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Recently, a new class of nonlinear systems was introduced, in which the self-trapping of fundamental and
vortical localized modes in space of dimension D is supported by cubic self-repulsion with a strength
growing as a function of the distance from the center, r, at any rate faster that rD. These systems support
robust 2D and 3D modes which either do not exist or are unstable in other nonlinear systems. Here we
demonstrate a possibility to create solitary vortices in this setting by applying a phase-imprinting torque to
the ground state. Initially, a strong torque completely destroys the ground state. However, contrary to usual
systems, where the destruction is irreversible, the present ones demonstrate a rapid restabilization and the
creation of one or several shifted vortices orbiting the center. For the sake of comparison, we show
analytically that, in the linear system with a 3D trapping potential, the action of a torque on the ground state
is inefficient and creates only even-vorticity states with a small probability.

T
he theoretical prediction and experimental creation of multidimensional (two- and three-dimensional, 2D
and 3D) solitons, i.e., self-trapped field patterns, is a challenging problem of nonlinear physics, which is
especially relevant to Bose-Einstein condensates (BECs) and photonics, where such self-trapped states have

the meaning of spatiotemporal solitons1–4. A serious problem is posed by the well-known fact that fundamental
multidimensional localized states, supported by the generic cubic self-focusing nonlinearity, are subject to
instability caused by the collapse of the self-attracting field5–9. Under the same conditions, more complex multi-
dimensional localized states, in the form of vortex tori, alias vortical solitons, are vulnerable to a still stronger
azimuthal instability, which splits them into fragments, that later suffer the intrinsic collapse2,4,10. Nevertheless, it
was very recently found11 that stable complexes, composed of fundamental and vortex solitons, are supported by
the cubic self-attraction in the 2D free space in a two-component system which includes additional linear mixing
between the components via the first spatial derivatives, that represent the spin-orbit coupling in binary BEC12–14.

Thus, the stabilization of multidimensional fundamental solitons and solitary vortices is an issue of great
significance. One possibility to achieve this purpose is to add a self-defocusing quintic term to the self-focusing
cubic one15–18. In that model, all fundamental solitons are stable; indeed, the creation of a (2 1 1)D stable optical
soliton in a colloidal waveguide, featuring the appropriate cubic-quintic nonlinearity, has been recently
reported19. However, vortex solitons are stabilized, in the cubic-quintic system, only above a specific threshold,
which implies that the vortex rings must be very broad2,15,18, making the experimental realization of such states
unfeasible.

The most universal means for the stabilization of fundamental and vortical solitons in 2D and 3D geometries is
provided by the use of periodic potentials, as was predicted theoretically in various settings20–24. Such effective 2D
potentials in optical media can be induced by spatially periodic modulations of the refractive index (photonic
lattices)20. In BEC, similar 2D and 3D potentials are imposed by means of optical lattices, i.e., interference patterns
created by pairs of coherent laser beams illuminating the condensate25,26. In the experiment, photonic-lattice
potentials were used to generate stable 2D optical fundamental27,28 and vortex29–31 solitons. A new remarkable
experimental result is the creation of 2D plasmon-polariton solitons in microcavities, which are also supported by
a lattice structure32.

A completely different approach to the creation of self-trapped fundamental and vortical solitary modes was
proposed in Refs. 33, 34 and further elaborated in diverse settings35–39: the self-repulsive nonlinearity, whose local
strength in the D-dimensional space grows from the center to periphery, as a function of radial coordinate r, at any
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rate faster than rD, supports extremely robust families of solitons and
solitary vortices, along with more complex modes, such as vortex-
antivortex hybrids39. This format of the nonlinearity modulation can
be induced by means of various techniques. In optical media, one
may use inhomogeneous density of a nonlinearity-enhancing res-
onant dopant40. In fact, the dopant density may be spatially uniform,
while the resonance detuning gradually decreases from the center to
periphery under the action of an appropriate external field. In BECs,
the extreme tunability of the magnetic Feshbach resonance (FR)41

suggests a versatile possibility for the creation of spatially inhomo-
geneous nonlinearity landscapes by means of properly shaped mag-
netic fields42–44. Furthermore, optically controlled FR45, as well as the
combined magneto-optical control mechanism46, make it possible to
create any desirable spatial profiles of the self-repulsive nonlinearity.
The required pattern of the laser-field intensity controlling the optically-
induced FR can be also "painted" by means of fast-moving laser beams47.

