Check for updates

OPEN ACCESS

EDITED BY Nakarin Suwannarach, Chiang Mai University, Thailand

REVIEWED BY Danushka Sandaruwan Tennakoon, Chiang Mai University, Thailand Rungtiwa Phookamsak, Kunming Institute of Botany (CAS), China Mingkwan Doilom, Zhongkai University of Agriculture and Engineering, China

*CORRESPONDENCE Jian-Xin Deng djxin555@yangtzeu.edu.cn

SPECIALTY SECTION

This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

RECEIVED 05 September 2022 ACCEPTED 03 October 2022 PUBLISHED 21 October 2022

CITATION

Gou Y-N, Aung SLL, Htun AA, Huang C-X and Deng J-X (2022) Alternaria species in section Alternaria associated with Iris plants in China. Front. Microbiol. 13:1036950. doi: 10.3389/fmicb.2022.1036950

COPYRIGHT

© 2022 Gou, Aung, Htun, Huang and Deng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Alternaria species in section *Alternaria* associated with *Iris* plants in China

Ya-Nan Gou¹, Sein Lai Lai Aung¹, Aye Aye Htun², Cheng-Xin Huang¹ and Jian-Xin Deng¹*

¹Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China, ²National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, China

Plants of the Iris genus have been widely cultivated because of their medicinal, ornamental, and economic values. It commonly suffers from Alternaria leaf spot or blight disease leading to considerable losses for their commercial values. During an investigation of 14 provinces or municipalities of China from 2014 to 2022, a total of 122 Alternaria strains in section Alternaria were obtained from diseased leaves of Iris spp.. Among them, 12 representative strains were selected and identified based on morphological characterization and multilocus phylogenetic analysis, which encompassed the internal transcribed spacer of rDNA region (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1 alpha (TEF1), RNA polymerase second largest subunit (RPB2), Alternaria major allergen gene (Alt a 1), an anonymous gene region (OPA10-2), and endopolygalacturonase gene (EndoPG). The strains comprised two known species of A. alternata and A. iridicola, and two new species of A. setosae and A. tectorum, which were described and illustrated here. Their pathogenicity evaluated on Iris setosa indicated that all the strains could induce typical Alternaria leaf spot or blight symptoms. The results showed that the virulence was variable among those four species, from which A. tectorum sp. nov. was the most virulent one, followed by A. setosae sp. nov., A. iridicola and A. alternata.

KEYWORDS

Alternaria, Iris, morphology, phylogenetic analysis, pathogenicity

Introduction

The *Iris* Linn. is the largest genus in the Iridaceae containing about 300 species in worldwide (Xiang et al., 2020). It is one of the most extensively cultivated plants in modern landscaping because it is a great ground cover material for urban greening (Zhao et al., 2000; Clair, 2005; Li et al., 2020). In China, the plants have been widely grown as a year-round ornamental with various large and colorful flowers (Yang et al., 2017). Some *Iris* species are rich in beneficial chemicals, served as effective pharmaceutical ingredient to treat various diseases including cancer, inflammation, bacterial and viral infections (Tahara et al., 1991; Huang, 2004; Meng et al., 2016). In addition, *Iris* plants are also utilized in the

perfume and cosmetic industries considering the fragrance reasonability (Wang et al., 2010).

During the cultivation of Iris spp., the plants suffer from various diseases induced by fungal, bacterial, viral, and nematode pathogens (Umesha et al., 2010; Lu et al., 2016; Wang et al., 2020; Wang et al., 2022). Pathogenic fungal species have been commonly found in connection with the genera of Alternaria, Botrytis, Colletotrichum, Fusarium, Harzia and Puccinia (Bobev, 2009; Liu et al., 2016; Schultes et al., 2017; Choi et al., 2019; Wang et al., 2022). Leaf spot and blight diseases caused by Alternaria species in sect. Alternaria is prevalent on Iris plants worldwide presenting the typical symptoms of brown spot with a yellow halo or blighted leaf, which greatly reduce their ornamental values. Alternaria iridicola in China, Japan, and USA (Zhang, 2003; Simmons, 2007; Nishikawa and Nakashima, 2020), A. iridiaustralis in Australia, China, and New Zealand (Simmons, 2007; Luo et al., 2018), A. tenuissima in China (Zhang, 2003; Sun et al., 2019; Li et al., 2020) have been reported as fungal pathogens on Iris plants.

The Alternaria is a ubiquitous fungus comprising many destructive plant pathogens, which can result in economic losses on a large number of significant agronomic crops and ornamentals (Thomma, 2003; Kahl et al., 2015). There has been a longtime controversy on the classification criteria of Alternaria (Lawrence et al., 2016). Simmons proposed a reasonable standard for the morphological taxonomy of Alternaria species based on sporulation patterns and conidial morphology, by which around 280 species were described and summarized into two sections of large-spored and small-spored of Alternaria (Simmons, 2007). Since the 20th century, molecular taxonomic structure has been developed and applied to identify Alternaria species with various gene fragments (Pryor and Gilbertson, 2000; Hong et al., 2005; Lawrence et al., 2012, 2013; Woudenberg et al., 2013, 2014; He et al., 2021). Recently, the multi-locus phylogenetic analysis plays an important role in assisting Alternaria classification (Woudenberg et al., 2015; Zheng et al., 2015; Sofie et al., 2017; Cheng et al., 2022). It separates Alternaria into 29 sections and 7 monotypic lineages (Woudenberg et al., 2013; Marin-Felix et al., 2019; Bessadat et al., 2020; Gannibal et al., 2022; Huang et al., 2022). Besides, in combination with morphology and molecular approaches is commonly used to determine the Alternaria up to species levels (Lawrence et al., 2016; Gannibal, 2019; Bessadat et al., 2021; Zhao et al., 2022).

One of the large *Alternaria* sections, sect. *Alternaria* contains most of the small-spored *Alternaria* species with concatenated conidia including about 60 morphological or host-specific species (Simmons, 2007; Woudenberg et al., 2015), which are frequently encountered on the disease leaf samples of *Iris* plants. To know the species population associated with *Iris* plants in China, a largescale sample collection and fungal isolation had been conducted from 2014 to 2022, from which a total of 122 strains of sect. *Alternaria* were obtained. To comprehend their species levels, this study aims to identify the species using morphological traits and multi-locus phylogenetic analysis. In addition, their variety of virulence is assessed on *Iris setosa*.

Materials and methods

Sampling and isolation

During a large-scale investigation on Alternaria species in sect. Alternaria associated with Iris spp. in China (Figure 1), diseased leaf samples were collected from 14 provinces or municipalities (Table 1). For the isolation of Alternaria, the samples were cut into small pieces, placed on moist filter papers in Petri dishes and incubated at 25°C for the sporulation (Liu et al., 2019). The samples were observed using a stereomicroscope. The single spore was picked by a sterile glass needle and inoculated onto potato dextrose agar (PDA: Difco, Montreal, Canada). A total of 122 strains were obtained and kept into test-tube slants stored at 4°C in the Fungal Herbarium of Yangtze University (YZU), Jingzhou, Hubei, China. Twelve representative strains (Table 2) representing different species were selected for the present study after pre-morphological, pre-phylogenetic, and pre-pathogenicity assays.

Morphology

The *Alternaria* strains were cultured on PDA at 25°C for 7 days in darkness to determine the cultural features. To examine the conidial morphology, fresh mycelia were grown on potato carrot agar (PCA) and V8 juice agar (V8A) media, then incubated at 22°C with a light period of 8 h light/16 h dark (Simmons, 2007). After 7 days, morphological characteristics of sporulation patterns, conidiophores and conidia were visualized and photographed with a Nikon Eclipse Ni-U microscope system (Nikon, Japan). Fifty randomly selected conidia for each strain were observed and measured to determine the morphology.

