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Abstract
Interindividual variability in anatomical and physiological properties results in significant dif-

ferences in drug pharmacokinetics. The consideration of such pharmacokinetic variability

supports optimal drug efficacy and safety for each single individual, e.g. by identification of

individual-specific dosings. One clear objective in clinical drug development is therefore a

thorough characterization of the physiological sources of interindividual variability. In this

work, we present a Bayesian population physiologically-based pharmacokinetic (PBPK)

approach for the mechanistically and physiologically realistic identification of interindividual

variability. The consideration of a generic and highly detailed mechanistic PBPK model

structure enables the integration of large amounts of prior physiological knowledge, which

is then updated with new experimental data in a Bayesian framework. A covariate model

integrates known relationships of physiological parameters to age, gender and body height.

We further provide a framework for estimation of the a posteriori parameter dependency

structure at the population level. The approach is demonstrated considering a cohort of

healthy individuals and theophylline as an application example. The variability and co-vari-

ability of physiological parameters are specified within the population; respectively. Signifi-

cant correlations are identified between population parameters and are applied for

individual- and population-specific visual predictive checks of the pharmacokinetic behav-

ior, which leads to improved results compared to present population approaches. In the

future, the integration of a generic PBPK model into an hierarchical approach allows for

extrapolations to other populations or drugs, while the Bayesian paradigm allows for an

iterative application of the approach and thereby a continuous updating of physiological

knowledge with new data. This will facilitate decision making e.g. from preclinical to

clinical development or extrapolation of PK behavior from healthy to clinically significant

populations.
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Introduction
Providing a safe and efficacious drug therapy for large and often heterogeneous populations is
a challenging objective in clinical drug development. On the one hand, a therapeutic effect of
the drug is desired to be achieved for all patients; on the other hand too high concentrations
have to be avoided to reduce adverse events [1, 2]. Anatomical and physiological properties
have a great influence on the pharmacokinetics (PK) of drugs and lead to interindividual vari-
ability in the PK outcome [1]. However, the PK of healthy adults, which represent the natural
study population in early clinical phases may differ greatly from that of the diseased target pop-
ulation, which is e.g. represented by elderly or children. For these populations often only sparse
literature information is available about their PK behavior or physiological variability. There-
fore, in-silico approaches are considered for the identification and characterization of sources
of interindividual variability. Ideally, such approaches should be able to improve individual-
and population-specific simulations of the PK of drugs and to support the knowledge-based
extrapolation to other drugs or populations.

One well-known approach to characterize interindividual variability in PK parameters is
nonlinear mixed effects modeling (NLME). It is a common approach to identify unexplained
population variability in parameters of PK models and to identify covariates, which explain the
variability of the data [3–5]. Thereby, Bayesian formulations are used for few applications,
where the models are calibrated to experimental data under consideration of prior information
about the parameters. The complexity of the integrated PK model varies from small and rather
descriptive one or two compartment models, up to larger mechanism-based models. This
allows to cover a broad range of applications, please refer to [6–8] for examples.

Another approach to describe the interindividual variability in the PK of drugs is to consider
whole-body physiologically-based pharmacokinetic (PBPK) models. Whole-body PBPK mod-
els describe the PK behavior of the drug mechanistically at a very high level of detail, such that
each model parameter represents an explicit physiological or substance-specific quantity [9–
11]. Due to the mechanistic conceptualization, the physiologically-based compartmental
model structure representing the organs is clearly separated from an underlying distribution
model that quantifies the mass transfer. The distribution model itself is defined by the physico-
chemistry of the drug such as its lipophilicity. In particular, the differentiation of drug and
physiology in combination with the mechanistic representation of human physiology allows a
direct parameterization of the models. As the parameters account for a certain biological inter-
pretation, existing large collections of prior anatomical and physiological data can be utilized
from literature databases and by derivation from the physicochemical properties of the com-
pound [12–14]. For the assessment of interindividual variability, large virtual populations are
created based on such prior knowledge [15–17]. Simulations of the virtual individuals are car-
ried out and the interindividual variability in clinical endpoints can be determined. PBPK pop-
ulation simulations were used in several applications e.g. for the prediction of interindividual
variability in oral administration of cimetidine or for analysis of methadone distribution [18,
19]. However, the method describes interindividual variability only by use of prior information
and not by an additional integration of experimental data. If only sparse prior data is available,
e.g. for detailed enzymatic processes or the physiological variation in special populations, such
population simulations are afflicted with large uncertainty, that cannot be reduced by further
inference of information from the experimental data. Dependencies between model parameters
that cannot be explained by covariates such as body mass, body height or age are difficult to
integrate, since a priori little information may be available about such relationships.