A unique property of the model with the spatially growing self-
repulsive nonlinearity is the extreme robustness of self-trapped
modes in it, and a possibility to create "exotic" modes, which do
not exist, or are completely unstable, in usual models, such as the
above-mentioned "hybrids". In particular, the application of a strong
perpendicular torque to a 3D vortex soliton originally leads to com-
plete destruction ("pulverization") of the mode, which is quickly
followed by spontaneous restoration of a new vortex, with the axis
rotated so as to absorb the total angular momentum.

The objective of this work is to demonstrate another dynamical
regime for 2D and 3D systems of this type, which would be imposs-
ible in conventional systems: "charging" the ground state, i.e., cre-
ation of single- and multiple-vortex structures by the application of a
phase modulation in the form of a strong torque to the wave function
of the ground state. We demonstrate below that the models based on
the self-trapping induced by the spatially modulated self-repulsive
nonlinearity, in the absence of any linear potential, exhibit their
extreme pattern-forming robustness in these dynamical regimes
too: originally, the strong torque completely destroys the ground
state, but the resulting "pulverized" configuration quickly re-stabilizes,
building one or several vortices, which are displaced from the center
and feature stable orbital motion. The application of a strong torque
to usual 2D nonlinear systems (the uniform self-repulsive nonlinear-
ity, combined with the isotropic harmonic-oscillator (HO) trapping
potential) irreversibly destroys the ground state, replacing it by a
turbulent mixture. In 3D, the usual nonlinear systems are still more
problematic, since long vortical filaments tend to be unstable, as
shown in BEC48,49 and other settings50.

In linear systems, which amount to the Schrödinger equation for
the multidimensional HO, the torque-application problem can be
solved analytically. It is shown below that the torque fails to generate
fundamental vortices with charges S 5 61, while vortices with S 5
62 are generated with a low efficiency. Thus, unlike the nonlinear
system the "charged" HO stays in the ground state, mixed with small
contributions of many vortical states with even values of S.

Results
Formulation of the model and the governing equations. The 2D
and 3D settings, in which robust localized modes can be supported by
the spatially modulated repulsive cubic nonlinearity in BEC, are
modeled by the scaled Gross-Pitaevskii equation (GPE) for the
mean-field wave function, u(x,y,z,t)33–39:

i
Lu
Lt

~{+2uzs rð Þ uj j2u: ð1Þ

Here t is time and s(r) . 0 is the defocusing-nonlinearity strength
that, as said above, must grow along the radial coordinate, r, faster
than rD. The 2D version of Eq. (1) finds another physical realization
in optics, as the propagation equation (the nonlinear Schrödinger
equation) in the spatial domain for the amplitude of the

electromagnetic wave in a bulk self-defocusing medium33–37. In
that case, the role of the evolution variable is played by the
propagation distance.

Following Refs. 34, 35, 38, 39, we adopt the model with a steep
modulation profile, s(r) 5 exp(ar2) in Eq. (1), where a 5 0.1 is fixed
by rescaling. Accordingly, the asymptotic form of stationary solu-
tions with chemical potential m at r R ‘ is

u<ar exp {imt{ar2
�

2
� �

ð2Þ

(note that the asymptotic form, on the contrary to that in usual
systems, is universal, as it does not depend on m, nor on the type of
solution – fundamental, vortical, etc.)34,38,39. This steep format of the
spatial modulation is not necessary, but it helps to produce basic
results in a compact form, although they are not dramatically differ-
ent from findings for milder modulation profiles, cf33,37,38. Of course,
in a real physical situation the nonlinearity coefficient cannot assume
extremely large values at large values of r. However, this is not neces-
sary, as the solitons supported by Eq. (1) are strongly localized
objects, which allows one to truncate the nonlinearity growth at
a distance from the center which essentially exceeds the soliton’s
size.

