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Abstract

Background: To appraise the ability of a radiomics based analysis to predict local response and overall survival for
patients with hepatocellular carcinoma.

Methods: A set of 138 consecutive patients (112 males and 26 females, median age 66 years) presented with
Barcelona Clinic Liver Cancer (BCLC) stage A to C were retrospectively studied. For a subset of these patients
(106) complete information about treatment outcome, namely local control, was available. Radiomic features
were computed for the clinical target volume. A total of 35 features were extracted and analyzed. Univariate
analysis was used to identify clinical and radiomics significant features. Multivariate models by Cox-regression
hazards model were built for local control and survival outcome. Models were evaluated by area under the
curve (AUC) of receiver operating characteristic (ROC) curve. For the LC analysis, two models selecting two
groups of uncorrelated features were analyzes while one single model was built for the OS analysis.

Results: The univariate analysis lead to the identification of 15 significant radiomics features but the analysis
of cross correlation showed several cross related covariates. The un-correlated variables were used to build
two separate models; both resulted into a single significant radiomic covariate: model-1: energy p < 0.05, AUC
of ROC 0.6659, C.I.: 0.5585–0.7732; model-2: GLNU p < 0.05, AUC 0.6396, C.I.:0.5266–0.7526.
The univariate analysis for covariates significant with respect to local control resulted in 9 clinical and 13 radiomics
features with multiple and complex cross-correlations. After elastic net regularization, the most significant covariates
were compacity and BCLC stage, with only compacity significant to Cox model fitting (Cox model likelihood ratio test
p < 0.0001, compacity p < 0.00001; AUC of the model is 0.8014 (C.I. = 0.7232–0.8797)).

Conclusion: A robust radiomic signature, made by one single feature was finally identified. A validation phases, based
on independent set of patients is scheduled to be performed to confirm the results.
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Background
Hepatocellular carcinoma (HCC) is the third cause of can-
cer death and one of the most challenging oncological
problems [1]. Surgery, although providing survival rates
up to 70% at 5 years [2], is viable in a small fraction of
patients (less than 1/3) because of advanced stage at diag-
nosis. In this clinical setting the use of radiotherapy was
limited by severe radiation induced liver disease (RILD)
[3–7]. After the introduction of intensity modulated radio-
therapy (IMRT) and Volumetric modulated Arc Therapy
(VMAT), a new hope emerged for radiotherapy in HCC
patients [8–10]. Preliminary valuable data resulting from
the use of VMAT also in association with stereotactic
body radiation therapy (SBRT), were proved [11–14]. In
this context, it would be important to develop and vali-
dated tools capable to predict for individual patients, the
likelihood of tumor control and possibly of survival in
order to better personalize the treatment offering. Tex-
tural analysis of diagnostic images is a very broad area of
research which might lead to the definition of such tools.
In particular, radiomics is an emerging field that converts
imaging data into a high dimensional mineable feature
space using a large number of automatically extracted
data-characterization algorithms [15, 16]. Radiomics has
being evaluated, in oncology, also as a potential prognostic
indicator, useful for classifying patients and evaluating
their assignment to risk categories in order to customize
and tailor the prescribed oncological treatments [17–19].
While several investigations has been published on the
use of radiomics in many cancer models [20–22] and the
correlation between radiomics signatures to radiation
treatment outcome, little is available for liver cancer.
In general, some studies were published concerning

the use of texture analysis in the liver (primary hepato-
cellular carcinoma or metastatic disease) to either clas-
sify the lesion type or to facilitate the therapeutic
decision. Echegaray [23] investigated (retrospectively on
29 patients with HCC) the possibility to identify robust
radiomics features in CT image datasets, insensitive to
segmentation processes and identified them in the inten-
sity and texture families. The study was done testing
multiple manual contouring by different radiologists and
identifying automatic “core sample” regions of interest
for the textural analysis. Chen [24] analyzed the prognos-
tic value of texture features for hepatocellular carcinoma
on a cohort of 61 patients who underwent hepatectomy.
CT textural characteristics allowed to identify higher
order features with potential prognostic value outperform-
ing the more traditional predictors like the Barcelona
Clinic Liver Cancer (BCLC) stage. Li [25] explored the
potential of CT textural analysis to stratify patient with
HCC and to help in the determination of the optimal
therapeutic procedure among resection or arterial
chemoembolization. Authors claimed that wavelet

