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Abstract: The recent growth of the elderly population has led to the requirement for constant home
monitoring as solitary living becomes popular. This protects older people who live alone from
unwanted instances such as falling or deterioration caused by some diseases. However, although
wearable devices and camera-based systems can provide relatively precise information about human
motion, they invade the privacy of the elderly. One way to detect the abnormal behavior of elderly
residents under the condition of maintaining privacy is to equip the resident’s house with an Internet
of Things system based on a non-invasive binary motion sensor array. We propose to concatenate
external features (previous activity and begin time-stamp) along with extracted features with a bi-
directional long short-term memory (Bi-LSTM) neural network to recognize the activities of daily
living with a higher accuracy. The concatenated features are classified by a fully connected neural
network (FCNN). The proposed model was evaluated on open dataset from the Center for Advanced
Studies in Adaptive Systems (CASAS) at Washington State University. The experimental results show
that the proposed method outperformed state-of-the-art models with a margin of more than 6.25% of
the F1 score on the same dataset.

Keywords: privacy-preserving; device-free; long short-term memory; previous activity; begin time-
stamp; convolutional neural network; infrared

1. Introduction

The world’s population has aged over the past few decades. In 2018, for the first time,
there were more people aged 65 and over than those younger than five, and the elderly
population is likely to have doubled by 2050 [1,2]. Moreover, in 2050, the 1.5 billion people
older than 65 will outnumber those aged between 15 and 24. This dramatic increase in the
elderly population is due to improved quality of life and better healthcare [3–6], especially
the decrease in tobacco use in men and cardiovascular disease in recent decades [3]. Another
important factor that affects the growth of the elderly population is the falling birth rate;
the average number of live births per woman was only 2.5 worldwide in 2019 and is likely
to decrease further [1]. Studies have shown that both high- and low-income countries are
experiencing increased life expectancy [4,5].

Elderly people tend to live alone [7–11]. For example, in the United States of America,
the percentage of elderly people living alone was 40% in 1990 and 36% in 2016 [12]. In
the Republic of Korea, 22.8% of elderly people live alone, almost one in five [8]. One of
the reasons is that some elderly people prefer to preserve their privacy [13,14]. However,
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elderly people living alone are more susceptible to loneliness, illness, and home accidents
than those who live with a partner or family [9,15]. Early detection of illness and home
accidents is crucial if solitarily-living elderly people are to receive timely and potentially
life-saving help [16,17].

As the latest technological development, the Internet of Things (IoT) enables con-
sumers and businesses to have versatile devices connected to the Internet [18–22]. In
elderly care and monitoring systems, the use of the IoT is becoming prevalent [23–26], and
monitoring the activities of daily living (ADLs) of elderly people is crucial in indicating
their activity level [27].

Previous studies have proposed elderly-monitoring systems based on wearable de-
vices [23,28–32] with the main function of classifying the ADLs of elderly people. However,
some people are uncomfortable with wearable devices, and if they choose to wear one, then
the favorite part of the body for wearing it is the wrist [33]. In addition to recognizing ADLs,
crucial for monitoring elderly people living alone is detecting (i) abnormal activities such
as falling [34,35], (ii) early signs of some diseases, and (iii) unusual instances for people
with certain diseases [28,36,37]. However, although wearable devices provide accurate
information about motion, they are inconvenient for daily use because of the problems
such as the need to attach sensors to the body or skin, battery life expectancy, and the
probability of abandonment in case of curiosity [38–41]. Although many different activity
classification methods have been suggested for wearable devices, the recent prominence
of machine learning (ML) has caused researchers to focus in particular on human activity
recognition (HAR) models based on deep learning [38,42–45].

Camera-based monitoring systems [38,46–49] solve the problem of having an incon-
venient wearable device attached to one’s body or skin. Although various HAR models
have been suggested for recognizing ADLs, those based on ML are now playing a major
role [22,48–52]. An example is HAR based on a dynamic Bayesian network for detect-
ing the abnormal actions of elderly people from camera video [53]. However, although
camera-based systems provide accurate information about human posture, privacy is a
major concern [54–56]. Moreover, previous research [54] showed that elderly people tend
to change their behavior once they are aware of the camera. To minimize the invasion of
privacy associated with camera-based technology, low-resolution infrared or depth-camera
systems have been suggested [57–60]. Privacy concerns mean that elderly people prefer to
be monitored unobtrusively rather than by camera-based systems [56].

One solution to the privacy issue is to install passive infrared (PIR) sensors in the
living environment of the elderly to monitor elderly residents unobtrusively with an ADL
classification model [61–64]. Previous research [65] suggested a new smart radar sensor
system that uses an ultra-wideband signal to detect motion. Such radar sensors have a low
signal-to-noise ratio and are highly sensitive to environmental changes.