To overcome this issue, PBPK modeling has further been used in combination with Bayes-
ian approaches, where available prior knowledge in the form of probability distributions is
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updated with information extracted from experimental data in the so-called posterior distribu-
tion. Main work was done in the field of toxicokinetics [20–23], but also special applications
have already been performed, recently [24–27]. Thereby, many models are case specific and
therefore contain some lumped compartments or parameters to reduce complexity and
dimensionality of the models. This facilitates the identification of unknown parameters but
hampers the extrapolation of the results to new scenarios.

In this paper a Bayesian population PBPK approach (Fig 1) is considered for the identifica-
tion of interindividual variability in a population and the characterization of its physiological
and ADME (absorption, distribution, metabolization, excretion)-related sources. Thereby a
generic, highly detailed whole-body PBPK model constitutes the model kernel and provides a
mechanistic representation of human physiology [28]. Within a Bayesian framework, a hierar-
chical model is incorporated to establish a separation of population level and individual level.
A block-wise Markov chain Monte Carlo approach is used to identify the very high dimen-
sional parameter distribution. In addition, a covariate model accounts for systematic variability

Fig 1. Schematic illustration of the presented Bayesian population PBPK approach. (A) A Bayesian framework is combined with a detailed mechanistic
PBPKmodel, where a Markov chain Monte Carlo (MCMC) approach is considered to identify the high dimensional parameter distribution. (B) Prior
population-specific anatomical and physiological information is integrated into an hierarchical model approach. (C) Individual-specific experimental data and
physiological parameters are considered to parameterize the model and to generate individual model outputs. (D) Due to the model structure of the PBPK
model, substance parameters can be differentiated from physiological parameters. This allows a global determination of the substance information, since it
does not vary individually or from population to population.

doi:10.1371/journal.pone.0139423.g001

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 3 / 22



that can be explained by the covariates age, gender and body height. For population simula-
tions using the inferred distributions, we present a framework for estimating the posterior
dependency structure and identify significant correlations of physiological parameters within
the population. The integration of such correlations together with the posterior parameter dis-
tributions improves the simulation of pharmacokinetic behavior within the population com-
pared to present approaches. In future applications, an iterative assessment of the approach
could be imagined, which supports the characterization of special population’s physiology by
inferring the interindividual variability over several clinical studies.

Materials and Methods

Physiologically-based pharmacokinetic model structure
In contrast to classical PK modeling, PBPK models describe the PK behavior of endogenous
and exogenous substances in the body mechanistically. This mechanistic consideration
allows a detailed representation of all important ADME processes and the individual physiol-
ogy based on a large amount of prior information [9–11]. In our approach, the PBPK model
is created based on a generic PBPK model structure consisting of 22 compartments including
all organs, arterial and venous blood pool and the portal vein (Fig 1) [28]. Furthermore, the
organs are subdivided into physiological subcompartments, which characterize the blood
plasma, the red blood cells, the interstitial space and the intracellular space. All compart-
ments and subcompartments as well as the vascular system are connected by an underlying
generic distribution model that quantifies the mass transfer. The distribution model is
parameterized by only few substance-specific parameters such as molecular weight, lipophili-
city and protein binding. These parameters are used to determine permeabilities across mem-
branes and partition coefficients between compartments [12–14, 29, 30]. In addition to such
passive processes, active transport-, metabolization-, and excretion processes are integrated
into the model based on the specific PK behavior of a substance. These processes can be rep-
resented as first or second order rate kinetics, such that also nonlinearities are considered if
needed.