decomposition allowed a successful stratification of the
patients although further validation was required. Raman
[26] used radiomics analysis of CT data to classify differ-
ent liver lesions types, with specific regard to hyper-
vascularization. The predictive model they trained and
validated (on a retrospective cohort) allowed to correctly
classify adenomas, focal nodular hyperplasia and hepato-
cellular carcinoma with accuracy in the range of 91–99%
while human observers had a correspondent accuracy in
the range of 66–72%. Lubner [27] appraised the role of
radiomics analysis of CT images for hepatic metastatic
colorectal cancer, finding that primarily histogram based
features were significantly associated to tumor grade in
untreated liver metastases suggesting that two-
dimensional (2D) texture analysis on single slices might be
adequate. Similarly, Simpson [28] studied the correlation
between texture analysis of CT datasets versus the risk of
hepatic recurrence after resection of liver metastases in
colorectal cancer patients. The hypothesis was that radio-
mics features could be predict the risk of future recur-
rence. The results confirmed that quantitative imaging
features of the future liver remnant (after first resection)
were predictive of hepatic disease-free survival (as well as
of overall survival).
Literature search with various combinations of keywords

like “radiomics” or “texture analysis” (and variants) in rela-
tion to “liver” and “radiotherapy” (and variants) did not
provide any, suggesting that no published data might exist
on the role of radiomics in the assessment and prediction
of radiation treatment outcome for HCC patients.
In this study we present the results of a feasibility

investigation aiming to identify possible radiomics signa-
ture applied to HCC patients for detecting a prognostic
classification of such patients. Endpoints for the study
were overall survival and the local control of the tumor
after radiation treatment administered with volumetric
modulated arc therapy.

Methods
Patients and treatment
Hundred thirty-eight consecutive HCC patients pre-
sented BCLC stage A to C and were eligible for curative
or palliative radiotherapy and treated with VMAT as pre-
viously detailed in the retrospective analysis [29, 30]. All
selected patients in the original retrospective study were
either inoperable or not eligible for trans-arterial chemo
embolization (TACE) treatments and received radiother-
apy as primary treatment. In brief, patients with BCLC
stages A to C, Child-Pugh stages A-B with single lesions
larger than 5 cm or multi-nodular lesions larger than
3 cm were considered as eligible for radiotherapy. Portal
vein thrombosis was present in about 53.6% of the cases.
Dose prescription ranged from 45 Gy to 66 Gy depend-
ing upon stage, location of target and its size and general
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conditions of patient. All patients were treated with
volumetric modulated arc therapy.
All patients were included in this new retrospective

analysis and two cohorts (full or restricted) were defined
according to the availability of survival data (available
for all patients) and of objective response (for local con-
trol, available in a subset of patients).
All patients were treated between February 2009 and

December 2010 according to the Helsinki declaration;
ethical approval for retrospective analysis of data was
provided by the institutional ethical review board.
Clinical evaluation was performed, with reference to

baseline conditions: basic treatment outcome was mea-
sured in terms of in-field local control (visits included
laboratory assessment and CT and MRI imaging (at 2 to
3 month intervals for at least 2 years and at 6 month in-
tervals thereafter)) and patient overall survival and it
was scored continuously with a median follow-up of
9 months (minimum 1 month, maximum 28 months).
Tumor response was assessed using Response Evaluation
Criteria in Solid Tumors (RECISTs) criteria. Local in
field recurrence was defined by new enhancement or
progressive disease with CT or MRI imaging during
follow-up.