Various indoor activity detection models have been proposed [66–73], most of which
use ML to recognize the activities. As stated in [74], deep learning and RNN models have
promising results and need to be investigated further for non-intrusive activity recognition.
Open datasets from real-life scenarios are used to train and test these models, and the
Aruba dataset from the Center for Advanced Studies in Adaptive Systems (CASAS) at
Washington State University is often used [75,76].

The authors have published several studies [55,58,77] used CASAS Aruba dataset,
where [55] detected travel patterns of a resident living alone using PIR binary sensory
data [55]; on the contrary, [58,77] detected the activities of a resident using converted
temporal sensory events of each activity samples into an image that is fed into DCNN
(Deep Convolutional Neural Networks). First, features are extracted with convolutional
layers, and then activity is classified with FCNN (Fully Connected Neural Network).

The results of the current work proposed in this study outperformed the existing
methods on the Aruba dataset [62,72,78,79]. None of the state-of-the-art (SoTA) methods
tested on the Aruba dataset for ADL recognition use temporal features, in particular
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previous activity and begin time-stamp, which depend significantly on the current activity
(see Table 1 and Figure 1).

Table 1. Number of previous activity instances for activities selected in train and test sets.

Activity
Previous Activity

Work Wash_
Dishes

Sleeping Relax
Meal_

Preparation
Eating Bed_to_

Toilet
Enter_
Home

Leave_
Home

Work 10 2 0 29 4 1 0 8 0
Wash_Dishes 1 1 0 19 2 31 0 0 0

Sleeping 1 0 3 35 0 0 15 0 0
Relax 1 2 0 25 21 1 0 4 0

Meal_Preparation 1 0 13 15 19 1 0 5 0
Eating 0 0 0 2 43 8 0 1 0

Bed_to_Toilet 0 0 54 0 0 0 0 0 0
Enter_Home 0 0 0 0 0 0 0 0 54
Leave_Home 0 1 0 24 7 8 0 14 0

Figure 1. Number of current activity instances in terms of begin time-stamp.

Herein, we propose a deep-learning model for classifying ADLs from PIR binary
sensor data. The model uses a bidirectional long short-term memory (Bi-LSTM), a type of
recurrent neural network (RNN) and a fully connected neural network (FCNN) to extract
features and classify activities, respectively. The work is not focused on generalizing the
model over different houses and for residents with different habits.

The main contributions of this study are as follows:

• Use of the external temporal features, previous activity and begin time-stamp, that are
concatenated with extracted features by the Bi-LSTM before being fed into the FCNN
for classification;

• For Bi-LSTM, an input length is empirically determined to be 20 based on the highest
accuracy;

• F1 score difference between the models with/without external features was 28.8%;
• A comparison study on the model’s different architectures, with/without external

features and various number of nodes for Bi-LSTM, is conducted;
• For a fair comparison, the proposed model is evaluated on the CASAS Aruba public

dataset [76];
• The method outperforms the existing methods [62,72,78,79] with a relatively high F1

score of 0.917, which is an improvement of 6.25% compared with the existing best F1
score.
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The rest of this paper is organized as follows. Section 2 reviews other activity recogni-
tion methods, and Section 3 describes the present method for recognizing ADLs. Section 4
describes how the model was trained, tested, and compared with the other methods.
Section 5 discusses the results and Section 6 presents the conclusions.

2. Related Works

Previous studies have proposed models that use ML to recognize and classify ADLs
from the main data sources for doing so, namely wearable devices and smart homes
equipped with depth cameras and binary sensors.

An algorithm [31] was suggested for classifying six ADLs with two inertial mea-
surement units. The algorithm has four stages, that is, filtering, phase detection, posture
detection, and activity detection. It detects the body posture during static phases and recog-
nizes types of dynamic activities between postures using a rule-based approach. The model
achieves an overall accuracy of 84–97% for different types of activities. However, such
methods require intensive handcrafting when other activities are added and are sensitive to
distortion of input data. Deep-learning methods are used intensively to extract the features
for activity recognition. Bianchi et al. [32] proposed an HAR system based on a wearable
IoT sensor, for which the feature extractor was a CNN. The model achieved an accuracy of
92.5% on a standard dataset from the UCI ML Repository. A previous study [45] suggested
a model that detects falling and its precursor activity from an open dataset. For classifying
falls, the authors employed various methods that are support vector machines (SVMs),
random forest, and k-nearest neighbors, which achieve F1 scores of 0.997, 0.994, and 0.997,
respectively, and for classifying the precursor activities, they achieve F1 scores of 0.756,
0.799, and 0.671, respectively. The results of activity classification are not as good as those
of other models. Furthermore, although the systems based on wearable devices provide
accurate information about human activity, complications arise like (i) continuing to wear
the device, (ii) maintaining battery level, and (iii) attaching the device to the skin.

Systems based on RGB (red–green–blue) cameras [46–48] solve the aforementioned
problems associated with wearable devices. In a previous study [49], automated ML and
transfer learning were used to detect ADLs by analyzing the video from an RGB camera.
However, the use of RGB cameras raises privacy concerns.