All individual physiological parameters such as organ volumes, blood flow rates or tissue
composition are provided by the internal PBPK software database and were originally collected
from large numbers of literature sources. All in all, the basic model consists of around hundred
ordinary differential equations. In the model, physiological parameters are clearly separated
from substance-specific parameters due to the separation of distribution model and physiologi-
cal structure.

Hierarchical modeling
Different hierarchical levels have to be considered to integrate all prior information and experi-
mental data and to derive results both about each individual and the population (Fig 1). At an
individual level, experimental PK data is provided. The PBPKmodel is also parameterized indi-
vidually. However, prior knowledge about a physiological parameter, such as an organ volume,
is provided at a population level in form of univariate probability distributions. In addition,
interindividual variability needs to be derived at a population level (Fig 1).

We therefore considered a hierarchical approach consisting of two levels. The first level
describes the individual PK data by the PBPK model and a proportional error model. The sec-
ond level identifies the population distributions of the physiological parameters.
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The model is defined as:

Yi;j ¼ f ðtij; yi; ni;DiÞ � ð1þ εi;jÞ; with εi;j � Nð0; s2Þ ð1Þ

yi ¼ dðai; b; biÞ; bi � Nð0; IÞ ð2Þ

At the individual level in Eq (1), an experimental data point Yi,j for individual i (i = 1. . .N)
and individual specific time point j (j = 1. . .ni) at time point tij is described by function f, which
evaluates a vector of K variable parameters θi, a vector of fixed parameters νi and dose Di. Nota-
bly, the function f represents the mechanistic PBPK model. The proportional measurement
error εi,j is assumed to be normal distributed with variance σ2. In Eq (2), the variation of θi in
the population is described by function d, which contains a vector ai that represents individual
characteristics like e.g. age ore height, a fixed effects vector β and an individual-specific random
effects vector bi, which is assumed to be independently normal distributed and describes the
unexplained variability. For a more detailed description of this well-known approach please
refer to [5, 22, 31].

Physiological covariate modeling
A large amount of physiological parameters in the PBPK model depend on the anthropometry
of an individual such as its age, gender or body height [15]. The integration of such dependen-
cies via covariates and scaling functions reduces the overall variability and in addition reduces
the dimensionality of the parameter space. This allows to better identify the unexplained vari-
ability in the approach. The covariate model is defined as:

ai ¼ ðAi;Gi;HiÞ;
b ¼ ðM; SÞ;
d ¼ MAi;Gi

þ SAi ;Gi
� bi; bi � Nð0; IÞ

dV ¼ MAi ;Gi
� Hi

HAi;Gi

 !a

þ SAi ;Gi
� Hi

HAi;Gi

 !a

� bi;

ð3Þ

where the covariates Ai, Gi and Hi represent age, gender and body height, respectively. Fixed
effectsM and S represent population mean values and standard deviations. Based on the struc-
ture of the appropriated physiological database [15], age- and gender-specific distributions are
defined on a grid by providing mean valueM and standard deviation S for each grid point.
MAi;Gi

denotes the age-scaled vector of population mean values for individual i specific to gen-

der, where age scaling was performed by linear interpolation between the grid points, while
SAi ;Gi

describes the age-scaled vector of population standard deviations for individual i specific

to gender. By such formulation, the population model function d becomes linear. It is assumed,
that the random effects bi are independent from the anthropometry of an individual, which
states that the unexplained variation in the parameters should be the same regardless of the
covariates [5]. A priori, bi is assumed to be independent standard normal distributed. Please
find additional information below.

A specific function dV is formulated for the organ volumes, since these are also dependent
on the body height [15], which is also in line with [32]. The scaling coefficient is defined as the
ratio of the individual body height Hi and the mean height of the respective group of individu-
als defined by the constitutional covariates HAi ;Gi

. The vector α represents the organ specific

allometric scaling factors [15].
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PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 5 / 22



Notably, the population covariate model is considered for physiological parameters that are
normal and lognormal distributed, respectively. In the case of a lognormal distributed parame-
ter,MAi ;Gi

and SAi ;Gi
represent the scaled mean and standard deviation, respectively, of the asso-

ciated normal distribution and the model describes log(θi).
In summary, θ,M, S and σ2 are the parameter vectors, which now need to be identified in

the presented model framework to be able to describe individual-specific experimental data
and assess the interindividual variability in the population.