DNA extraction and PCR amplification

Genomic DNA was extracted from mycelium scraped from the surface of 5-day-old colonies on PDA using the CTAB method described in Watanabe et al. (2010). Seven gene regions including internal transcribed spacer of rDNA region (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1 alpha (TEF1), RNA polymerase second largest subunit (RPB2), Alternaria major allergen gene (Alt a 1), an anonymous gene region (OPA10-2), and endopolygalacturonase (EndoPG) were used for phylogenic analysis. The PCR amplifications were performed with primer pairs of ITS5/ITS4 (White et al., 1990), gpd1/gpd2 (Berbee et al., 1999), EF1-728F/EF1-986R (Carbone and Kohn, 1999), RPB2-5F/RPB2-7cR (Liu et al., 1999), Alt-for/ Alt-rev (Hong et al., 2005), OPA10-2l/OPA10-2R (Andrew et al., 2009) and PG3/PG2b (Andrew et al., 2009), respectively. A 25-µL PCR mixture contained 21 µl 1.1× Taq PCR Star Mix (TSINGKE, Beijing, China), 2 µl template DNA, and 1 µl of each primer was performed in a BIO-RAD T100 thermo cycler. The amplified

TABLE 1 Location and number of *Alternaria* strains collected from diseased *Iris* leaves in China.

Host	Total strains	I	Location
		Province	City
Iris hexagona	30	Jiangsu	Nanjing
		Guangxi	Nanning
		Shanghai	Shanghai
		Yunnan	Kuumainn
Iris tectorum	67	Hubei	Jingzhou, Yichang
		Beijing	Beijing
		Shanxi	Taigu, Yangquan
		Shaanxi	Xi'an
		Gansu	Linxia, Lanzhou
		Jiangsu	Nanjing
		Sichuan	Deyang
		Henan	Henan
		Fujian	Fuzhou
Iris japonica	18	Fujian	Fuzhou
		Jiangxi	Lushan
		Shannxi	Xi'an
Iris ensata	7	Jilin	Changchun
		Gansu	Linxia
		Yunnan	Xisun

program for PCR amplifications of the seven gene regions was referenced from Woudenberg et al. (2015). Successful amplified products were purified and sequenced by TSINGKE company (Beijing, China). The obtained sequences for each gene were deposited in GenBank¹ with the accession numbers indicated in Table 2.

Phylogenetic analysis

The ITS, GAPDH, TEF1, RPB2, Alt a 1, OPA10-2 and EndoPG gene sequences were launched for BLAST searches in NCBI.² Their relevant sequences were retrieved from GenBank database and referenced from Woudenberg et al. (2015; Table 2). Alternaria alternantherae (CBS 124392) from Alternaria section of Alternantherae was used as outgroup taxon (Table 2). Sequences were aligned and edited by the program of PHYDIT v3.2 (Chun, 1995). The seven gene sequences were concatenated and edited manually in MEGA v.7.0.26 (Kumar et al., 2016). Phylogenetic trees were constructed based on Bayesian inference (BI) analysis using MrBayes v.3.1.2 (Ronquist and Huelsenbeck, 2003), and maximum likelihood (ML) method using RAxML v.7.2.8 (Stamatakis, 2006). The best-fit model for the data was calculated by the Akaike Information Criterion (AIC) using MrModelTest v. 2.3 (Posada and Crandall, 1998). The Bayesian analysis (MrBayes v. 3.2.1; Ronquist et al., 2012) of two simultaneous Markov Chain Monte Carlo (MCMC) chains were run from random trees for 10, 000, 000 generations and sampled every 100 th generations. The first 25% of the samples were discarded as the burn-in and the run was automatically stopped when the average standard deviation of

¹ https://www.ncbi.nlm.nih.gov/

² www.ncbi.nlm.nih.gov

TABLE 2 Alternaria strains used in this study and the GenBank accession numbers.

Species/	Host/	Country	GenBank accession number						
Strain	Substrate		ITS	GAPDH	TEF1	RPB2	Alt a 1	EndoPG	OPA10-2
A. alstroemeria	le								
CBS 118808 R	Alstroemeria sp.	Australia	KP124296	KP124153	KP125071	KP124764	KP123845	KP123993	KP124601
CBS 118809 T	Alstroemeria sp.	Australia	KP124297	KP124154	KP125072	KP124765	KP123845	KP123994	KP124602
A. alternanthei	ae								
CBS 124392	Solanum	China	KC584179	KC584096	KC584633	KC584374	KP123846	-	-
	melongena								
A. alternata									
CBS 916.96 T	Arachis hypogaea	India	AF347031	AY278808	KC584634	KC584375	AY563301	JQ811978	KP124632
CBS 102604	Minneola tangelo	Israel	KP124334	AY562410	KP125110	KP124802	AY563305	KP124035	KP124643
CBS 102602	Minneola tangelo	Turkey	KP124332	KP124187	KP125108	KP124800	KP123881	AY295023	KP124641
CBS 102599	Minneola tangelo	Turkey	KP124330	KP124185	KP125106	KP124798	KP123879	KP124032	KP124639
CBS 102595	Citrus jambhiri	USA	FJ266476	AY562411	KC584666	KC584408	AY563306	KP124029	KP124636
CBS 127672	Astragalus	USA	KP124382	KP124234	KP125160	KP124852	KP123930	KP124086	KP124695
	bisulcatus								
CBS 103.33	Soil	Egypt	KP124302	KP124159	KP125077	KP124770	KP123852	KP123999	KP124607
CBS 102.47	Citrus sinensis	USA	KP124303	KP124160	KP125079	KP124772	KP123854	KP124001	KP124609
CBS 117.44	<i>Godetia</i> sp.	Denmark	KP124303	KP124160	KP125079	KP124772	KP123854	KP124001	KP124609
CBS 102596	Citrus jambhiri	USA	KP124328	KP124183	KP125104	KP124796	KP123877	KP124030	KP124637
CBS 918.96	Dianthus	UK	AF347032	AY278809	KC584693	KC584435	AY563302	KP124026	KP124633
020 910000	chinensis	on	11101,002	1112/0007	10001070	100001100	111000002	101121020	101210000
CBS 121455	Broussonetia	China	KP124368	KP124220	KP125146	KP124838	KP123916	KP124072	KP124681
505 121455	papyrifera	Ciina	RI 124500	RI 124220	RI 125140	RI 124050	KI 125710	KI 124072	KI 124001
CBS 121547	Pyrus	China	KP124372	KP124224	KP125150	KP124842	KP123920	KP124076	KP124685
CD3 121347	bretschneideri	Clillia	KI 124372	KI 124224	KI 125150	KI 124042	KI 123920	KI 124070	KI 124005
CBS 127671		USA	KP124381	KP124233	KP125159	KP124851	KP123929	KP124085	KP124694
	Stanleya pinnata Linum	USA Unknown							
CBS 106.34		UIIKIIOWII	Y17071	JQ646308	KP125078	KP124771	KP123853	KP124000	KP124608
CDC 121226	usitatissimum	T TC A	1/10/2254	1/10/2255	KD125141	KD124022	KI0(2250	KD124067	VD124(7)
CBS 121336	Allium sp.	USA	KJ862254	KJ862255	KP125141	KP124833	KJ862259	KP124067	KP124676
CBS 119543	Citrus paradisi	USA	KP124363	KP124215	KP125139	KP124831	KP123911	KP124065	KP124674
CBS 195.86	Euphorbia esula	Canada	KP124317	KP124173	KP125093	KP124785	JQ646398	KP124017	KP124624
CBS 119399	Minneola tangelo	USA	KP124361	JQ646328	KP125137	KP124829	KP123910	KP124063	KP124672
CBS 479.90	Citrus unshiu	Japan	KP124319	KP124174	KP125095	KP124787	KP123870	KP124019	KP124626
CBS 121348	Platycodon	China	KP124367	KP124219	KP125144	KP124836	KP123915	KP124070	KP124679
	grandiflorus								
CBS 595.93	Pyrus pyrifolia	Japan	KP124320	KP124175	KP125096	KP124788	JQ646399	KP124020	KP124627
CBS 118818	<i>Vaccinium</i> sp.	USA	KP124359	KP124213	KP125135	KP124827	KP123908	KP124061	KP124671
CBS 118814	Solanum	USA	KP124357	KP124211	KP125133	KP124825	KP123906	KP124059	KP124669
	lycopersicum								
CBS 118815	Solanum	USA	KP124358	KP124212	KP125134	KP124826	KP123907	KP124060	KP124670
	lycopersicum								
CBS 118811	Brassica oleracea	USA	KP124356	KP124210	KP125132	KP124824	KP123904	KP124057	KP124667
CBS 118812	Daucus carota	USA	KC584193	KC584112	KC584652	KC584393	KP123905	KP124058	KP124668
CBS 119408	Euphorbia esula	USA	KP124362	JQ646326	KP125138	KP124830	JQ646410	KP124064	KP124673
CBS 540.94	Nicotiana	USA	AY278835	AY278811	KC584667	KC584409	AY563304	KP124147	KP124758
	tabacum								
CBS 121333	Nicotiana	USA	KP124444	KP124293	KP125223	KP124914	KP123990	KP124150	KP124761
	tabacum								
CBS 104.32	Gossypium sp.	Zimbabwe	KP124430	JQ646312	KP125209	KP124900	JQ646395	KP124135	KP124746