Activity detection based on depth cameras is another popular method with high
precision and less invasion of privacy compared to normal camera images. Anitha et al. [53]
proposed an elderly-monitoring system that detects abnormal activities such as falls, chest
pain, headache, and vomiting from video sequences with a model based on a dynamic
Bayesian network. Image silhouettes are extracted from a normal video sequence that is
input to the model, and the model achieves an activity detection accuracy of 82.2%. Jalal
et al. [59] developed an HAR model using multiple hidden Markov models that are trained
for each specific action. For training and recognizing, the model extracts the features from
human depth silhouettes and body-joint information for human activities. The model
achieved recognition accuracies of 98.1% and 66.7% on the MSR Action 3D open dataset
and a self-annotated dataset, respectively. Hbali et al. [51] presented a method that extracts
a human-body skeletal model from depth-camera images, with the classifier being the
extremely-randomized-trees algorithm. Although it does not outperform similar models, it
provides the promising results with an accuracy of 73.43% on the MSR Daily Activity 3D
dataset. Activity recognition systems based on depth cameras are applicable and preferable
for the detailed activities such as arm waving or forward kicking, but they do not address
the privacy issue fully.

Equipping the living environment of an elderly person with binary sensors invades
her/his privacy less than the depth camera does, and it offers greater comfort by avoiding
the need to support a wearable device. Yala et al. [61] introduced several traditional ML
methods preceded with different feature-extraction techniques, where the highest F1 score
among the experimented methods was 0.662. Machot et al. [78] proposed an activity
recognition model that finds the best sensor set for each activity. They used an SVM as the
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classifier and achieved an F1 score of 0.82 on the Aruba dataset. Yatbaz et al. [72] suggested
two ADL recognition methods based on scanpath trend analysis (STA), one of which gives
the highest F1 score of 0.863 among the existing SoTA models [62,78,79] that are tested on
the Aruba dataset. Krishnan et al. [64] proposed a term previous activity in their two step
activity recognition method.

However, none of the aforementioned methods, except [64], use temporal features
such as begin time-stamp and previous activity. Figure 2 represents the prominence of external
features with stacked column chart, from correlation matrix of feature elements, where
vertical axis represents the sum of absolute values of each element for the matrix columns,
extracted and external features. External feature elements, with smallest values in the
chart, shows that they have less correlation with other features. Our proposed model
concatenates these temporal features, begin time-stamp and previous value, with the features
extracted by the RNN, and it outperforms the existing SoTA models with an F1 score of
0.917 on the Aruba dataset.

Figure 2. Stacked column graph of absolute values from correlation matrix of features.

3. Methods

The proposed model uses Bi-LSTM, a type of RNN, to extract the feature vectors from
an input data sequence, which are then combined with external features including previous
activity and begin time-stamp. The activity recognition is performed by an FCNN. The model
structure is empirically selected from extensive experiments over on different combinations
of modules (See Section 4.5 and Table 7).

3.1. Model Architecture

Figure 3 shows the architecture of the proposed model, where a pre-processed se-
quence of sensor data iT = {i0, i1, i2, . . . , i19} (see Section 3.3) is inputted to a Bi-LSTM,
which consists of an RNN with 60 nodes. Sensors does not send sensor status with con-
sistent frequency. Instead, they send sensor events with “ON” and “OFF” message upon
activations. Therefore, the length of the sensor data sequence is inconsistent for activity
instances. In order to align data sequence length, zero padding is used in front of the data
when the size is less than 20. For sequences longer than 20, the last 20 elements in the
sequence form the input data, formulated as follows:

i =

{
{z, s}T; l < 20
{sl−19, . . . , sl}T; l ≥ 20

(1)

where s is the activity sequence with length l.
The vector z represents the zero padding which converts the length of the input

sequence to 20 if it was shorter than 20.
Empirically, we chose Bi-LSTM over LSTM because of the higher performance, where

F1 score LSTM is 0.842 (See Table 7). Moreover, the number of nodes (60) was chosen
empirically at the value where the F1 score is stabilized (Figure 4). Because the RNN is
bidirectional (Bi-LSTM), its output dimensionality (120) is twice its number of nodes (60).
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Figure 3. Architecture of the proposed model with its data flow.

Figure 4. Graph of F1 score versus Bi-LSTM node.

The output vectors of the Bi-LSTM form a matrix B, where each row represents a
feature value and each column is a feature vector generated by the Bi-LSTM from the
corresponding element of the input sequence. Therefore, the size of matrix B (120 × 20) is
the result of the 60 nodes of the Bi-LSTM and 2 time steps in the input.

On top of this, the feature vector is formed by selecting the maximum value by the
max-pooling layer from each row of matrix B. This eliminates the time-step dependency of
the features for an activity and selects the maximum value of the feature after taking the
whole sequence into account. Each element of the feature vector is selected as

mk = max(bk1, bk2, bk3, . . . bk20) (2)

where k is the number of elements in the vector, which is the same as the row number of
rows of B.