Separation of physiological and substance properties
Since substance information does not differ individually; it is defined as a so called “global”
property of the model approach and the substance-specific parameters are identified globally
for all individuals. Therefore, substance parameters in the model are considered separately
from the individual parameters in the approach. This leads to θi = [θIi, θ

G], where θIi represents
the individual parameters, i.e. the ADME- and physiological parameters, and θG denotes the
global parameters.

Bayesian model framework
The described hierarchical approach, the mechanistic PBPK model and all prior information is
embedded into a Bayesian statistical framework. Bayesian statistics defines all unknown
parameters as random variables and allows to identify probability distributions for the parame-
ters. Thereby, parameters are inferred from existing knowledge and information contained in
the experimental data [33]. In Bayes’ rule, the product of prior probability p(ω) and likelihood
of the experimental data given a parameter vector p(Y|ω) results in the so-called posterior dis-
tribution:

pðojYÞ ¼ pðY joÞ � pðoÞ
pðYÞ ; ð4Þ

where Y are arbitrary experimental data and ω are arbitrary parameters. A large number of
parameters are integrated in the presented Bayesian population PBPK approach, which leads
to a very high dimensional parameter space. Because of the high dimensionality of ω the deter-
mination of the scaling factor p(Y) =

R
p(ω|Y)dω is almost impossible. Therefore, Markov

chain Monte Carlo (MCMC) approaches have been developed, which describe a growing class
of sampling algorithms that allow the estimation of the posterior distribution by drawing a
large sample out of it. In contrast to classical Monte Carlo sampling, MCMCmethods sample
along a Markov chain that has the posterior distribution as its long-run stationary distribution
[34]. After a so-called burn-in period which is needed to converge from an initial parameter
vector to the stationary distribution, each iteration of the MCMC approach represents a
parameter vector out of the posterior distribution. The bandwidth of MCMC approaches
ranges from the basic Metropolis-Hastings algorithm [35] to very advanced MCMC strategies
including multivariate sampling [36], adaptive MCMC [37] or Riemann manifold Langevin
and Hamiltonian Monte Carlo methods [38]. A very good overview can be found in [39].

In this work, the MCMC approach described in Krauss et al. [24] is extended to assess the
hierarchical model as described above. A block-wise Metropolis-Hastings (MH) approach [33,
39] copes with the different sampling of population parameters, global parameters and individ-
ual parameters. For each individual, the parameter vector containing all individual parameters
θIi is sampled in one block. The global parameters θG are sampled together with σ2 in another
block.M and S are sampled separately and are further divided into 2 blocks.
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As an exemplary MCMC step, sampling of the individual parameters of individual i is per-
formed as follows:

1. Let yIi ðnÞ be the individual parameter vector of individual i after n steps. Propose a new

parameter vector yIi 0 by random sampling from a proposal density QðyIi ðnÞ; �Þ.
2. Generate u 2 [0,1] uniformly distributed. Examine if

u � pðyIi 0jYi; y
GðnÞ;MðnÞ; SðnÞ; s2ðnÞÞ � QðyI

i ðnÞ; yI
i 0Þ

pðyIi ðnÞjYi; y
GðnÞ;MðnÞ; SðnÞ; s2ðnÞÞ � QðyI

i 0; yI
i ðnÞÞ

ð5Þ

3. If true: yIi ðnþ 1Þ ¼ yIi 0; else: yIi ðnþ 1Þ ¼ yIi ðnÞ:
The proposal density Q is defined as truncated normal distribution centered around yIi ðnÞ.

The lower and upper bounds of the parameters are chosen as defined in S1 Table and are fur-
ther described below. Each parameter of one block is sampled independently, such that the
proposal covariance matrix becomes diagonal. The same applies to the other parameter types.