(Continued)

TABLE 2 (Continued)

Species/	Host/	Country	GenBank accession number						
Strain	Substrate		ITS	GAPDH	TEF1	RPB2	Alt a 1	EndoPG	OPA10-2
CBS 102601	Minneola tangelo	Colombia	KP124433	KP124282	KP125212	KP124903	KP123979	KP124138	KP124749
CBS 102597	Minneola tangelo	USA	KP124432	KP124281	KP125211	KP124902	KP123978	KP124137	KP124748
YZU 171270	Iris tectorum	China	OP341610	OP352298	OP374451	OP352286	OP293709	OP293721	OP352274
YZU 171499	Iris tectorum	China	OP341534	OP352295	OP374448	OP352283	OP293708	OP293719	OP352271
YZU 181050	Iris tectorum	China	OP341604	OP352297	OP374450	OP352285	OP293707	OP293720	OP352273
YZU 181280	Iris tectorum	China	OP341598	OP352296	OP374449	OP352284	OP293706	OP293718	OP352272
A. arborescens									
CBS 101.13	Peat soil	Switzerland	KP124392	KP124244	KP125170	KP124862	KP123940	KP124096	KP124705
CBS 119545	Senecio skirrhodon	New Zealand	KP124409	KP124260	KP125187	KP124879	KP123956	KP124113	KP124723
CBS 119544	Avena sativa	New Zealand	KP124408	JQ646321	KP125186	KP124878	KP123955	KP124112	KP124722
CBS 112749	Malus domestica	South Africa	KP124402	KP124254	KP125180	KP124872	KP123949	KP124106	KP124716
CBS 105.24	Solanum	Unknown	KP124393	KP124245	KP125171	KP124863	KP123941	KP124097	KP124706
CBS 124 40	tuberosum Wood	UK	KD124207	KD124240	KD105175	KD104047	IO646200	KD124101	KD124710
CBS 126.60 CBS 109730	Wood Solanum	UK USA	KP124397 KP124399	KP124249 KP124251	KP125175	KP124867 KP124869	JQ646390	KP124101 KP124103	KP124710 KP124713
CD3 109/30		USA	KP124399	KP124251	KP125177	KP124809	KP123946	KP124105	KP124/15
CBS 105.49	<i>lycopersicum</i> Contaminant	Italır	VD124204	VD124249	VD125174	KP124866	VD122044	KP124100	KP124709
CBS 105.49		Italy	KP124396	KP124248	KP125174	KP124866	KP123944	KP124100	KP124709
A 1	blood culture								
A. betae-kenyer		Vanna	VD124410	KD124270	VD125107	VD124000	VD122066	VD124122	VD124722
CBS 118810	Beta vulgaris var.	Kenya	KP124419	KP124270	KP125197	KP124888	KP123966	KP124123	KP124733
A. burnsii	cicla								
CBS 130264	Human sputum	India	KP124425	KP124275	KP125203	KP124894	KP123972	KP124129	KP124739
CBS 130204 CBS 108.27								KP124129 KP123997	KP124739 KP124605
CD3 108.27	Gomphrena	Unknown	KC584236	KC584162	KC584727	KC584468	KP123850	KP123997	KP124005
CPS 107 29 T	globosa Cuminum	India	VD124420	10646205	VD125109	VD124000	VD122067	VD124124	VD124724
CBS 107.38 T	Cuminum	India	KP124420	JQ646305	KP125198	KP124889	KP123967	KP124124	KP124734
CBS 118816	cyminum Rhizothora	India	KP124423	KP124273	KP125201	KP124892	KP123970	KP124127	KP124737
CD3 110010	Rhizophora	IIIuia	KF124423	KF124275	KF 123201	KF 124092	KF 1239/0	KF124127	KF 1247 57
CBS 118817	mucronata Tinospora	India	KP124424	KP124274	KP125202	KP124893	KP123971	KP124128	KP124738
CD3 110017	cordifolia	IIIuia	KF124424	KF1242/4	KF 123202	KF 124093	KF 1239/1	KF124126	Kr 124/ 30
A. citricancri	coraijona								
CBS 119543 T	Citrus paradisi	USA	KP124363	KP124215	KP125139	KP124831	KP123911	KP124065	KP124674
A. eichhorniae	Citrus paraaisi	USA	KI 124505	KI 124215	KI 125159	KI 124031	KI 125911	KI 124003	KI 124074
CBS 489.92 T	Eichhornia	India	KC146356	KP124276	KP125204	KP124895	KP123973	KP124130	KP124740
000 407.72 1	crassipes	maia	RC140550	KI 124270	RI 125204	RI 124075	RI 125775	RI 124150	RI 124740
CBS 119778 R	Eichhornia	Indonesia	KP124426	KP124277	KP125205	KP124896	KP123973	KP124131	KP124741
00011000	crassipes	muomosiu	101121120	111 1212/ /	10 120200	10 12 10 0	101120770	111 12 110 1	111 12 1/ 11
A. gaisen	erweerp ee								
CBS 632.93 R	Pyrus pyrifolia	Japan	KC584197	KC584116	KC584658	KC584399	KP123974	AY295033	KP124742
CBS 118488 R	Pyrus pyrifolia	Japan	KP124427	KP124278	KP125206	KP124897	KP123975	KP124132	KP124743
CPC 25268	Unknown	Portugal	KP124428	KP124133	KP125207	KP124279	KP123976	KP124898	KP124744
A. gossypina									
CBS 102597	Minneola tangelo	USA	KP124432	KP124281	KP125211	KP124902	KP123978	KP124137	KP124748
CBS 104.32 T	Gossypium sp.	Zimbabwe	KP124430	KP124135	KP125209	JQ646312	JQ646395	KP124900	KP124746
CBS 104.52 1 CBS 102601	Minneola tangelo	Colombia	KP124433	KP124282	KP125212	KP124903	KP123979	KP124138	KP124749
520 102001	ungei	Colombia	14 121100	12 1202	12/212	12 12 1905		12 12 1100	

(Continued)

TABLE 2 (Continued)