The external feature vector e consists of previous activity p and begin time-stamp ts
[Equation (3)]. Vector e and the extracted feature vector m are concatenated to form vector
d [Equation (4)], which is then fed into the FCNN classifier:

eT = [pT, ts], (3)

dT = [mT, eT]. (4)

Previous activity p is given in 9 × 1 one-hot vector form where each element represents
an activity. Begin time-stamp ts, the beginning hour of the activity, corresponds to the
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current activity, whereas current activity is known to be dependent on previous activity.
Table 1 tabulates the number of previous activities’ instances with respect to the current
activity in the balanced dataset, where the values present a clear association between the
current activity and those that preceded it; for example, Sleeping happens mostly before
Bed_to_Toilet. Moreover, the stacked column chart of absolute values (Figure 2) from the
correlation matrix for all features, including extracted and external, reveals that previous
activity vector elements and begin time stamp are less correlated to other features.

The number of instances of begin time-stamp in terms of daily hours is represented in
Figure 1, where the three-dimensional graph exposes the associations between activities
and their starting time interval.

The FCNN executes the classification and consists of a 50-node hidden layer and a
nine-node output layer. Activation functions of the hidden and output layers are ReLu and
Sigmoid, respectively. The input vector d consists of three elements [Equations (3) and (4)]:
the feature vector m, the previous activity p, and the begin time-stamp ts. The fully connected
classification network is defined as

ah = ReLu
(

Whd + bh
)

(5)

ao = σ (Woa + bo) (6)

where ah and ao are the outputs of the hidden and output layers, respectively, of the
network.

3.2. Dataset

We used Aruba open data set from CASAS smart home project [76] to train and
evaluate our model. CASAS assembled 64 open datasets from equipped smart houses
inhabited by single or multiple residents for certain amounts of time. Its inhabitancy
duration and frequent use in model evaluations led us to use the Aruba testbed dataset
in the present work. As shown in Figure 5, Aruba is a smart house in which an elderly
lady lived alone for seven months. This house is equipped with 31 wireless binary motion
sensors, four temperature sensors, and four door sensors. Because we used only motion
sensor data, from all 31 motion sensors and four door sensors, the temperature sensors are
not depicted in Figure 5 [77].

Figure 5. Aruba testbed layout where motion and door sensors are depicted.
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The open dataset is formatted as shown in Figure 6, where each instance consists of
date, time, sensor status, and annotations. The dataset is a list of actions lasting for 219 days
from 4 November 2010 to 6 November 2011, and it comprises 1′719′557 registered events in
total. Figure 6 lists the sensor instances of two actions, namely Sleeping and Bed_to_Toilet,
which happened during the night of 15 May 2011. Here, the activity Bed_to_Toilet happens
between two Sleeping activities, which is intuitive.

Figure 6. Format of Aruba dataset.

3.3. Preprocessing of Dataset

For a fair comparison, we used the same data preprocessing method as the one
described in [72]. The Aruba dataset contains 1′719′557 raw sensor samples in total. First,
we removed all irrelevant samples, i.e., temperature sensor samples, from the dataset,
leaving 1′602′981 samples. Moreover, for the sake of formatting, the door sensor statuses of
“OPEN” and “CLOSE” were replaced with “ON” and “OFF”, respectively. Various incorrect
labels of the sensor status “OFF” (e.g., “OF” and “OFF5”) were replaced with “OFF”. After
these steps, the external features, i.e., previous activity and begin time stamp, of each activity,
are extracted from the dataset and merged with sensory data of each activity instances. We
employed 10-fold cross-validation to evaluate the proposed method, ignoring the activities
of Housekeeping and Respirate because they had only 33 and six samples, respectively. The
Aruba dataset is imbalanced in terms of the number of samples for each class, ranging from
six to 2919 as shown in Table 2. To balance the dataset, 60 samples were selected randomly
from each class; thus, six samples were allocated for each fold. Therefore, for each fold
evaluation, 90% (54 samples) and 10% (six samples) of the particular class samples were
used as the training set and the testing set, respectively.

Table 2. Number of Instances for Activities.

Activities Number of Instances

1 Meal_Preparation 1606
2 Relax 2919
3 Eating 257
4 Work 171
5 Sleeping 401
6 Wash_Dishes 65
7 Bed_to_Toilet 157
8 Enter_Home 431
9 Leave_Home 431
10 Housekeeping 33
11 Respirate 6
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Figure 7 represents a F1 scores vs. input data length graph. Empirically, the highest
F1 score of 0.917 is given against input data length of 20. Therefore we set the input data
length as 20 for reducing the computational complexity. In case of the data length of an
activity which is less than 20 zero padding is used to fit the sequence to the model input.

Figure 7. Sample distribution in terms of sensor events.