Exceptions are the organ volumes yI;OV
i ¼ ðyI;OVi;1 ; . . . ; yI;OV

i;V Þ, which are assumed to summa-

rize to individual’s body weight [15]. This additional constraint must be taken into account
during sampling. To avoid complex transformations, the sampling process is performed under
consideration of a consecutive adaption of the lower and upper bound of a certain organ vol-
ume, conditional on the remaining proportion of BW. This is performed as follows:

1. Sort yI ;OVi in ascending order related to the difference of the parameter-specific lower and

upper bound yI ;OV ;maxi � yI ;OV ;mini and set BWrem = BW.

2. Sample a new organ volume candidate yI ;OV
0

i;v ; v ¼ 1 . . . V from a truncated normal distribu-

tion centered around yI ;OVi;v ðnÞ with yI ;OV ;min
�

i;v < yI ;OV
0

i;v < yI ;OV ;max
�

i;v , where

yI;OV ;min�
i;v ¼ maxðyI;OV ;min

i;v ;BWrem �PV
j¼vþ1 y

I;OV ;max
i;j Þ;

yI;OV ;max�
i;v ¼ maxðyI;OV ;max

i;v ;BWrem �PV
j¼vþ1 y

I;OV ;min
i;j Þ:

ð6Þ

3. Determine the remaining body weight BWrem ¼ BW � yI ;OV
0

i;v .

4. Repeat steps 2. and 3. until = V − 1. Then set yI ;OV
0

i;v¼V ¼ BWrem.

The adaptation of lower and upper bounds allows an efficient independent sampling of
each organ volume. Apart from the dynamic lower and upper bounds, the organ volumes can
be treated the same way as all other individual parameters, such that the block-wise MH algo-
rithm (see Eq (5)) is unaffected by the additional sum-constraint of the organ volumes.

The likelihood describes how well the model, which is parameterized with a certain parame-
ter vector, describes the experimental data. The individuals are assumed to be independent
from each other, such that likelihood and prior can be factorized related to the individuals.

Based on the proportional error model, the likelihood for individual i is defined as:

pðYijyiÞ ¼
Yni

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs � Yi;j

mÞ2
q � exp � 1

2s2
� Yi;j � Ym

i;j

Ym
i;j

 !2 !
; ð7Þ
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where Ym
i;j ¼ f ðtij; yi; ni;DiÞ describes the model output for parameter vector θi.A heterogeneous

amount of prior information is available for the model parameters. Therefore, different types
of distributions are considered according to the present knowledge. The full prior for individ-
ual i assuming independence between the different parameter types is specified as:

pðyIi ; yG;M; S; s2Þ ¼
YK

k¼1
pðyIi;kjM; SÞ �

YL

l¼1
pðyG

l Þ �
YK

k¼1
pðMkÞ �

YK

k¼1
pðSkÞ � pðs2Þ ð8Þ

The following prior distributions are considered for single parameters of the several types of
parameters:

An individual parameter yIi;k is assigned a prior based on the population model, assuming a

truncated normal or lognormal distribution with covariate-scaled mean value and standard
deviationMAi ;Gi

and SAi ;Gi
, as described in the section “Physiological covariate modeling” above.

The constraints for each individual parameter and the distribution type are denoted in S1
Table.

A global parameter yG
l is assigned a truncated uniform distribution. The constraints for each

global parameter are denoted in S1 Table.
The population mean valuesM are also assigned prior distributions, called hyper priors.

EachMk is assigned a truncated normal distribution if the certain parameter is included into
the physiological database of the PBPK modeling software. The mean value of the hyper prior
is taken from the physiological database and a coefficient of variation (CV) of about 20% is
assumed [40, 41]. Constraints are determined as ± 2 times the standard deviation. The intesti-
nal permeability and active clearance processes are not included in the physiological database,
such that they are assigned a truncated uniform distribution. For these parameters, constraints
are defined as ± 2 orders of magnitude around the initial value.