Species/	Host/		GenBank accession number						
Strain Substrate			ITS	GAPDH	TEF1	RPB2	Alt a 1	EndoPG	OPA10-2
A. iridiaustrali	s								
CBS 118404 R	Iris sp.	New Zealand	KP124434	KP124283	KP125213	KP124904	KP123980	KP124139	KP124750
CBS 118486 T	Iris sp.	Australia	KP124435	KP124284	KP125214	KP124905	KP123981	KP124140	KP124751
A. iridicola									
MUCC 2149 T	Iris japonica	Japan	LC269975	LC270143	LC275061	LC275241	LC276239	LC276254	-
YZU 161051	Iris tectorum	China	OP341633	OP352302	OP374455	OP352290	OP293713	OP293725	OP352278
YZU 161119	Iris tectorum	China	OP341632	OP352301	OP374454	OP352289	OP293712	OP293724	OP352277
YZU 161186	Iris tectorum	China	OP341622	OP352300	OP374453	OP352288	OP293711	OP293723	OP352276
YZU 191090	Iris japonica	China	OP341617	OP352299	OP374452	OP352287	OP293710	OP293722	OP352275
A. jacinthicola									
CBS 133751 T	Eichhornia	Mali	KP124438	KP124287	KP125217	KP124908	KP123984	KP124143	KP124754
	crassipes								
CBS 878.95	Arachis hypogaea	Mauritius	KP124437	KP124286	KP125216	KP124907	KP123983	KP124142	KP124753
A. longipes									
CBS 540.94	Nicotiana	USA	AY278835	KP124147	KC584667	AY278811	AY563304	KC584409	KP124758
	tabacum								
CBS 121333 R	Nicotiana	USA	KP124444	KP124150	KP125223	KP124293	KP123990	KP124914	KP124761
	tabacum								
A. tomato									
CBS 114.35	Solanum	Unknown	KP124446	KP124295	KP125225	KP124916	KP123992	KP124152	KP124763
	lycopersicum								
CBS 103.30	Solanum	Unknown	KP124445	KP124294	KP125224	KP124915	KP123991	KP124151	KP124762
	lycopersicum								
A. tectorum									
YZU 161050 T	Iris tectorum	China	OP341728	OP352303	OP374456	OP352291	OP293714	OP293726	OP352281
YZU 161052	Iris tectorum	China	OP341817	OP352304	OP374457	OP352292	OP293715	OP293727	OP352282
A. setosa									
YZU 191076	Iris japonica	China	OP341739	OP352305	OP374458	OP352293	OP293716	OP293728	OP352279
YZU 191101 T	Iris japonica	China	OP2341770	OP352306	OP374459	OP352294	OP293717	OP293729	OP352280

The present Alternaria strains of this study are marked in bold; T: ex-type isolate, R: representative isolate.

split frequencies reached below 0.01. The phylogram was plotted and edited in Figtree v.1.3.1 (Rambaut and Drummond, 2010). The branch support for the ML analysis was assessed with 1,000 replicates.

Pathogenicity tests

Iris setosa was commonly cultivated as an ornamental or medicinal plant in China. The plants were purchased from the local market and transplanted into clean pots with organic sterile soil grown in greenhouse under a light period (12h) at 25°C for 2 months. The test strains were cultured on PDA at 25°C for 5 days, and a diameter of 6 mm disc was removed from the edge of colonies. It was inoculated on wounded living leaves of *I. setosa* helped with a fine sterile needle (eight punctures). Clean PDA discs were used as controls. To ensure an accuracy of pathogenicity assessment, a consistent treatment method was adopted for each

assay. For each strain, two plants were inoculated with four sites, which were replicated for three times. To confirm the Koch's law, the pathogen was re-isolated from the diseased symptoms and compared with the original strains based on morphology. The disease incidence was recorded, and the lesion size (LS = the maximum lesion length) was measured after 7 days. The LS values were the mean value of three replicates ± standard deviation. The least significant difference test (p < 0.05) was analyzed by IBM SPSS Statistics 23.

Results

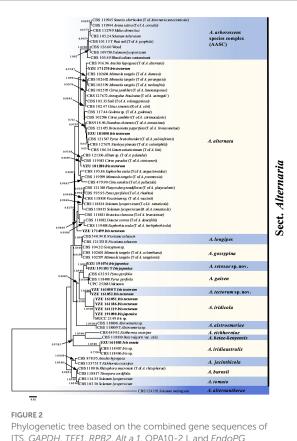
Phylogenetic analysis

On the basis of BLAST searches, all 122 Alternaria strains were belonged to sect. Alternaria. Phylogenetic analyses using the combined dataset of the seven gene sequences (ITS,

GAPDH, TEF1, RPB2, Alt a 1, OPA10-2 and EndoPG) were conducted including 79 strains of sect. Alternaria (Table 2), which comprised 3,340 characters (470 from ITS, 534 from GAPDH, 240 from TEF1, 603 from RPB2, 429 from Alt a 1, 622 from OPA10-2, 442 from EndoPG). The resulted topologies of BI and ML analysis were similar to each other, and the ML tree was shown in Figure 2 for basal phylogeny. It showed that strains of YZU 171270, YZU 171499, YZU 181050 and YZU 181280 fell into four different subclades of A. alternata. Strains of YZU 161051, YZU 161186, YZU 161119 and YZU 191090 were grouped well together with A. iridicola supported by values of 1.0/100% (PP/BS). Two strains of YZU 191101 and YZU 191076 fell into a distinct single lineage (PP/BS = 1.0/99%) close to A. gaisen supported by the values of 1.0/100% (PP/BS), which could be considered as a new species. The remaining two strains of YZU 161050 and YZU 161052 also formed an individual branch with high PP/BS values of 1.0/100% representing a new species in the phylogram, sister to *A. iridicola* (PP/BS = 0.99/98%; Figure 2). Besides, the four strains, A. gaisen and A. iridicola were grouped together supported with medium PP/BS values of 0.8/65%.

Morphology

According to morphological traits, the present *Alternaria* strains associated with *Iris* spp. were *A. alternata* (Figure 3) and *A. iridicola* (Figure 4) and two new species of sect. *Alternaria* (Figures 5, 6; Table 3). The two new species were illustrated and described in this study.


Taxonomy

Alternaria setosae Y.N. GOU & J.X. Deng, sp. nov. Figure 5 MycoBank No.: 845326

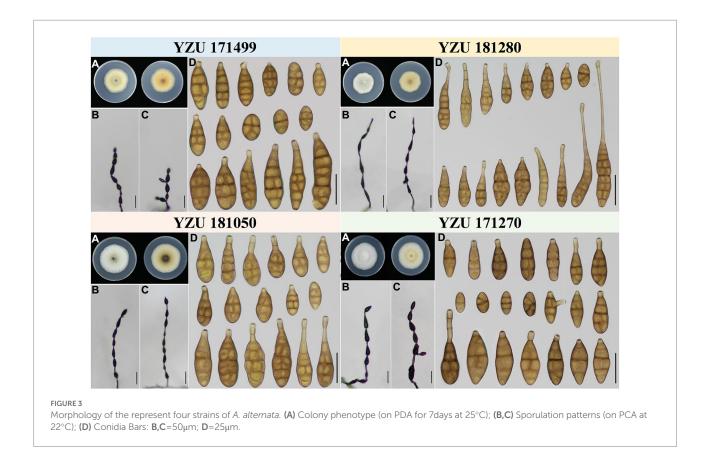
Etymology: In reference to the pathogenic host species name, *Iris setosa*.

Typifification: China, Fujian Province, Fuzhou City, from leaf spot of *Iris japonica*, 15 April 2019, J.X. Deng, (YZU-H⁻⁰⁰⁴⁶, holotype), ex-type culture YZU 191101.

Description: Colonies on PDA circular, light cottony and white to off-white in the center, villiform with white at the edge, reverse dark brown at centers, with scattering shape, 83.4–84.8 mm in diam., at 25°C for 7 days. On PCA, conidiophores arising from substrate or lateral of aerial hyphae, straight or curved, smooth-walled, septate, pale brown; (12.5–)15–40×3–5 μ m (av.: 24.5 × 4 μ m); conidia 4–12 units per chain, medium yellow-brown with almost smooth-walled, short to long-ovoid or ellipsoid, (12–)14–45×7–14 μ m (av.: 31.5×10.5 μ m), 1–6 transverse septa, 0–2(–3) longitudinal septa. On V8A, conidiophores straight or curved, smooth-walled, septate, 18–43(–50.5)×3.5–5 μ m (av.: 31×4 μ m), conidia

ITS, GAPDH, TEF1, RPB2, Alt a 1, OPA10-2 L and EndoPG generated from Alternaria spp. on Iris plants. The Bayesian posterior probabilities (PP>0.60) and maximum likelihood bootstrap values (BS>60%) are given at the nodes (PP/BS). Examined present strains are in bold.

4–11 units in a chain, medium yellow-brown, almost smooth to conspicuously elliptoid overall, $20-43 \times 7-12.5 \,\mu\text{m}$ (av.: $30 \times 9.5 \,\mu\text{m}$), 2–7 transverse septa, 0–2(–3) longitudinal septa.