3.4. Evaluation Measures

Via one of the most commonly used model-validation techniques, we used stratified
10-fold cross-validation to assess our model. For a fair comparison, we selected 60 samples
randomly from each activity sample set, resulting in 540 random samples in total. The
selected sample set was partitioned into two subsets, namely the training set and the testing
set, with 90% and 10%, respectively, of the samples of each activity. Therefore, 54 and six
samples were allocated for train and test sets, respectively.

The proposed model was evaluated in terms of the following measures: Recall, Preci-
sion, F1 score, Specificity, Accuracy, and Error. These measures were calculated from the
model’s numbers of true and false prediction: TP (true positive), TN (true negative), FP (false
positive), and FN (false negative) [62]. Evaluation scores of the model are averaged scores
from the results of five different models trained and tested on five different sample sets.

3.5. Technical Specifications

Model training was performed on a DGX1 supercomputer, whereas the testing was
performed on an ordinary server computer. The server computer was a Dell Workstation
7910 with a six-core Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60 GHz, 16 GB RAM, and GTX
Titan X GPU.

4. Results

We used stratified 10-fold-cross validation for evaluation of the models. Each row of
Table 3, Table 4 and Table 7 represent the weighted average of 10-fold evaluation results of
five different models that are trained on five different datasets.

4.1. Activity Recognition with Extra Features

Table 3 presents the results for the model with the external features of previous activity
and begin time-stamp. The normalized values of the confusion matrix for the activities are
presented on the left side of the table, while the performance measures of Precision, Recall,
Specificity, F1 score, Accuracy, and Error are presented on the right side. The best perfor-
mance of the model was achieved for the Enter_Home activity, where its Precision, Recall,
Specificity, F1 score and Accuracy were 0.997, 1.000, 1.000, 0.978, and 99.96%, respectively.
The second and third-best performances were for the Bed_to_Toilet and Leave_Home
activities, with F1 scores of 0.990 and 0.987, respectively. The worst-recognized activities
were Meal_Preparation and Wash_Dishes, with F1 scores of 0.824 and 0.821, respectively.
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The F1 score of Wash_Dishes was 17.6% lower than that of the best-recognized activity
(Enter_Home).

4.2. Activity Recognition without Previous Activity Feature

Table 4 tabulates the results for the model without accounting for the external feature
of previous activity. The best-recognized activity was Bed_to_Toilet, where its Precision,
Recall, Specificity, F1 score, and Accuracy were 0.907, 0.973, 0.988, 0.939, and 98.59%,
respectively. The second-best-recognized activity was Sleeping, where its Precision, Recall,
Specificity, F1 score, and Accuracy were 0.952, 0.793, 0.995, 0.865, and 97.26%, respectively.
The worst-recognized activity was Leave_Home, with an F1 score of 0.526, which was 44%
lower than the highest F1 score of the Bed_to_Toilet activity.

Furthermore, the best F1 score of this model was 5.9% lower than the highest F1 score
of the model with the previous activity feature (Table 3). On the other hand, the lowest F1
score of this model was 35.9% lower than the worst F1 score of the model with the previous
activity.

4.3. Classification Results on the Remaining Dataset

The confusion matrix and performance measure Recall on the remaining dataset are
represented in Table 5. The best-recognized activities are Enter_Home, Bed_to_Toilet and
Leave_Home with Recall of 0.998, 0.997 and 0.990, respectively. The worst-recognized
activities are Meal_Preparation and Wash_Dishes with a Recall measure of 0.825 and 0.860,
respectively. The worst-recognized activity Meal_Preparation’s performance measure
Recall is 17.3% lower than the best-performer’s result. The overall average of performance
measure Recall on the remaining dataset is 0.923.

4.4. Real-Time Activity Recognition with a Predicted Previous Activity Feature

For all the previously mentioned experiments, the previous activity feature was a
ground truth which is extracted from the dataset. Table 6 represents weekly-basis real-life
scenario activity recognition results on the whole 6 months dataset where the previous
activity feature were predicted (not the ground truth) by the proposed method. For the sake
of simplicity, we chose to report the weekly-basis results as the daily-basis results were
similar. We used the very first activity, the ground truth, of the week where the start of the
week was set with Sleeping activity, as a previous activity feature for the second activity.
After predicting the second activity, the predictions are used as a previous activity feature for
its next activity. In Table 6, a confusion matrix and Recall measure (Recall is chosen as the
dataset is severely imbalanced) of the test result is tabulated. The best recognized activities
are Work, Leave_Home and Enter_Home with Recall of 0.977, 0.972 and 0.970, respectively.
The worst recognized activities are Meal_Preparation and Eating, with a Recall of 0.714
and 0.850, respectively.