Radiomics image analysis
The entire dataset of the treatment planning non-
contrast enhanced CT images, all acquired with 3 mm
slice thickness with an in-plane resolution of 0.8 mm,
was analyzed to extract a number of textural features
from the clinical target volumes contoured for the radio-
therapy plans. The volumes subject to the textural ana-
lysis were defined as the clinical target volumes (CTV)
manually contoured for the radiation treatment. The fea-
ture extraction was performed by means of the LifeX
package [31, 32]. A total of 35 features were extracted
from the analysis of the volumes inspected. These indi-
ces included conventional parameters, shape and size
features, histogram-based features, second and high
order-based features. The gray-level co-occurrence
matrix (GLCM) [33]; the neighborhood gray-level differ-
ent matrix (NGLDM) [34]; the grey level run length
matrix GLRLM) [35] and the grey level zone length
matrix (GLZLM) [36] were computed for each patient.
The list of the corresponding features is provided in
Table 1 while a detailed description of all the features,
can be found in [37].
In addition to these groups, other parameters were de-

rived for each volume: the sphericity and the compacity
which measure the characteristics of the shape of the vol-
ume relatively to its regularity and compactness. From the
histogram of the gray level distribution in the volume, a set
of further parameters was obtained: the skewness (measure
of the asymmetry of the distribution), the kurtosis

(measuring weather the distribution is peaked or flat rela-
tive to a normal distribution), the entropy (randomness of
the distribution) and the energy (uniformity of the
distribution).

Table 1 Summary of the textural features used for the analysis

Feature name Symbol/abbreviation

Geometry based and histogram based features

Sphericity –

Compacity –

Skewness –

Kurtosis –

Entropy Entropy_H

Energy Energy_H

Gray-level co-occurrence matrix (GLCM)

Homogeneity –

Energy –

Contrast –

Correlation –

Entropy –

Dissimilarity –

Neighborhood gray-level different matrix (NGLDM)

Contrast

Coarness

Grey level run length matrix GLRLM)

Short-Run Emphasis SRE

Long-Run Emphasis LER

Low Gray-level Run Emphasis LGRE

High Gray-level Run Emphasis HGRE

Short-Run Low Gray-level Emphasis SRLGE

Short-Run High Gray-level Emphasis SRHGE

Long-Run Low Gray-level Emphasis LRLGE

Long-Run High Gray-level Emphasis LRHGE

Gray-Level Non-Uniformity for run GLNU

Run Length Non-Uniformity RLNU

Run Percentage RP

Grey level zone length matrix (GLZLM)

Short-Zone Emphasis SZE

Long-Zone Emphasis LZE

Low Gray-level Zone Emphasis LGZE

High Gray-level Zone Emphasis HGZE

Short-Zone Low Gray-level Emphasis LZLGE

Short-Zone High Gray-level Emphasis LZHGE

Long-Zone Low Gray-level Emphasis LZLGE

Long-Zone High Gray-level Emphasis LZHGE

Gray-Level Non-Uniformity for zone GLNU

Zone Length Non-Uniformity Zone Percentage ZP
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Statistical analysis
Statistical analysis was performed using the open
source R platform [38]. Univariate analysis was ad-
dressed to all clinical covariates (derived from the
earlier retrospective analysis [29, 30] and defined as
age, sex, portal vein thrombosis, tumor location,
AJCC stage, BCLC stage, Okuda stage, Child-Pugh
stage, previous Hepatitis, initial alpha-feto protein
level, total radiotherapy treatment dose) and radio-
mics features in order to identify the most relevant
predictors for clinical response using Pearson’s correl-
ation test. Afterwards, for each radiomics covariate a
procedure for detecting the threshold that better
splits the different patient’s populations (responders
and not-responders) was set up by dividing the popu-
lation into group with a continuously moving covari-
ate value in the range of all available values. The best
threshold was defined as the value that obtains the
lowest p value in the Pearson’s correlation test. A
similar procedure has been set for the survival end-
point by using log-rank test p value in the Kaplan
Meier statistic. The lowest p value corresponds even
in this case to the best threshold separating popula-
tions. The mutual correlation between features was
evaluated for the best performing covariate (p ≤ 0.05),
in order to assess potential results redundancy. Co-
variates showing Pearson correlation test p ≥ 0.05 were
considered not cross-related and used for multivariate
analysis. Multivariate analysis was performed by logis-
tic regression with backward elimination of not sig-
nificant covariates for clinical response and by Cox-
regression hazards model for survival. Models were
evaluated by area under the curve (AUC) of receiver
operating characteristic (ROC) curve. The standard
ROC curve was computed by testing the sensitivity
and specificity of the models in predicting the out-
come from the selected predictors from the model.
Calibration was evaluated with Hosmer and Lemen
show goodness of fit test, p > 0.05 are accounted of
not significant deviance from the theoretical perfect
calibration. Missing value were dealt omitting cases
not having all the variables available for analysis. In
the survival analysis, the selection of covariates was
obtained by elastic net regularization process in order
to deal with multiple cross related covariates and re-
duce the risk of overfitting of the data. The elastic
net regularization was introduced by Zou and Hastie
[39] and aimed to improve both the accuracy of the
prediction and the interpretation of the models. Elas-
tic net regularization does automatic variable selection
and continuous shrinkage, and can select groups of
correlated variables allowing to identify the best pre-
dictors when a set of predictors is much more larger
than the number of cases. Overall survival analysis