Notes: Phylogenetic analysis reveals that the species is sister to *A. gaisen* on the basis of a combined dataset of ITS, *GAPDH*, *TEF1*, *RPB2*, *Alt a 1*, OPA10-2 and *EndoPG* gene regions. After a nucleotide pairwise comparison with *A. gaisen* in those seven regions, there are 1/470 bp, 1/534 bp, 3/240 bp, 3/603 bp, 0/429 bp, 16/622 bp and 0/442 bp site differences, respectively. Morphologically, this species can be differentiated by producing smaller conidia with less transverse septa (Table 3). It also readily distinct to *A. tectorum* sp. nov. and *A. iridicola* in sporulation pattern and conidial size (Table 3).

Alternaria tectorum Y.N. GOU & J.X. Deng, sp. nov. Figure 6 MycoBank No.: 845325

Etymology: In reference to the host species name, *Iris tectorum*.

Typifification: China, Hubei Province, Jingzhou City, from leaf spot of *Iris tectorum*, 21 May 2016, J.X. Deng, (YZU-H⁻⁰⁰²⁵, holotype), ex-type culture YZU 161050.

Description: Colonies on PDA circular, cottony with dense hyphae, off-white, reverse buff in the center, with white margin,

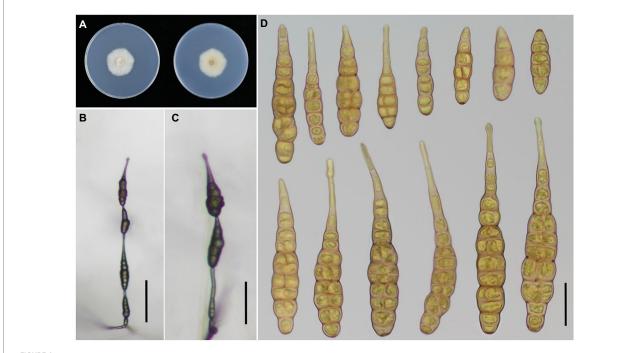
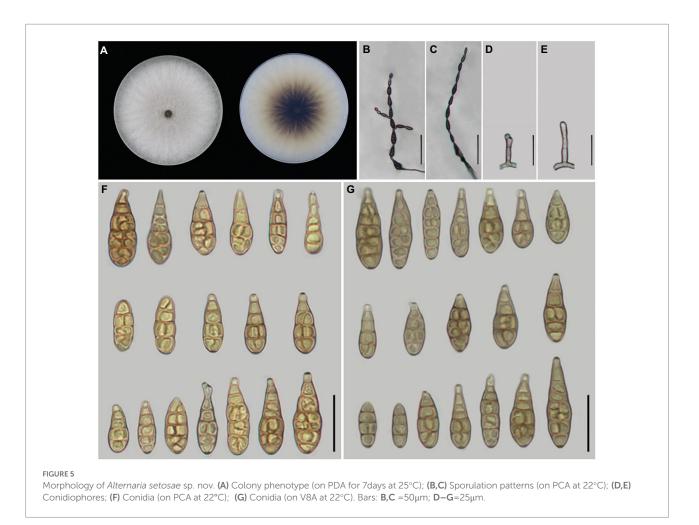
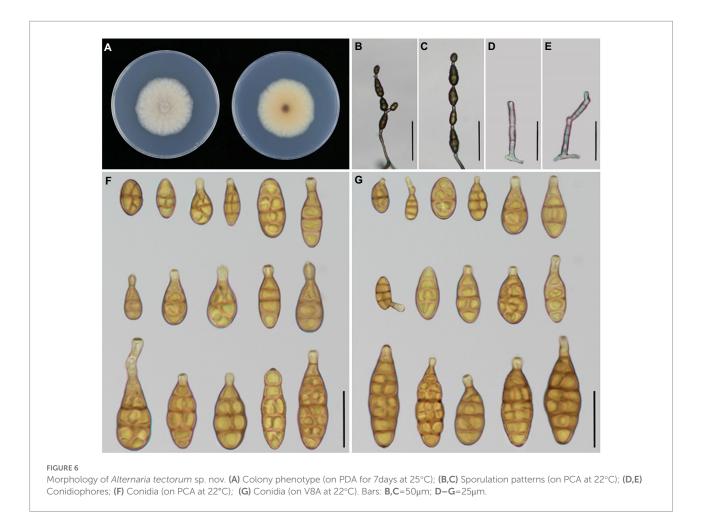



FIGURE 4

Morphology of Alternaria iridicola. (A) Colony phenotype (on PDA for 7days at 25°C); (B,C) Sporulation patterns (on PCA at 22°C); (D) Conidia Bars: B,C=50µm; D=25µm.



50–52 mm in diam., at 25°C for 7 days. On PCA, conidiophores arising from substrate, straight to slightly curved, septate, pale to dark brown, $32-58.5(-62.5)\times3.5-4.8\,\mu\text{m}$ (av.: $45.5\times4\,\mu\text{m}$); conidia 1–6 in a chain, solitary or straight in chains with few branches, broad-ovoid or broad-ellipsoid, smooth-walled, $13-38.5\times5.5-13\,\mu\text{m}$ (av.: $23.5\times9\,\mu\text{m}$), 0–6 transverse septa, 0-2(-3) longitudinal septa, On V8A, conidiophores straight to slightly curved, septate, pale to dark brown, $31.5-54.5\times3.5-4.75\,\mu\text{m}$ (av.: $41.5\times4\,\mu\text{m}$), conidia 2–7 per chain, pale to medium yellowish brown, smooth walled, broad-ovoid or broad-ellipsoid, $13.5-37.5\times5.5-13.5$ (av.: $26\times9.5\,\mu\text{m}$), 1-7 transverse septa, 0-2(-3) longitudinal septa.

Notes: Phylogenetic analysis shows that the species (13 $-38.5 \times 5.5 - 13 \,\mu$ m in body size) falls in an individual clade with high PP/BS values of 1.0/100% representing a new species in the phylogram, sister to *A. iridicola* (47 -87 × 15 -27 μ m in size), but it can be significantly distinguished by the conidial size and shape (Table 3). Comparing with *A. iridicola*, the present species contains 1/442 bp, 16/603 bp and 37/622 bp nucleotide differences in *EndoPG*, *RPB2* and OPA10-2 gene sequences, respectively.

Pathogenicity tests

Pathogenicity tests inoculated with those 12 Alternaria strains for 7 days, the results showed that all strains were 100% pathogenic to Iris setosa (Table 4; Figure 7). When inoculated with mycelium discs, the small spot was normally appeared after 4 days on the living leaves. Then it expanded into nearly round to long elliptic, dark brown necrotic lesions coupling with a narrow yellow halo around the periphery of the spot. Besides, the necrotic part of spot is easy to rupture and form perforation. For some strains (A. tectorum), the spots spread quickly until most of the leaves becoming withered causing blight. The symptoms were identical to those in the fields (Figure 1). The virulence among the species was variable (Table 4). Strains of A. tectorum sp. nov. showed the most virulent to I. setosa with the lesion size (LS) around 48 to 49 mm, followed by A. setosae sp. nov. (LS around 26-27), then A. iridicola and A. alternata. There were no symptoms on the control leaves. To verify Koch's rules, the re-isolation of the causal pathogen was performed, which was consistent with the inoculated strains.

Discussion

The sect. *Alternaria* is found containing 17 species and a species complex of *A. arborescens* (AASC; Woudenberg et al., 2015; Li et al., 2022). After a large-scale sample collection of *Iris* plants in China, two known species (*A. alternata* and *A. iridicola*) and two novel species in sect. *Alternaria* were detected in this study. In addition, the two new species also identified and described as *A. setosae* sp. nov. and *A. tectorum* sp. nov. based on the morphological characteristics and multi-locus phylogenetic analyses.