For a comparison, the best Recall measure of the model with predicted previous activity
feature is 2.14% lower than the Recall measure of the model with the ground truth previous
activity feature (Table 5) while the worst recognized activity of the model with the predicted
previous activity feature is 15.54% lower than the Recall measure of the worst recognized
activity of the model with ground truth previous activity feature (Table 5).
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Table 3. Confusion Matrix for Activities and Evaluation of Model with Previous Activity Feature.

Activity
Prediction

Work Wash_Dishes Sleeping Relax Meal_Preparation Eating Bed_to_Toilet Enter_Home Leave_Home Precision Recall Specificity F1 Score Accuracy Error

Work 0.913 0.007 0.040 0.010 0.000 0.027 0.000 0.000 0.003 0.881 0.913 0.985 0.897 97.667 2.333
Wash_Dishes 0.010 0.833 0.000 0.013 0.133 0.010 0.000 0.000 0.000 0.809 0.833 0.975 0.821 95.963 4.037

Sleeping 0.047 0.000 0.937 0.010 0.000 0.003 0.003 0.000 0.000 0.934 0.937 0.992 0.935 98.556 1.444
Relax 0.023 0.003 0.010 0.900 0.013 0.047 0.000 0.000 0.003 0.918 0.900 0.990 0.909 98.000 2.000

Meal_Preparation 0.003 0.173 0.003 0.000 0.817 0.003 0.000 0.000 0.000 0.831 0.817 0.979 0.824 96.111 3.889
Eating 0.040 0.010 0.010 0.047 0.020 0.873 0.000 0.000 0.000 0.907 0.873 0.989 0.890 97.593 2.407

Bed_to_Toilet 0.000 0.000 0.003 0.000 0.000 0.000 0.990 0.000 0.007 0.990 0.990 0.999 0.990 99.778 0.222
Enter_Home 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.997 1.000 1.000 0.998 99.963 0.037
Leave_Home 0.000 0.003 0.000 0.000 0.000 0.000 0.007 0.003 0.987 0.987 0.987 0.998 0.987 99.704 0.296

Mean value (all) 0.917 0.917 0.990 0.917 98.148 1.852

Table 4. Confusion Matrix for Activities and Evaluation of model without Previous Activity Feature.

Activity
Prediction

Work Wash_Dishes Sleeping Relax Meal_Preparation Eating Bed_to_Toilet Enter_Home Leave_Home Precision Recall Specificity F1 score Accuracy Error

Work 0.870 0.000 0.02 0.037 0.000 0.073 0.000 0.000 0.000 0.759 0.870 0.965 0.811 95.481 4.519
Wash_Dishes 0.007 0.617 0.000 0.003 0.360 0.013 0.000 0.000 0.000 0.613 0.617 0.951 0.615 91.407 8.593

Sleeping 0.143 0.000 0.793 0.033 0.000 0.027 0.003 0.000 0.000 0.952 0.793 0.995 0.865 97.259 2.741
Relax 0.073 0.017 0.003 0.827 0.01 0.06 0.007 0.000 0.003 0.808 0.827 0.975 0.817 95.889 4.111

Meal_Preparation 0.007 0.343 0.000 0.000 0.630 0.02 0.000 0.000 0.000 0.618 0.630 0.951 0.624 91.556 8.444
Eating 0.037 0.023 0.01 0.123 0.02 0.787 0.000 0.000 0.000 0.803 0.787 0.976 0.795 95.481 4.519

Bed_to_Toilet 0.000 0.000 0.003 0.000 0.000 0.000 0.973 0.02 0.003 0.907 0.973 0.988 0.939 98.593 1.407
Enter_Home 0.007 0.003 0.003 0.000 0.000 0.000 0.023 0.653 0.310 0.578 0.653 0.940 0.613 90.852 9.148
Leave_Home 0.003 0.003 0.000 0.000 0.000 0.000 0.067 0.457 0.470 0.597 0.470 0.960 0.526 90.593 9.407

Mean value (all) 0.737 0.736 0.967 0.734 94.123 5.877

Table 5. Confusion Matrix for Remaining Activities and Recall Measure.

Activity
Prediction

Work Wash_Dishes Sleeping Relax Meal_Preparation Eating Bed_to_Toilet Enter_Home Leave_Home Recall

Work 0.880 0.000 0.003 0.034 0.000 0.082 0.000 0.000 0.001 0.880
Wash_Dishes 0.000 0.860 0.000 0.008 0.132 0.000 0.000 0.000 0.000 0.860

Sleeping 0.040 0.000 0.946 0.006 0.001 0.007 0.001 0.000 0.000 0.946
Relax 0.053 0.005 0.006 0.915 0.009 0.008 0.000 0.000 0.004 0.915

Meal_Preparation 0.001 0.161 0.000 0.005 0.825 0.008 0.000 0.000 0.000 0.825
Eating 0.021 0.008 0.000 0.045 0.029 0.896 0.000 0.000 0.000 0.896

Bed_to_Toilet 0.000 0.000 0.001 0.000 0.000 0.000 0.997 0.000 0.001 0.997
Enter_Home 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.998 0.000 0.998
Leave_Home 0.002 0.002 0.001 0.002 0.000 0.001 0.003 0.000 0.990 0.990

Mean value (all) 0.923
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Table 6. Confusion Matrix for Activities and Evaluation of model with Predicted Previous Activity Feature.