was performed on the unrestricted dataset and local
control on the restricted dataset.

Results
A total number of 138 patients were enrolled in the
study (full dataset - FD). Patients characteristics are
summarized in Table 2. For all of them survival was

Table 2 Demographic and clinical characteristics of the cohort
of patients (full dataset)

Sex Female: 26 (18.4%)

Male: 112 (79.4%)

Age [years] Mean: 64

Median: 66

St.dev: 11

Range: 30–87

Portal Vein Thrombosis No: 64 (46.4%)

Yes: 74 (53.6%)

Tumour location Right lobe: 57 (41.3%)

Left lobe: 10 (7.2%)

Bilateral: 71 (51.4%)

Stage T T1: 8 (5.8%)

T2: 10 (7.2%)

T3: 120 (86.9%)

Stage N N0: 114 (82.6%)

N1: 24 (17.4%)

Stage M M0: 116 (84.1%)

M1: 22 (15.9%)

AJCC Stage I: 7 (5.1%)

II: 9 (6.5%)

III: 83 (60.1%)

IV: 39 (28.3%)

Okuda Stage I: 31 (22.4%)

II: 109 (77.6%)

BCLC Stage A: 9 (6.5%)

B: 29 (21.0%)

C: 100 (72.5%)

Child-Pugh Stage A: 96 (69.6%)

B: 42 (30.4%)

Hepatitis (B/C) No: 19 (13.8%)

Yes: 119 (86.2%)

Initial Alpha-feto protein (ng/mL) Mean: 11481

Range: 2.4, >58300

Dose prescription 54Gy: 16 (11.6%)

60Gy: 114 (82.6%)

66Gy: 8 (5.8%)

Values refer to number of patients, % are relative to the total number of
138 patients
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available, but objective response (to determine local con-
trol) was only evaluated in a subset of cases (106, re-
stricted dataset - RD). The analysis of overall survival
showed a median OS of 10.1 months, with a median fol-
low up time of 16.6 months.

Objective response (LC) analysis
Univariate analysis over clinical response versus radiomics
features in FD using mobile threshold showed significant
p values for skewness (threshold 6.87, p < 0.05), contrast
(threshold 40.22, p < 0.01), and dissimilarity (threshold
4.37, p < 0.01); only the latter was used returning a better
correlation with the outcome. Multivariate analysis with
backward elimination, using the full range of covariates
values didn’t return any significant result. Using the
thresholding of covariates and dealing them as factors led
to obtain a logistic multivariate model with only contrast
as significant covariate (p < 0.05), the AUC of ROC of the
model was 0.6649 (C.I. 0.5693–0.7605).
The univariate analysis of RD showed several significant

covariates. Results are summarized in Table 3. Analysis of
cross correlation (Fig. 1) showed several cross related co-
variates, so only covariates with Pearson’s correlation test
p > 0.05 were used for multivariate analysis in two different
logistic models (Table 4) selecting two different groups of
uncorrelated features. Both models result showed a single
significant radiomics covariate (model 1: energy p < 0.05,

Fig. 1 Cross correlation matrix. Numerical values correspond to Person correlation coefficient, achieved with Person correlation test P-Value >0.05
(low cross correlation)