In terms of cylindrical coordinates, r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
, h, z, stationary

states with integer vorticity S $ 0 have the form of

u r,tð Þ~ exp {imtziShð ÞU r,zð Þ ð3Þ

with the real function U(r, z) vanishing as rS at r R 0 (z is absent in
the 2D setting). Soliton families are characterized by their norm and
angular momentum, which are related in a simple way:

N~

ð
u2(r)dDr, M~{i

ð
u� r|+ð Þu dDr~SNez: ð4Þ

These quantities, along with the Hamiltonian, H~

1=2ð Þ
Ð
j+uj2zs(r)juj4
� �

dDr, are dynamical invariants of Eq. (1).
To "charge" the ground state, i.e., generate vortices in it, we apply

the torque along the z direction with strength p, and width W in the x
direction, by multiplying the wave function at t 5 0 with the respect-
ive phase-imprinting factor:

u x,y,zð Þ?u x,y,zð Þ exp ipy tanh x=Wð Þð Þ: ð5Þ

In the experiment, the phase torque can be imposed onto the BEC
by illuminating it with a broad laser beam carrying the corresponding
transverse phase pattern. In the (2 1 1)D optical system, the same
phase pattern may be lent to the soliton-building beam. Note that,
while the torque imparts the angular momentum to the condensate,
according to Eq. (4), it does not induce a certain integer value of the
vorticity; in fact, as shown below, the torque originally induces a
mixture of different vorticities.

Charging the two-dimensional nonlinear system by the torque.
The application of a strong torque leads to conspicuous emission
of radiation, which should be absorbed, to prevent it from
perturbing the dynamics after reflection from the edge. Without
the action of the absorber, the violent radiation resulting from the
strong torque does not allow the system to converge to a robust state,
hence the presence of the absorber is crucially important. After the
convergence was reached, the norm and the angular momentum of
the localized mode remain virtually constant, and the absorber plays
no significant role, see the lower panel in Fig. 1. In the real physical
situation with BEC, the role similar to that of the absorber may be
played by evaporation of hot atoms from the external trap. In Fig. 1
we present a generic example of the outcome of the application of
torque (5) to the ground state of the 2D version of the nonlinear
model. The ground state was found by means of the well-known
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imaginary-time integration method. Originally, a relatively strong
torque completely "pulverizes" the trapped state, which is followed
by the spontaneous emergence of an eccentrically placed pivot,
around which a vortex with S 5 1 is formed. The self-trapping of
the well-organized vortex state from an apparently chaotic one is an
example of the above-mentioned ability of the present nonlinear
model to (re)build regular structures from a completely destroyed
background.

As said above, the simulations were run with an absorber placed at
edges of the computation domain (it can model the atomic or photon
losses in the experiment, due to a finite size of the setup). Under the
action of the absorber, a part of the norm and angular momentum is
lost at the initial stage of the evolution, while these quantities remain
constant in the course of the subsequent evolution.

Subsequently, the vortical pivot performs stable circular motion
around the center, keeping distance R 5 1.5 from it, with angular
velocity v 5 0.45. The angular momentum and norm of this estab-
lished state are M 5 190.8 and N 5 237.1, hence the momentum is
not sufficient to satisfy relation M 5 SN for stationary vortex soli-
tons, see Eq. (4) (hereafter, all values of M and N refer to a later stage
of the evolution, which is no longer affected by the absorber). In fact,
this is the reason for obtaining the eccentric vortex orbiting the
center, instead of a stationary one pinned to the center.

Results of systematic simulations are collected in Fig. 2, which
demonstrates that the decrease of M/N pushes the pivot farther from
the axis. We stress that the curve is universal, representing the results
obtained for many different values of the norm and different values
of the torque’s strength, p, in Eq. (5). Thus Fig. 2 shows that the radius
of the circular motion of the pivot depends only on ratio M/N, rather
than on N and M separately, provided that the single vortex is gen-
erated by the torque.