Alternaria alternata is one kind of small-spored *Alternaria*, which taxonomy is controversial due to the similar conidial morphology (Zhang, 2003; Simmons, 2007). Later, it is classified as one species based on multi-gene phylogenetic analyses, encompassing 35 morphospecies identified by Simmons (2007) which could not reliably distinguish those species (Woudenberg et al., 2015). Meanwhile, it resulted in confusion to the related taxonomic works on their classification. Morphologically, strain YZU 171270 grouped in a sub-clade containing the type strain of *A. alternata* (Figure 2) can form long catenulate chain with branching 1 to 3, while strain YZU 181050 in its sister sub-clade

containing the type strain of A. tenuissima can sporulate with long straight conidial chains without branch. The results agreed with Simmons (2007) for the descriptions of A. alternata and A. tenuissima. In China, A. tenuissima has been reported on I. tectorum in Qingdao city (Sun et al., 2019) and I. ensata in Anging city (Li et al., 2020), whose sporulation patterns are not provided. Although sporulation phenotype cannot accurately reflect the evolutionary relationship, it still is of great value for subgroup classification of A. alternata. Besides, the present strains falling into different clade or subclade (Figure 2) are highly variable (Figure 3). For example, both strains YZU 181050 and YZU 181280 are similar in sporulation, but strain YZU 181280 is characterized by comprising larger conidia with blunted beak up to 71.5 µm long (Figure 3). The morphological boundary of A. alternata has not been clearly defined yet and how to classify them accurately needs further study (Aung et al., 2020).

Alternaria iridicola has been recognized as a large-spored Alternaria (ca. $60-125 \times 17-33 \,\mu\text{m}$ in size) comprising broadly obclavate conidia with a blunt conical or sturdy cylindric apex, which is a host specific species to *Iris* plants (Simmons, 2007). Gannibal and Lawrence (2018) considered that *A. iridicola* shares

Species/Strain		Conidia	Conidia per – chain	References		
	Shape	Body (µm)	Beak (µm)	Septa	- chain	
A. alternata	Ovoid, ellipsoid, or subsphaeroid or with short beak	7-30 (-40)×5-12	3-5 (-30)	1–7	4–20	Simmons (2007)
YZU 171270	Almost slender ellipsoid or ovoid, sometimes with short beak	10-36×6-23	4-17.5	1-5	3-8	This study
YZU 171499	Ovoid or ellipsoid with cylindric apex	14-51 (-66 .5) × 7.5-18.5	-	1-6	4-8	This study
YZU 181050	Ovoid, or ellipsoid or with blunted beak	11.5-40×4-7.5	5.5-26	3-6	5-10	This study
YZU 181280	Ellipsoid, ovoid, almost with long beak	22-76.5 (-84.5)×7.5-16	6-67.5 (-71.5)	1–9	3-8	This study
A. gaisen	Short to long ovoid or ellipsoid	30-45 (-55)×13-15 (-18)	_	5–8	3-9	Simmons (2007)
	Ovoid or ellipsoid	$20-55 \times 10-15$	-	3-7	3-10	Yu (2015)
A. iridiaustalis	Broad-ovoid or broad- ellipsoid and long ellipsoid	30-50×13-24	-	3-4	1-2	Simmons (2007)
	Ellipsoid or long ellipsoid	20-50×15-24	15-100 (-133)	3–5	1–2	Luo et al. (2018)
A. iridicola	Broadly obclavate with a blunt conical or sturdy cylindric apex	60-125×17-33	20-70	5-9	3–9	Simmons (2007)
	Obclavate or long ovoid, sometimes cylindrical with columnar beak	36-74×3-26	10-74	1-8	4–5	This study
	Obclavate or long ovoid with columnar beak sometimes	21-127×7-38	-	2-16	3-4	Nishikawa and Nakashima (2020)
A. setosae sp. nov.	Short to long ovoid or ellipsoid	(12-) 14-45 × 7-14	-	1-6	4-12	This study
A. tectorum sp. nov.	Broad ovoid or broad ellipsoid	13-38.5×5.5-13	_	1-6	2-9	This study

TABLE 3 Morphological comparison of the present Alternaria and their relevant species.

traits with both sect. *Panax* and *Porri* of *Alternaria*, which was not easily distinguished in terms of section affiliation. Latterly, this species is the only large-spored *Alternaria* in small-spored sect. *Alternaria* according to multi-locus phylogenetic analysis (Nishikawa and Nakashima, 2020). Nishikawa and Nakashima (2020) took experiments to assess the host range of *A. iridicola*, for which *I. laevigata* and *I. hollandica* were proved host related, except *I. ensata*. The species was firstly reported causing leaf spot disease on *I. tectorum* from Xinxiang city of China in 2015 (Zhai et al., 2015). In this study, *I. japonica* is a new host for *A. iridicola* in China, which also can infect *I. setosa*.

In this study, two new species of *A. setosae* and *A. tectorum* are grouped with *A. gaisen* and *A. iridicola* in a clade, sister to

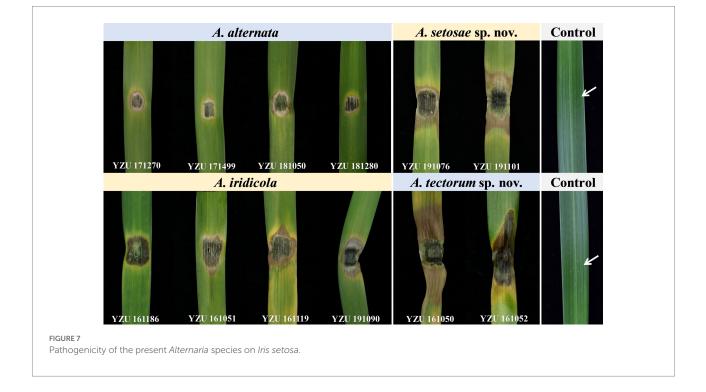
A. alstroemeriae. The morphological comparisons are listed in Table 3. Compared with A. gaisen $(30-45 (-55) \times 13-15 (-18) \mu m$ with 5–8 septa), A. setosae sp. nov. is different by producing smaller conidia $(14-45 \times 7-14 \mu m)$ and less transverse septa (1-6; Simmons, 2007). In comparison with A. iridicola, A. tectorum sp. nov. is an obviously a small-spored species (Simmons, 2007). The results increase two members for sect. Alternaria. In the previous reports, A. iridiaustralis has been reported on Iris spp. in Australia and New Zealand (Simmons, 2007) and on Iris ensata as causal foliar pathogen in China (Luo et al., 2018), which is characterized by broad-ovoid or broad-ellipsoid and long ellipsoid conidia, obviously not like the present four species.

During the isolation of *Alternaria* from *Iris* plants, *A. alternata* like species are frequently observed on moisten cultured leaf tissues, such as *A. alternata*, *A. iridicola*, *A. setosae* sp. nov. and *A. tectorum* sp. nov. Consequently, their virulence is assessed on wounded leaves of *I. setosa*, and considerable variation is observed among the species in the pathogenicity tests, from which *A. tectorum* sp. nov. shows the most pathogenic, followed by

TABLE 4 Disease incidence and lesion size on *Iris setosa* induced by the present *Alternaria* species.

Species	Strain	Disease incidence (%)	Lesion (mm)
A. tectorum sp.	YZU 161050	100 ± 0 a	48.97 ± 0.65 a
nov.			
	YZU 161052	100 ± 0 a	48.28 ± 0.36 a
A. setosae sp. nov.	YZU 191101	100 ± 0 a	$26.87\pm0.31~b$
	YZU 191076	100 ± 0 a	$26.76\pm0.25~b$
A. iridicola	YZU 161051	100 ± 0 a	$24.15\pm0.33~bc$
	YZU 191090	100 ± 0 a	23.55 ± 0.22 bc
	YZU 161119	100 ± 0 a	$22.48\pm0.54~c$
	YZU 161186	100 ± 0 a	$22.51 \pm 0.60 \text{ c}$
A. alternata	YZU 171270	100 ± 0 a	$12.39\pm0.63~d$
	YZU 181050	100 ± 0 a	11.77 ± 0.59 d
	YZU 181280	100 ± 0 a	$10.22\pm0.40~d$
	YZU 171499	100 ± 0 a	$10.08 \pm 0.28 \text{ d}$

Disease incidence (DI) was evaluated by counting the percentage of diseased leaves. Lesion size (LS = the maximum lesion length) values are the mean value of three replicates \pm standard deviation. Values followed by different lowercase letters within a column are significantly different according to the least significant difference test (P < 0.05) using IBM SPSS Statistics 23.


