 0.4161 0.5069 0.5983 0.6708
0.50 0.0501 0.1014 0.1551 0.2119 0.2787 0.3606 0.4628 0.5646 0.6606 0.7476
0.55 0.0552 0.1113 0.1701 0.2330 0.3050 0.3981 0.5073 0.6214 0.7284 0.8202
0.60 0.0604 0.1215 0.1857 0.2548 0.3328 0.4342 0.5505 0.6739 0.7916 0.8928
0.65 0.0652 0.1316 0.2008 0.2752 0.3605 0.4676 0.6002 0.7306 0.8600 0.9708
0.70 0.0701 0.1421 0.2161 0.2969 0.3896 0.5112 0.6432 0.7952 0.9292 1.0441
0.75 0.0753 0.1524 0.2321 0.3189 0.4165 0.5410 0.6874 0.8434 0.9997 1.1195
0.80 0.0804 0.1620 0.2478 0.3387 0.4449 0.5822 0.7416 0.9073 1.0596 1.1938
0.85 0.0852 0.1721 0.2623 0.3601 0.4731 0.6126 0.7842 0.9646 1.1220 1.2695
0.90 0.0902 0.1824 0.2784 0.3812 0.5006 0.6510 0.8373 1.0194 1.1918 1.3382
0.95 0.0951 0.1924 0.2936 0.4048 0.5265 0.6887 0.8775 1.0813 1.2549 1.4250
1.00 0.1004 0.2024 0.3096 0.4228 0.5560 0.7248 0.9188 1.1280 1.3232 1.4854

Values greater than 0.69 are considered meaningless and are shaded.
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would be reasonable in the light of the trends of the standard
deviation and CV presented in Figure 2a. Then, the correlated
response in the mice selection experiment can be completely
explained by the scale effect modulated in this case by the strength
0.60 of the scale effect. According to the GCV values in the liter-
ature referred above, common values of GCV are in the range
between 0.15 and 0.50. Assuming a CV less than 0.25, the strength
of the scale effect is expected to be any point of the space defined
for the parameter between 0 and 1.

To conclude, this simulation study demonstrates how the scale effect
can justify the genetic correlation that often appears between the mean
and the environmental variability of some traits in some populations,
and the additive genetic variance for the variability thatmight simply be
generated by this scale effect. Breeders should be well aware of this fact
when their selection objective is to increase the mean of a trait jointly
with the reduction of its variability to develop an adequate selection
index for this trait or to find an adequate transformation of the trait to
remove the scale effect. The issue is also important in the search of vQTL
in which it would help to make the mean and variable independent
(Rönnegård and Valdar 2012). Further studies are needed in each case
given that the scale effect could vary across the range of traits and even
counterbalanced by other factors affecting the genetic correlation.
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