In general, the application of the torque to the ground state can
lead to a variety of scenarios following the "pulverization" stage,
ranging from restoration of the fundamental soliton to appearance
of states with multiple pivots, representing multiple topological
charges. These pivots orbit the origin at different angular velocities
in clockwise and counterclockwise directions, in some cases colliding
with each other. A typical example of the complex (but non-chaotic)
dynamical state with three pivots is displayed in Fig. 3, when the
torque with p 5 100 and W 5 10 was applied. The total angular
momentum, is split between the three pivots rotating in opposite
directions, is M 5 70.5, while the norm of the state is N 5 236.4.

It is relevant to mention that steady circulation of a vortex around
the center was experimentally observed in a nearly-2D binary BEC51.
The difference is that in the corresponding setting the confinement
was imposed on the two-component system by the trapping poten-
tial, while here we consider the dynamics of the single-component
self-trapped vortex modes. Nevertheless, the experiment and the
present results suggest that the orbital motion of the vortex’ pivot
around the center is a generic dynamical regime, which occurs in very
different systems.

Charging the three-dimensional nonlinear system by the torque.
In the 3D model based on Eq. (1), stable vortex filaments are created
by the application of the torque to the ground state, which is
represented by the isotropic fundamental soliton. Figure 4
demonstrates an example of the evolution following the application
of the initial torque (5) to the ground state, which ends up with norm
N 5 2615.5 and angular momentum (oriented along the z axis) M 5

906.4. After an initial chaotic stage, a vortex filament self-traps, stably
orbiting around the center. Thus, the system, this time in its full 3D
form, again demonstrates the propensity to spontaneously build
robust topologically organized robust structures from a state which
was, apparently, completely destroyed by the sudden application of the
torque.

The creation of an array of multiple vortical filaments is also
possible in the 3D setting. A drastic difference from the 2D case,
where the coexisting vortices move independently (with different
angular velocities, see Fig. 3), is that the 3D setting demonstrates a
trend to crystallization of multiple vortex axes into a steadily rotating
complex. This difference is explained by the fact that the third
dimension, z, enhances the interaction between parallel filaments
(the more the system is elongated in z, the stronger this interaction
is). Figure 5 demonstrates the creation of a four-vortex complex and
its stable rotation, with the same norm N 5 2615.5, as in the case
shown in Fig. 5, but with a much larger total angular momentum, M
5 2650 (which slightly exceeds N, cf. Eq. (4)). The panel in Fig. 5
pertaining to t 5 233 displays the vortex complex rotated by angle p
relative to its position at t 5 210. Varying the parameters, it is
possible to produce rotating complexes with different numbers of
the pivots, both smaller and larger than 4.

Figure 1 | Upper panels: Snapshots of stages of the spontaneous creation
of a vortex with a single pivot and S 5 1 in the 2D setting, by the
application of torque (5), with strength p 5 80 and width W 5 10, at t 5
10, 50, and 250. Here, | u(x,y) | is displayed, instead of local density

| u(x,y) | 2, for better visibility of the peripheral area. Middle panel: The

history of the formation of the orbiting vortex is shown by plotting the

intensity-level plot corresponding to | u(x,y) | 2 5 3. Lower panel: The

corresponding evolution of the norm. The drop of the norm at the initial

stage is caused by elimination of the emitted radiation by the absorber.

Figure 2 | The radius of the circular motion of the vortical pivot around
the center, vs. the momentum/norm ratio. The solid blue and dashed red

lines pertain to the 2D and 3D models, respectively.
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Besides the well visible holes at the given intensity level, there are
also shallow holes that may collide with others. Therefore, multi-hope
configuration s feature only transient robustness, which, in some cases,
persists for quite long times, allowing the pattern to rotate as a rigid
body. Such a case is displayed in Fig. 5, where a robust complex of four
visible holes performs more than two full rotation periods.