A. setosae sp. nov., A. iridicola, and finally A. alternata. The pathogenic mechanism comprises mechanical penetration, secreting degradation enzymes, metabolites, and toxins, which causes plant diseases (Meng et al., 2009). Iris plants are near to the ground growing, which suffers vulnerable damage caused by raining splashing, animals, and so on. When there are small wounds on Iris leaves, it is easier to attack by pathogens, which could significantly lower their economic and ornamental values. On the other hand, mycelia discs of the four species were inoculated on unwounded living leaves of Iris setosa for 14 days (data not shown). Alternaria tectorum sp. nov. (LS around 20 mm) and A. iridicola (LS 6 to 18mm) can penetrate the leaves and induce symptoms. While A. alternata and A. setosae sp. nov. fail to penetrate and cause infection. The present results will provide experimental evidence and reference for the prevention and control of Iris leaf spot caused by Alternaria alternata like species.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

JD, SA, and YG did the study design. JD, SA, CH, and AH collected the diseased leaf samples. YG and SA performed the

experiments and analyzed the data. YG wrote the manuscript. JD and YG contributed to manuscript revision, read, and approved the submitted version.

Funding

This study was financed by the National Natural Science Foundation of China (31400014 and 32270022).

Acknowledgments

The authors sincerely thank the editors and reviewers for taking their valuable time to review this article.

References

Andrew, M., Peever, T. L., and Pryor, B. M. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored *Alternaria* species complex. *Mycologia* 101, 95–109. doi: 10.2307/20619150

Aung, S., Liu, H. F., Pei, D. F., Lu, B. B., Oo, M. M., Deng, J. X. (2020). Morphology and molecular characterization of a fungus from the *Alternaria alternata* species complex causing black spots on *Pyrus sinkiangensis* (koerle pear). *Mycobiology* 48, 233–239. doi: 10.1080/12298093.2020.1745476

Berbee, M. L., Pirseyedi, M., and Hubbard, S. (1999). *Cochliobolus* phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. *Mycologia* 91, 964–977. doi: 10.2307/3761627

Bessadat, N., Hamon, B., Bataillesimoneau, N., Mabrouk, K., and Simoneau, P. (2020). *Alternaria telliensis* sp. nov., a new species isolated from *Solanaceae* in Algeria. *Phytotaxa* 440, 89–100. doi: 10.11646/phytotaxa.440.2.1

Bessadat, N., Hamon, B., Bataillé-Simoneau, N., Mabrouk, K., and Simoneau, P. (2021). Characterization of new small-spored *Alternaria* species isolated from *Solanaceae* in Algeria. *Life* 11:1291. doi: 10.3390/life11121291

Bobev, S. (2009). Reference guide for the diseases of cultivated plants Makros Publication, Russia, 466.

Carbone, I., and Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91, 553–556. doi: 10.2307/3761358

Cheng, H., Zhao, L., Wei, X., Liu, X., Gao, G. Y., Deng, J. X., et al. (2022). Alternaria species causing leaf spot on hemp (*Cannabis sativa*) in northern China. *Eur. J. Plant Pathol.* 162, 957–970. doi: 10.1007/s10658-021-02450

Choi, I. Y., Choi, Y. J., Kim, J. Y., Shin, H. D. (2019). Identification of *Puccinia iridis* on *Iris domestica* in Korea. *Korean J. Mycol.* 47, 89–94. doi: 10.4489/ KJM.20190011

Chun, J. (1995). Computer-assisted classification and identification of actinomycetes. Dissertation, Unversity of Newcastle.

Clair, A. (2005) Irises: A Gardener's encyclopedia. Timber Press, OR, Portland, page 235.

Gannibal, P. D. (2019). New species and new findings in Russia of *Alternaria* sect. *Gypsophilae. Mikologiya I Fitopatologiya* 53, 10–16. doi: 10.1134/S0026364819010069

Gannibal, P. D., and Lawrence, D. P. (2018). Distribution of *Alternaria* species among sections. 5. Species producing conidia with many longitudinal septa. *Mycotaxon* 133, 285–291. doi: 10.5248/133.28

Gannibal, P. B., Orina, A. S., and Gasich, E. L. (2022). A new section for *Alternaria helianthiinficiens* found on sunflower and new asteraceous hosts in Russia. *Mycol. Prog.* 21. doi: 10.1007/s11557-022-01780-6

He, L., Cheng, H., Htun, A. A., Ge, H., Xia, Z. Z., Guo, J. W., et al. (2021). Phylogeny and taxonomy of two new *Alternaria* (Ascomycota: Pleosporaceae) species in section *Gypsophilae* from China. *Mycol. Prog.* 20, 355–363. doi: 10.1007/ s11557-021-01676-x

Hong, S. G., Cramer, R. A., Lawrence, C. B., and Pryor, B. M. (2005). Alt a 1 allergen homologs from *Alternaria* and related taxa: analysis of phylogenetic content and secondary structure. *Fungal Genet. Biol.* 42, 119–129. doi: 10.1016/j.fgb.2004.10.009

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Huang, S. Z. (2004). Evaluation of some plant resources and germplasm innovation of Iris L. (Dissertation). Nanjing Agricultural University, China.

Huang, C. X., Liu, F. Y., Gou, Y. N., Deng, J. X., and Li, M. J. (2022). Alternaria vignae sp. nov. (Ascomycota: Pleosporaceae) from Vigna unguiculata in China. Phytotaxa 556, 281–290. doi: 10.11646/phytotaxa.556.3.4

Kahl, S. M., Ulrich, A., Kirichenko, A. A., and Muller, M. E. H. (2015). Phenotypic and phylogenetic segregation of *Alternaria infectoria* from small-spored *Alternaria* species isolated from wheat in Germany and Russia. *J. Appl. Microbiol.* 119, 1637–1650. doi: 10.1111/jam.12951

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874. doi: 10.1093/molbev/msw054

Lawrence, D. P., Gannibal, P. B., Peever, T. L., and Pryor, B. M. (2013). The sections of *Alternaria*: formalizing species-group concepts. *Mycologia* 105, 530–546. doi: 10.3852/12-249

Lawrence, D. P., Park, M. S., and Pryor, B. M. (2012). *Nimbya* and *Embellisia* revisited, with nov. comb. for *Alternaria celosiae* and *A. perpunctulata. Mycol. Prog.* 11, 799–815. doi: 10.1007/s11557-011-0793-7

Lawrence, D. P., Rotondo, F., and Gannibal, P. B. (2016). Biodiversity and taxonomy of the pleomorphic genus *Alternaria*. *Mycol. Prog.* 15, 1–22. doi: 10.1007/s11557-015-1144-x

Li, P., Liu, D., and Yu, B. X. (2020). First report of *Alternaria tenuissima* causing leaf spot on *Iris ensata* in Anqing, China. *Plant Dis.* 104, 1549–1549. doi: 10.1094/PDIS-11-19-2387-PDN

Li, J., Phookamsak, R., Jiang, H., Bhat, D. J., Camporesi, E., Lumyong, S., et al. (2022). Additions to the inventory of the genus *Alternaria* section *Alternaria* (Pleosporaceae, Pleosporales) in Italy. *J. Fungi* 8:898. doi: 10.3390/jof8090898

Liu, Q. L., Li, G. Q., Li, J. Q., and Chen, S. F. (2016). *Botrytis eucalypti*, a novel species isolated from diseased *eucalyptus* seedlings in South China. *Mycol. Prog.* 15, 1057–1079. doi: 10.1007/s11557-016-1229-1

Liu, H. F., Liao, J., Chen, X. Y., Liu, Q. K., and Deng, J. X. (2019). A novel species and a new record of *Alternaria* isolated from two *solanaceae* plants in China. *Mycol. Prog.* 18, 1005–1012. doi: 10.1007/s11557-019-01504-3

Liu, Y. J., Whelen, S., and Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. *Mol. Biol. Evol.* 16, 1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092