Activity
Prediction

Work Wash_Dishes Sleeping Relax Meal_Preparation Eating Bed_to_Toilet Enter_Home Leave_Home Recall

Work 0.977 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.977
Wash_Dishes 0.000 0.969 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.969

Sleeping 0.030 0.000 0.965 0.003 0.003 0.000 0.000 0.000 0.000 0.965
Relax 0.018 0.007 0.007 0.958 0.008 0.002 0.000 0.000 0.000 0.958

Meal_Preparation 0.001 0.282 0.000 0.001 0.714 0.003 0.000 0.000 0.000 0.714
Eating 0.000 0.041 0.000 0.065 0.045 0.850 0.000 0.000 0.000 0.850

Bed_to_Toilet 0.000 0.000 0.000 0.007 0.000 0.000 0.966 0.000 0.028 0.966
Enter_Home 0.000 0.000 0.000 0.002 0.000 0.000 0.019 0.970 0.009 0.970
Leave_Home 0.000 0.002 0.000 0.000 0.000 0.002 0.019 0.005 0.972 0.972

Mean value (all) 0.927

4.5. Comparison Study of Proposed Model with Different Combinations of Internal Modules

Table 7 represents the 10-fold cross-validation results of a comparative study of the
proposed model with and without external features for unidirectional and bidirectional
LSTM RNNs with different numbers of nodes. The best F1 score is 0.917 for model 3, which
has a Bi-LSTM with 60 nodes as a feature extractor and two external features, previous
activity and begin time-stamp. The second-best F1 score was 0.905 for model 4, which consists
of external features and a Bi-LSTM with 50 nodes. Furthermore, the third-best F1 score was
0.892 for model 7, which has only one external feature (previous activity) and a Bi-LSTM with
60 nodes. The worst F1 score was 0.495 for model 2, which has a 60-node unidirectional
LSTM feature extractor but no external features.

4.6. Training vs. Testing Accuracy

For training and testing the model, the 10-fold cross validation is used (See
Sections 3.2–3.4). Figure 8 represent train and test graphs for accuracy and loss func-
tion after 60 epochs. Train and test curves converge and final values exceed 0.9 for accuracy
and is lower than 0.1 for a loss function.

Table 7. Comparison Results of Proposed Model with Different Combinations of Modules.

Model Previous
Activity

Begin
Timestamp

No. of LSTM
Nodes

No. of
Bi-LSTM

Nodes
Precision Recall Specificity F1

Score Accuracy Error

1 X X 60 - 0.844 0.843 0.980 0.842 96.510 3.490
2 - - 60 - 0.495 0.484 0.935 0.474 88.527 11.473
3 X X - 60 0.917 0.917 0.990 0.917 98.148 1.852
4 X X - 50 0.906 0.905 0.988 0.905 97.893 2.107
5 X X - 20 0.886 0.885 0.986 0.885 97.440 2.560
6 - X - 60 0.737 0.736 0.967 0.734 94.123 5.877
7 X - - 60 0.893 0.891 0.986 0.892 97.588 2.412
8 - - - 60 0.711 0.714 0.964 0.712 93.654 6.346

Figure 8. Train and Test accuracy.
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4.7. Classification Latency

The average classification latency of the model for each activity is 26.4 ms, and
the maximum latency is 30.3 ms, as represented in Table 8. Because the classification
latency is less than 30 ms, which is within the industrial IoT system latency requirement
of 100 ms [80], the model can be used in an IoT-based real-time privacy-preserving ADL
recognition system. The latency measurement was performed on a server with moderate
specifications (Section 3.5).

Table 8. Maximum Classification Latency for Each Activity.

Activity Classification Time [s]

1 Meal_Preparation 0.0303
2 Relax 0.0295
3 Eating 0.0257
4 Work 0.0275
5 Sleeping 0.0257
6 Wash_Dishes 0.0249
7 Bed_to_Toilet 0.0246
8 Enter_Home 0.0250
9 Leave_Home 0.0247
10 Average 0.0264
11 Absolute maximum 0.0303

4.8. Comparison with SoTA Models

Table 9 (fair) and Table 10 (non-fair) compare the proposed model with existing
SoTA models: [62] by Gochoo et al. [72] by Yatbaz et al. [78,79] by Machot et al. that
were evaluated on CASAS Aruba dataset. Table 9 represents a fair comparison with two
models [62,72] which are evaluated with the same technique in their studies (Section 3.4).
The proposed model outperformed these two SoTA models in a fair comparison with an F1
score of 0.917, which is 6.26% and 16% higher than those of the second-best-performing
model STA [72] and our previous study [62], respectively (Table 9).