Charging the ground state of a linear system by the torque. For the
sake of comparison with the above results, the creation of the
vorticity by the suddenly applied torque is analyzed in the linear
system, taking, as a tractable model, the 2D or 3D HO. Although
this problem is straightforward to solve, we have not found a solution
in the literature, therefore it is presented in a brief form here. The
Schrödinger equation for the 3D HO, with trapping frequencies V
and x in the (x,y) plane and along the z direction, is

i
Lu
Lt

~
1
2

{+2uzV2r2zx2z2
� �

u, ð6Þ

x 5 0 corresponding to the 2D HO. The result of the analysis (details
are given in section Methods) is that, unlike the nonlinear system
considered above, the torque cannot generate states with odd
vorticities in the linear model, including S 5 61. Even vorticities,
starting from S 5 62, are generated, but the efficiency is quite poor,
as shown in Fig. 6. Thus, the nonlinear system considered above far
outperforms its linear counterpart.

Discussion
The objective of this work is to demonstrate that the recently
introduced class of systems, in which extremely robust self-trap-
ping of fundamental and vortical modes are supported by the
spatially inhomogeneous self-repulsive cubic nonlinearity, whose
local strength grows from the center to periphery, exhibits its
exceptional dynamical robustness also in scenarios of "charging"
the ground state (imparting the vorticity to it) by the suddenly
applied phase torque. It is found that, in both the 2D and 3D
versions of the model, the strong torque at first completely
destroys the ground state, as it would happen in usual nonlinear
systems, but, on the contrary to the usual systems, the present one
quickly re-stabilizes by building one or several eccentrically
placed vortices, which perform stable orbital motion around the
center. An additional advantage of the 3D version of the system is
the stability of long vortex filaments. Further, the difference
between the 2D and 3D realizations of the system is that in 2D
multiple vortices orbit the center independently, while in 3D they
tend to crystallize into a structure which rotates as a whole (with
residual internal oscillations). We have also demonstrated that the
"charging" of the ground state in the linear system (the 3D HO
(harmonic oscillator)) by the torque is very inefficient, in com-
parison with the present model: the linear system cannot generate
vorticities S 5 61, while probabilities of generating S 5 62 are
very low.

Thus, the systems with the spatially modulated self-repulsive
interactions have a strong potential for the creation of stable multi-
dimensional localized objects, including quite complex ones, which
do not exist or are completely unstable in usual settings.

Methods
The underlying equation (1) was simulated in real and imaginary time alike by the
Fourier- transform split-step method in the 3D domain of size (6p)3, covered by a
mesh of 2563 points. As mentioned above, an absorber was installed at edges of the

Figure 3 | (Color online) Snapshots of the evolution ending up with the
formation of the 2D vortex state with three pivots. The pivots which are

closest to the center, the middle one, and farthest from the center, perform

the orbital motion with angular velocities v 5 10.17, 20.44 and 20.48,

respectively. Note that, on the contrary to the Keplerian motion, the

angular velocity increases with the radius. This is explained by the fact that

the centripetal force is provided here not by attraction to the center, but

rather by the repulsion from the outer region.

Figure 4 | The creation of a single vortex filament, orbiting around the
center, by torque (5) with p 5 40 and W 5 3 in the 3D setting. Shown are

intensity iso-surfaces at | u(x,y,z) | 2 5 1.

Figure 5 | The creation of a "crystallized" complex of four vortex
filaments in the 3D setting. Shown are intensity iso-surfaces | u(x,y,z) | 2 5

1. The established complex rotates at angular velocity v 5 0.14.

Figure 6 | Probabilities of the generation of vorticities with S 5 12 and
22 [labeled (1) and (2)], | Æp,W | Sæ | 2, in the 3D harmonic oscillator, by
the torque, calculated as per Eq. (9) with V ; 1.
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integration domain. Simulations of the 2D model were carried out in a domain of area
of (6p)2, covered by 2562 points. In both the 2D and in 3D cases, the simulations were
performed up to t 5 300. By that time, all dynamical configurations would relax into a
final shape.