The population standard deviations S are also assigned hyper priors. Each Sk is assigned a
truncated normal distribution if the certain parameter is included into the physiological data-
base of the PBPK modeling software. The mean value of the hyper prior is taken from the phys-
iological database and a coefficient of variation (CV) of about 50% is assumed [40, 41].
Constraints are determined as ± 2 times the standard deviation. For the intestinal permeability
and the active clearance processes the hyper prior for S is defined as an inverse Gamma distri-
bution with scale parameter a = 1 and shape parameter b = 0.22, which is a standard prior for
variances and standard deviations [40, 42].

The measurement error σ2 is assigned a scale-invariant uninformative prior [43]

pðs2Þ ¼ 1
s2=

The result of an MCMC run is a large chain of high dimensional parameter vectors repre-
senting the posterior distribution, which contains the refined information in physiological
properties like organ volumes or enzyme activity and refined substance parameters such as
lipophilicity or protein binding (Fig 1). The individual- and population-specific results can
then be used for individual- as well as population-specific simulations as presented in an appli-
cation example below.

Posterior population model simulations using an a posteriori
dependency structure
As a prior assumption, we consider independent population distributions for each physiologi-
cal parameter by definition of bi*N(0, I) in Eq (3). However, the posterior distribution can
contain dependencies between population parameters.

(9)

Bayesian Population PBPK Approach
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To estimate such dependencies and further take them into account for model simulations,
we first obtain the posterior random effects of subsamples z = 1. . .Z of the posterior Markov
chain by inverting the population function d of Eq (3):

bi;k;z ¼
yI
i;k;z �Mk;z

Ai ;Gi

Sk;zAi ;Gi

; ð10Þ

where bi,k,z is the posterior random effect of individual i, parameter k of subsample z; yIi;k;z is

the posterior physiological parameter of individual i, parameter k of subsample z; Mk;z
Ai ;Gi

and

Sk;zAi ;Gi
are the age-, gender- (and height-) scaled posterior population mean value and standard

deviation of parameter k of subsample z. We then assume a multivariate Gaussian mixture
model

pðbÞ ¼
XZ

z¼1
Nð�bz;SzÞ; ð11Þ

where �bz ¼ ð�b1;z; . . . ;
�bK;zÞ and �bk;z ¼ 1

N

PN
i¼1 bi;k;z is the mean value of random effects for

parameter k and subsample z of all N individuals and Sz is the covariance matrix of all random
effects of subsample z.

A new individual parameter vector yI�
i;z can then be generated by consideration of a ran-

domly chosen subsample z, where

yI�i;z ¼ Mz
Ai ;Gi

þ SzAi ;Gi
� b�z ; b�z ¼ Nð�bz;SzÞ: ð12Þ

This new “individual” can then be simulated by model parameterization with ½yI�i;z; yG
z � and

evaluation of the PBPK model.

Software tools and computation
The PBPK model considered in this work was created with the software tools PK-Sim

1

(version
5.3.2; Bayer Technology Services GmbH, Leverkusen, Germany) and MoBi

1

(version 3.3.2;
Bayer Technology Services GmbH, Leverkusen, Germany), for which academic licenses are
available free of charge. PK-Sim

1

contains a generic physiological compartmental structure as
also described in section “Physiologically-based pharmacokinetic modeling” above. The selec-
tion of several generic distribution models using different methods for calculation of partition
coefficients is possible. In this work we used the distribution model by Rodgers and Rowland
[13, 14]. Based on the anthropometry of an individual, all physiological parameters like organ
volumes and blood flow rates are determined using an integrated physiological database.
MoBi

1

is a tool for mechanistic and dynamic modeling of biological processes, which is com-
patible with PK-Sim

1

. This allows merging of several PBPK models, which e.g. describe the
parent compound and its metabolites. PK-Sim

1

and MoBi
1

have both been explained in detail
before [12, 28, 44, 45]. The full Bayesian approach including the MCMCmethods and the hier-
archical model structure was implemented in Matlab

1

(version R2013b; MathWorks, Natick,
MA). The MoBi

1

Toolbox for Matlab
1

constituted the interface to the PBPK modeling soft-
ware and was used for parameterization and simulation of the PBPK model. The model output
was then further processed in Matlab

1

. Notably, such toolbox is also available for the software
package R such that the full model approach can also be considered in open source software.