Table 9. Comparing Present Model with Existing Models.

No. Model Year F1 Score

1 DCNN Gochoo et al. [62] 2018 0.79
2 STA Method 2 Yatbaz et al. [72] 2019 0.863
3 Our model Proposed 0.917

Table 10. Non-fair Comparing Present Model with Existing Models.

No. Model Year F1 Score

1 P-SVM Machot et al. [77] 2017 0.82

2 RNN model Machot et al. [78] 2018 0.85

3 Our model Proposed 0.917

Machot et al. [78,79] respectively employed an SVM and RNN as a classifier and they
are evaluated on a CASAS Aruba dataset. While both studies [78,79], used 10-fold cross
validation technique to evaluate their classification models, [78] used imbalanced dataset
with classification penalty and [79] used Synthetic Minority oversampling technique [81]
to make the dataset balanced. Table 10 represents comparison of our model achieving an
F1 score that is 11.8% and 7.88% higher than those of the models in [78,79]. Although [72],
the latest and highest performer of classification task on CASAS Aruba dataset claims that
they outperformed these models of [78,79], moreover, due to the difference of sampling
methods used in [78,79] for preparing datasets, Table 10 is not a fair comparison.
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5. Discussion

Concatenating the external features of previous activity and begin time-stamp to the
extracted features from Bi-LSTM gives remarkable results on classifying ADLs from binary
sensor data. Our model outperforms all the SoTA models on the Aruba testbed dataset,
where its F1 scores range between 0.821 and 0.998 with an average of 0.917.

The model predicts some activities much better than do other models, such as
Meal_Preparation, Eating, Wash_Dishes, Enter_Home, and Leave_Home, because of
adding extra features, especially previous activity. For example, the Enter_Home activ-
ity is classified with 99.96% accuracy (Table 3) because it always occurs after Leave_Home.

We chose to have 60 nodes in the Bi-LSTM as a trade-off between computational
complexity and accuracy (see Figure 4). As it can be seen from Table 7, the F1 score of the
model decreases to 0.905 and 0.855 when only 50 and 20 nodes are respectively used.

Training and testing accuracy and loss graphs represent good fit of the model by
converging and having high values greater than 0.9 for accuracy and low values, less than
0.1, for loss function (Figure 8).

The worst activity recognition of our model is on Wash_Dishes with an F1 score of
0.821; nevertheless, this is 0.12% and 3.92% higher than the average F1 scores of existing
models [62,78], respectively.

The model is tested on remaining dataset which was not part of the balanced dataset
to train and test the model. Instead of taking F1 score as the main measure, the performance
measure Recall represents reasonable results since the remaining part of the dataset is
imbalanced.

The model is evaluated with a predicted (not the ground truth) previous activity feature
on weekly activity sequences to simulate a real-life scenario activity recognition (Table 6),
as well. The results show a reasonably high Recall of 0.927. However, as expected, the best
and worst Recall measures were degraded down 2.14% and 15.54%, respectively, compared
to the model performance with ground truth previous activity feature (Table 5).

As well as outperforming the SoTA models, the classification latency of the proposed
model is less than 30 ms, which is fast enough for an IoT-based real-time privacy-preserving
activity recognition system.

The model’s worst performance is on classifying between the activities of Meal_
Preparation and Wash_Dishes due to the two actions occurring in the same location in the
house, namely the kitchen. This classification could be improved by placing other sensors
(e.g., temperature, humidity) in the kitchen.

Although the external feature begin time-stamp improved the performance of the model,
its contribution to the F1 score was not as great as that of the external feature previous activity
(Table 7). Despite the fact that the external feature previous activity has prominent effect on
the model performance, it might mislead to misclassification when wrong previous activity
is generated automatically from previous step of classification.

Due to lack of similar datasets, our model is trained and tested only on CASAS dataset.
If the model is employed to classify daily activities of a new resident, it is necessary for the
model to have a learning phase in order to capture the resident’s daily activity pattern.

6. Conclusions and Future Works

We proposed a privacy-preserving activity recognition model concatenating Bi-LSTM
extracted features and external temporal features for classifying the ADLs of an elderly
person living alone. The dataset used to train and test the model was the CASAS Aruba
open dataset, which was collected from binary sensors in a smart home in which an elderly
resident lived alone for seven months. The model outperformed the existing SoTA models
with the highest F1 score of 0.917, which was 6.26% better than that of the best existing
model. Moreover, a classification latency of less than 30 ms allows our model to be placed
in a server of an IoT-based ADL recognition system.

For future work, the worst activity classifications, namely those of Meal_Preparation
and Wash_Dishes, both of which take place in the kitchen, should be improved by adding
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other sensors such as a thermometer, a humidity meter, and an ammeter for electrical
appliance. Moreover, a multi-resident activity recognition model should be developed for
elderly-monitoring IoT systems.
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