For the analytical solution of the linear model based on Eq. (6), wave functions with
vorticity S were taken in the standard form,

Sj i~ V(1zS)=2x1=4

p3=4
ffiffiffiffi
S!
p rS exp {i 1zSð ÞVz

x

2

� 	
tziSh{

1
2

Vr2zxz2
� �
 �

: ð7Þ

The application of torque (5) to the ground state, which corresponds to S 5 0 in Eq.
(7), gives rise to the following input state:

p,Wj i~
ffiffiffiffi
V
p

x1=4

p3=4
ffiffiffiffi
S!
p rS exp {

1
2

Vr2zxz2
� �

zipy tanh
x

W

� 	
 �
: ð8Þ

This wave function should be expanded over the full set of eigenstates (7), the
respective amplitudes being (hereafter, we simplify the formulas, fixing V 5 1 by
means of rescaling, while x may be arbitrary):

p,WjSh i~ 1

p3=4
ffiffiffiffi
S!
p

ðð
dxdyrS exp {r2{ipy tanh

x
W

� 	
ziSh

h i
, ð9Þ

which is written in the mixed Cartesian-polar form. It is easy to see that Eq. (9) yields cS

5 0 for all odd values of S. Therefore, the lowest torque-created vorticity is S 5 62.
Numerically computed values of the respective probabilities, given by integrals (S4),
jÆp,WjSæj2, are presented in Fig. 6. The plots demonstrate that, naturally, the probability
of the generation of the positive vorticity, S 5 12, by the positive torque is larger than
for S 5 22. The former probability attains a well-pronounced maximum,
(jÆp,WjSæj2)max 5 0.28 at W 5 0 and p 5 1.64 (in the left panel of Fig. 6). A fully
analytical expression for the probabilities can be obtained in the limit of p,W R ‘,
so that p0 ; p/W is kept constant, and the respective probabilities for S 5 62 simplify
to

p,WjSh ij j2~ 2
p

ðð
exp { x2zy2

� �� �
xy sin xyð Þdxdy

� 
2

~
1
8

p2
0

1zp2
0=4ð Þ3

: ð10Þ

It is easy to check that Eq. (10) agrees with the portions of Fig. 1 corresponding to large
values of p and W. In this connection, it is relevant to mention that, in the limit of p,W
R ‘, the corresponding torque factor in Eq. (5), exp(ip0yx), carries zero angular
momentum, therefore we have jÆp,WjS 5 12æj2 5 jÆp,WjS 5 22æj2 in this limit.

Lastly, it follows from Eq. (10) that, in the same asymptotic limit, the largest
probability of generating the vortices with S 5 62 is attained at p0~

ffiffiffi
2
p

, viz.,

p0~
ffiffiffi
2
p
jS~z2

D E��� ���2~2=27. At the same point, p0~
ffiffiffi
2
p

, the probability that the

HO stays in the ground state (S 5 0) is p0~
ffiffiffi
2
p
jS~0

D E��� ���2~2=3. The remaining

probability, 1 2 2 3 (2/27) 2 2/3 5 5/27, is distributed between even higher-order
vorticities, jSj $ 4.
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19. Falcão-Filho, E. L., de Araújo, C. B., Boudebs, G., Leblond, H. & Skarka, V. Robust
Two-Dimensional Spatial Solitons in Liquid Carbon Disulfide. Phys. Rev. Lett.
110, 013901 (2013).

20. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M.
Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev.
E 66, 046602 (2002).

21. Baizakov, B. B., Malomed, B. A. & Salerno, M. Multidimensional solitons in
periodic potentials. Europhys. Lett. 63, 642 (2003).

22. Yang, J. & Musslimani, Z. H. Fundamental and vortex solitons in a two-
dimensional optical lattice. Opt. Lett. 28, 2094 (2003).

23. Mihalache, D. et al. Stable three-dimensional spatiotemporal solitons in a two-
dimensional photonic lattice. Phys. Rev. E 70, 055603(R) (2004).

24. Kartashov, Y. V., Vysloukh, V. A. & Torner, L. Soliton Shape and Mobility Control
in Optical Lattices, Progress in Optics, 52, 63, Elsevier (2009)

25. Brazhnyi, V. A. & Konotop, V. V. Theory of nonlinear matter waves in optical
lattices. Mod. Phys. Lett. B 18, 627 (2004).