Table 3 Univariate analysis in restricted dataset

Covariate P-Value

Histogram based

Entropy 0.03

Energy 0.03

Gray scale co-occurrence matrix (GLCM)

Homogeneity 0.03

Energy 0.02

Contrast 0.03

Dissimilarity 0.04

Gray level run length matrix (GLRLM)

SRE 0.02

LRE 0.02

GLNU 0.02

RP 0.02

Gray level zone length matrix (GLZLM)

Contrast 0.04

LZE 0.03

LZLGE 0.01

LZHGE 0.03

ZP 0.03

P-values are the results of Mann-Whitney test
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AUC of ROC 0.6659, C.I. = 0.5585–0.7732; model 2:
GLNU p < 0.05, AUC of ROC 0.6396, C.I. = 0.5266–
0.7526).

Survival data analysis
Using OS outcome for the analysis in the full dataset,
the univariate log-rank test for covariates showed several
significant results using all cases. Using this test, con-
tinuous numerical covariates were divided according to
mobile threshold in order to better distinguish two cat-
egories of patients to fit the outcome. Table 5 summa-
rizes the results of univariate log-rank test. Both clinical
and radiomics covariates have been included and found

significant. Figure 2 shows the cross-correlation matrix,
indicating that there are multiple and complex cross-
correlation among different covariates. This fact led to
use a different approach for selecting the significant co-
variates that was the elastic net regularization. The
result of such analysis showed that the most significant
covariates with 1 standard deviation of partial likelihood
deviance were the compacity and BCLC but Cox model
fitting with stepwise regression returned only compacity
as significant covariate (Cox model likelihood ratio test
p < 0.001, compacity p < 0.0001, Fig. 3). AUC of ROC of
the model is 0.8014 (C.I. = 0.7232–0.8797). The calibra-
tion plots of Cox model are shown in Fig. 4.

Discussion
The scope of our investigation was to perform a feasibil-
ity study to correlate some radiomics signatures to the
clinical outcome in a retrospective analysis of a large co-
hort of patients already investigated and reported [29,
30]. As a matter of fact, texture analysis has been
scarcely applied to primary liver cancer and, those stud-
ies, mostly focused on classification issues or on the
development of decision aiding tools [23–26]. Some ef-
forts have also been reported about the use of radiomics
for the study of metastatic disease, particularly from
colorectal cancer [27, 28].
In our study, the use of CT scan has given the chance

to obtain images whose features have shown the possi-
bility to be modeled according clinical and survival out-
comes. The methodology implemented in this study is
simple and easy to reproduce and the generation of the
features was based on a validated package, freely avail-
able from the authors [31], all positive facts for a feasi-
bility investigation; it is of course at the same time a
limitation of the project not having introduced higher
order texture analysis methods. Nevertheless, we
hypothesized that, if a radiomics signature was to be
found and possibly used in practice, and eventually
shared,this should have been identified among the most
robust and easy to implement categories.
The use of non-contrast enhanced treatment planning

CT datasets, and the possibility to analyze the regions of
interest identified as clinical target volume in the radio-
therapy planning process, is another factor of interest of
the study since enables an easy procedure and makes the
process potentially available to all patients who will be
scheduled for RT treatments. A limit of this approach,
not appraised in our study is of course the sensitivity
and robustness of the radiomics features to the segmen-
tation process, the inter-observer variability (how differ-
ent CTVs would be contoured by different radiation
oncologists) and the possible presence of artifacts in the
images (e.g. markers for positioning purposes). Apart
from recognizing this limit, we shall consider that,

Table 4 Models built with not cross related covariates in the
restricted dataset

LZHGE (model 1) LZLGE (model 2)

Energy GLNU

LRE Contrast

GLNU LZHGE

RP –

LZLGE –

Table 5 Significant covariates with respect to the survival and
related log-rank test P-Values