Lu, X. B., Tang, W., Xu, X. H., Sun, H. W., Li, F., Gao, R., et al. (2016). First report of *cucumber mosaic virus* on *Iris tectorum* in China. *Plant Dis.* 100, 1512–1512. doi: 10.1094/PDIS-01-16-0083-PDN

Luo, H., Tao, Y. Q., Fan, X. Y., Oh, S. K., Lu, H. X., and Deng, J. X. (2018). Identification and characterization of *Alternaria iridiaustralis* causing leaf spot on *Iris ensata* in China. *Mycobiology* 46, 168–171. doi: 10.1080/12298093.2018.1454007

Marin-Felix, Y., Hernandez-Restrepo, M., Iturrieta-Gonzalez, I., Garcia, D., Gene, J., Groenewald, J. Z., et al. (2019). Genera of phytopathogenic fungi: GOPHY 3. *Stud. Mycol.* 94, 1–124. doi: 10.1016/j.simyco.2019.05.001

Meng, S., Torto-Alalibo, T., Chibucos, M. C., Tyler, B. M., and Dean, R. A. (2009). Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene ontology terms. *BMC Microbiol.* 9:S7. doi: 10.1186/1471-2180-9-S1-S7

Meng, F. H., Zhao, R. R., Hu, Z. Y., Wu, B. Q., Lu, H., Zhao, H.. (2016). Research progress on chemical base and medicinal value of Iris. *South. Agric.* 10, 91–93. doi: 10.19415/j.cnki.1673-890x.2016.21.054

Nishikawa, J., and Nakashima, C. (2020). Japanese species of *Alternaria* and their species boundaries based on host range. *Fungal Sys. Evol.* 5, 197–282. doi: 10.3114/fuse.2020.05.13

Posada, D., and Crandall, K. A. (1998). Model test: testing the model of DNA substitution. *Bioinformatics* 14, 817-818. doi: 10.1093/bioinformatics/14.9.817

Pryor, B. M., and Gilbertson, R. L. (2000). Molecular phylogenetic relationships amongst *Alternaria* species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. *Mycol. Res.* 104, 1312–1321. doi: 10.1017/S0953756200003002

Rambaut, A., and Drummond, A. (2010). *Fig Tree v.1.3.1*. Institute of evolutionary biology, University of Edinburgh, Edinburgh, UK.

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572–1574. doi: 10.1093/bioinformatics/btg180

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61, 539–542. doi: 10.1093/sysbio/sys029

Schultes, N. P., Murtishi, B., and Li, D. W. (2017). Phylogenetic relationships of *Chlamydomyces, Harzia, Olpitrichum*, and their sexual allies, *Melanospora* and *Sphaerodes. Fungal Biol.* 121, 890–904. doi: 10.1016/j.funbio.2017.07.004

Simmons, E. G. (2007). *Alternaria: An identification manual*, CBS Fungal Biodiversity Centre: Utrecht, The Netherlands.

Sofie, L., Michiel, V., Bernard, P., Ayres, D. B., Monica, H., Kris, A. (2017). Identification of A. arborescens, A. grandis, and A. protenta as new members of the European Alternaria population on potato. *Fungal Biology*, 172–188. doi: 10.1016/j. funbio.2016.11.005

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688–2690. doi: 10.1093/bioinformatics/btl446

Sun, H., Song, C., Mubeen, I., and Huang, J. (2019). First report of Alternaria tenuissima causing leaf spot disease on Iris tectorum in China. Plant Dis. 103, 1786–1786. doi: 10.1094/PDIS-01-19-0116-PDN

Tahara, S., Ingham, J. L., Hanawa, F., and Mizutani, J. (1991). 1H NMR chemical shift value of the isoflavone 5-hydroxyl proton as a convenient indicator of 6-substitution or 2'-hydroxylation. *Phytochemistry* 30, 1683–1689. doi: 10.1016/0031-9422(91)84234-J

Thomma, B. P. H. J. (2003). Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4, 225–236. doi: 10.1046/j.1364-3703.2003.00173.x

Umesha, S., Kong, P., Richardson, P. A., and Hong, C. X. (2010). Bacterial blight of iris caused by *pseudomonas syringae* in Virginia. *Plant Pathol.* 57:1176. doi: 10.1111/i.1365-3059.2008.01916.x

Wang, H., Cui, Y. M., and Zhao, C. Q. (2010). Flavonoids of the genus *iris* (Iridaceae). *Mini-Rev. Med. Chem.* 10, 643–661. doi: 10.2174/138955710791384027

Wang, C. B., Jiang, N., Zhu, Y. Q., Xue, H., Piao, C. G., and Li, Y. (2022). *Collectorichum truncatum* causing anthracnose disease of *Iris lactea* in Beijing, China. *J. Phytopathol.* 170, 391–398. doi: 10.1111/jph.13088

Wang, C., Yu, L. Z., Song, S. Y., Li, Y. J., and Tian, Y. M. (2020). Morphological and molecular identification of *Aphelenchoides fragariae* intercepted in seedlings of Iris bulbs. *Plant Prot.* 46, 117–121. doi: 10.16688/j.zwbh.2019039

Watanabe, M., Lee, K., Goto, K., Kumagai, S., Sugita-Konishi, Y., and Hara-Kudo, Y. (2010). Rapid and effective DNA extraction method with bead grinding for a large amount of fungal DNA. *J. Food Prot.* 73, 1077–1084. doi: 10.4315/0362-028X-73.6.1077

White, T.J., Bruns, S., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (Eds.) PCR protocols: a guide to methods and applications. Academic Press Inc., New York, 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., and Crous, P. W. (2013). *Alternaria* redefined. *Stud. Mycol.* 75, 171–212. doi: 10.3114/sim0015

Woudenberg, J. H. C., Seidl, M. F., Groenewald, J. Z., De, V. M., Stielow, J. B., Thomma, B. P. H. J., et al. (2015). *Alternaria* section *Alternaria*: species, formae speciales or pathotypes? *Stud. Mycol.* 82, 1–21. doi: 10.1016/j. simyco.2015.07.001

Woudenberg, J. H. C., Truter, M., Groenewald, J. Z., and Crous, P. W. (2014). Large-spored *Alternaria* pathogens in section *Porri* disentangled. *Stud. Mycol.* 79, 1–47. doi: 10.1016/j.simyco.2014.07.003

Xiang, Q., Duan, F. Y., and Zou, Y. W. (2020). Research progress of Iris in China. Rural Sci. Tech. 11, 50–51. doi: 10.3969/j.issn.1674-7909.2020.36.025

Yang, Z., Meng, T., Bi, X., and Lei, J. (2017). Investigation and evaluation of wild iris resources in Liaoning province, China. *Genet. Resour. Crop. Evol.* 64, 967–978. doi: 10.1007/s10722-016-0418-8

Yu, S. H. (2015). Fungal Flora of Korea *Alternaria* and allied genera. National Institute of Biological Resources. *Ministry Environ. Korea* 1:2.

Zhai, F., Zhang, K., Juan, L. I., et al. (2015). Identification of Alternaria pathogens in Xinxiang area. J. Henan Ins. Sci. Tech., doi: 10.3969/j.issn.1008-7516.2015.04.007

Zhang, T. Y. (2003). Alternaria. Flora Fungorum Sinicorum. Beijing. Science Press, page 284.

Zhao, L., Luo, H., Cheng, H., Gou, Y. N., Yu, Z. H., and Deng, J. X. (2022). New species of large-Spored *Alternaria* in section *Porri* associated with *Compositae* plants in China. *J. Fungi* 8:607. doi: 10.3390/jof8060607

Zhao, Y. T., Noltie, H. J., and Mathew, B. (2000). "Iridaceae," in *Flora of China*. eds. Z. Y. Wu and P. H. Raven (Beijing: Science Press), 297–313.

Zheng, H. H., Zhao, J., Wang, T. Y., and Wu, X. H. (2015). Characterization of *Alternaria* species associated with potato foliar diseases in China. *Plant Pathol.* 64, 425–433. doi: 10.1111/ppa.12274