26. Morsch, O. & Oberthaler, N. Dynamics of Bose-Einstein condensates in optical
lattices. Rev. Mod. Phys. 78, 179–215 (2006).

27. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation
of two-dimensional discrete solitons in optically induced nonlinear photonic
lattices. Nature 422, 147 (2003).

28. Minardi, S. et al. Three-dimensional light bullets in arrays of waveguides. Phys.
Rev. Lett. 105, 263901 (2010).

29. Neshev, D. et al. Observation of discrete vortex solitons in optically induced
photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).

30. Fleischer, J. W. et al. Observation of vortex-ring ‘‘discrete’’ solitons in 2D photonic
lattices. Phys. Rev. Lett. 92, 123904 (2004).

31. Terhalle, B. et al. Observation of double-charge discrete vortex solitons in
hexagonal photonic lattices. Phys. Rev. A 79, 043821 (2009).

32. Cerda-Méndez, E. A. et al. Exciton-polariton gap solitons in two-dimensional
lattices. Phys. Rev. Lett. 111, 146401 (2013).

33. Borovkova, O. V., Kartashov, Y. V., Malomed, B. A. & Torner, L. Algebraic bright
and vortex solitons in defocusing media. Opt. Lett. 36, 3088 (2011).

34. Borovkova, O. V., Kartashov, Y. V., Torner, L. & Malomed, B. A. Bright solitons
from defocusing nonlinearities. Phys. Rev. E 84, 035602 (R) (2011).

35. Kartashov, Y. V., Vysloukh, V. A., Torner, L. & Malomed, B. A. Self-trapping and
splitting of bright vector solitons under inhomogeneous defocusing
nonlinearities. Opt. Lett. 36, 4587 (2011).

36. Tian, Q., Wu, L., Zhang, Y. & Zhang, J.-F. Vortex solitons in defocusing
media with spatially inhomogeneous nonlinearity. Phys. Rev. E 85, 056603
(2012).

37. Wu, Y., Xie, Q., Zhong, H., Wen, L. & Hai, W. Algebraic bright and vortex solitons
in self-defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. A
87, 055801 (2013).

38. Driben, R., Kartashov, Y. V., Malomed, B. A., Meier, T. & Torner, L. Soliton
gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett.
112, 020404 (2014).

39. Driben, R., Kartashov, Y. V., Malomed, B. A., Meier, T. & Torner, L. Three-
dimensional hybrid vortex solitons. New J. Phys. 16, 063035 (2014).

40. Hukriede, J., Runde, D. & Kip, D. Fabrication and application of holographic
Bragg gratings in lithium niobate channel waveguides. J. Phys. D 36, R1
(2003).

41. Pollack, S. E. et al. Extreme tunability of interactions in a 7Li Bose-Einstein
condensate. Phys. Rev. Lett. 102, 090402 (2009).

42. Abdullaev, F. K., Gammal, A. & Tomio, L. Dynamics of bright matter-wave
solitons in a Bose–Einstein condensate with inhomogeneous scattering length.
J. Phys. B: At. Mol. Opt. Phys. 37, 635 (2004).

43. Theocharis, G., Schmelcher, P., Kevrekidis, P. G. & Frantzeskakis, D. J. Matter-
wave solitons of collisionally inhomogeneous condensates. Phys. Rev. A 72,
033614 (2005).

44. Sakaguchi, H. & Malomed, B. A. Matter-wave solitons in nonlinear optical lattices.
Phys. Rev. E 72, 046610 (2005).

45. Yan, M., DeSalvo, B. J., Ramachandhran, B., Pu, H. & Killian, T. C. Controlling
condensate collapse and expansion with an optical Feshbach resonance. Phys. Rev.
Lett. 110, 123201 (2013).

46. Bauer, D. M., Lettner, M., Rempe, C., Vo, G. & Dürr, S. Control of a magnetic
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