Covariate p-Value HR 95%CI

Total Dose 0.01 0.08 0.01–0.63

Localization of tumour 0.04 0.26 0.06–1.10

PV thrombosis <0.001 3.51 2.01–6.13

AJCC Stage 0.001 1.42 1.10–3.01

BCLC Stage <0.001 1.38 0.95–2.84

Child Class 0.04 1.63 1.02–2.61

AFP initial level <0.001 0.39 0.25–0.63

Tumour volume <0.001 0.25 0.16–0.40

Age 0.006 2.02 1.20–3.39

Entropy (Histogram) 0.02 1.70 1.09–2.67

Compacity <0.001 0.22 0.14–0.36

Contrast 0.01 2.11 1.14–4.12

Entropy 0.04 1.61 1.03–2.88

Dissimilarity 0.01 2.17 1.14–4.12

HGRE 0.02 1.80 1.07–3.01

SRHGE 0.02 1.69 1.06–2.67

LRHGE 0.04 1.71 1.02–2.88

GLNU <0.001 0.23 0.13–0.39

RLNU <0.001 0.25 0.16–0.40

HGZE 0.02 1.83 1.09–3.07

SZHGE 0.01 1.80 1.12–2.87

GLNU <0.001 0.25 0.15–0.39

Continuous numerical covariates have been split into two categories for calculating
statistical test
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Fig. 2 Cross correlation matrix for covariates used for log-rank test. Uncorrelated covariates are shown with Pearson correlation test P-Value

Fig. 3 Elastic net regularization process with partial likelihood deviance plot. The minimum value corresponds to the covariates used for multivariate
modeling (Cox model). The two vertical dot lines represent one standard deviation on each sides from the minimum value, corresponding to the
chosen variables that better fit the model
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unfortunately, this is a key problem for all kind of radio-
mics investigations. It is our opinion that predictive
models will have to be built on large scale population
datasets, from multiple institutions and from different
scanning devices in order to encompass at maximum,
the inherent variance of the input data. In this respect,
our pilot study cannot of course solve the problem but,
the further validation steps will try to appraise some of
these points.
A second important factor to consider is the consistency

of the patient’s cohort. In this study we focused on sur-
vival and on local control as a direct measure of the effi-
cacy of the delivered treatment. A large cohort was
available from an earlier retrospective study and it was
used to compute all the radiomics features and to investi-
gate the general aspect and OS. Unfortunately, the avail-
ability of clinical response outcome (LC) restricted the
number of patients analyzed in the multivariate logistic
regression models for that endpoint and this fact might
led to get lower discrimination power models than the
one achieved by analyzing the overall survival outcome.
Concerning the whole dataset, despite the presence of a
single significant covariate (compacity) the OS model is
able to fit the outcome with a fair discrimination perform-
ance (AUC of ROC of the model 0.801). Looking at cali-
bration plots the best survival estimate is given for the
12 months survival (Fig. 4) while the calibration at
24 months returned a lack of fit for the first group of
patients and a general underestimate of survival prediction
for the other two groups. This fact could be related to the
lower median FUP time (16.6 months) respect to the

length of this endpoint so longer time prediction could be
achieved by increasing the FUP time and the number of
observations.
An obvious limitation of this feasibility study, due to the

issue mentioned above, is the lack of a validation based on
an independent dataset. The limited consistency of the
investigated cohort, prevented the possibility to separate it
into training and testing subgroups and for this reason, a
separate validation study is scheduled to be performed on
a multicentric basis and with the (retrospective) inclusion
of patients treated with either conventional or hypo-
fractionated regimens. To provide a specific declination of
this limitation, we might consider the fact that, since the
full range of covariates did not return significant results,
we applied thresholding methods to the covariates. The
cut-off were identified based on the p-value analysis.
Nevertheless, the absence of an external validation might
question the robustness of these thresholds. This could in
fact potentially cause a bias or a false positive because the
explicit values might not be suitable for other population/
situations. All this points to the necessity of a further set
of investigations in this area, looking for an independent
validation of the models.

Conclusions
A radiomics signature made of a single textural feature
allowed to fit a predictive model with a fair discrimin-
ation performance in HCC patients treated with volu-
metric modulated arc therapy. Further validation
studies, at mono- and multi-centric level are mandatory
and scheduled to confirm these findings.
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