Computation was performed on a computer cluster running the SUSE Linux Enterprise
Server 11 SP3 operation system. The cluster consists of 36 knots whereby each knot consists of
2 CPU containing 16 cores. Model evaluations were parallelized such that each individual was
evaluated on a single core. Running time was about 6.6 s/iteration.

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 9 / 22



Application example: theophylline model
As an application example we here considered the PK of theophylline, a methylxanthine drug
that acts against asthma and chronic obstructive pulmonary disease. Individual dosings are
considered in theophylline therapy due to large interindividual variability. Thereby, the sources
of variability vary widely and no clear relationship to classical covariates like age, gender or
body weight can be observed. In addition, a variety of other factors influence theophylline PK
such as e.g. different diseases [3, 46–48].

A free available theophylline dataset [49] was taken to demonstrate the abilities of our
approach. S2 Table provides the experimental data, which is shown in S1 Fig, additionally. The
data is easily accessible in R as “theoph” data frame. It consists of 11 measurements of the the-
ophylline concentration in venous blood plasma for each of 12 individuals together with the
administered doses and the body weights of the individuals. In addition, one data point for the
fraction of unchanged theophylline in urine after 36 hours was considered [47], together with a
fixed measurement uncertainty of 5%. Such additional data allows for the identification of sev-
eral clearance processes such as hepatic clearance and renal clearance. An individual PBPK
model was created for each of the 12 individuals. Since no age or height was stated in the data-
set, it was assumed that all individuals are 30 years old but differ in body height. Body height
was randomly chosen such that body mass index is in normal ranges (in between 19 and 25).
This assumption indicates a very homogenous group of individuals simulating e.g. a first in
man study of a new drug. S3 Table shows the anthropometry and related administered dose
together with appropriated body heights. Two clearance processes were integrated into the
model, hepatic metabolization via cytochrome P450 1A2 and a renal excretion process [47].
For both clearance routes a first order process was considered.

To identify reasonable start parameters for our investigation, a parameter identification pro-
cess was performed for a mean value model to identify a good guess for the specific clearance
rates and the intestinal permeability, which is an important parameter defining the absorption
of the drug. For the drug specific parameters, which characterize the physicochemistry of the
drug, literature information was used to define a reasonable start value [47]. The physiology
was specified using the respective entry of the integrated physiological database of the used
PBPK modeling platform PK-Sim [15, 28]. All in all, 38 parameters which define the individu-
al’s physiology were varied in the approach for each individual, together with 2 global sub-
stance-specific parameters (S1 Table). Each individual parameter was assigned two population
parametersM and S, the population mean and the population standard deviation, respectively,
which were also varied in the approach. In addition, the variance of the measurement error for
the venous blood samples was varied, while the variance of the measurement error for urinary
excretion was set to an assumed fixed value of 5% since only one data point was available. Due
to 12 individuals considered, this resulted in 535 parameters (12 individuals x 38 parameters
+ 2 global parameters + 38 population mean values + 38 population standard deviations + 1
measurement uncertainty) that have been identified in the approach.

Several pre-runs have been performed to adapt the proposal densities, which are critical for
a good performance of the MCMC approach. After each pre-run, the proposal densities and
the start values of all parameters have been adapted. The start values were defined as the last
sampled parameter of the previous run. The proposal standard deviations were defined as a
proportion of the standard deviation of the previous posterior sample chain.

In our final MCMC run a posterior sample of about 1,000,000 iterations was created. A
burn-in period of 200,000 parameter samples was cut off, since after 200,000 iterations conver-
gence of the posterior chain could be assumed by visual inspection and determination of the
Gelman and Rubin convergence criterion [50, 51]. Since our MCMC approach consists of one
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long run but Gelman and Rubin’s convergence criterion requires at least two chains, we split
our chain into two chains with equal length (200,001:600,000 and 600,001:1,000,000) and cal-

culated the Gelman and Rubin convergence criterion R̂. S4 Table shows the obtained values for

R̂ for important parameters. From the remaining 800,000 samples a subsample of 500 parame-
ter vectors was drawn to get an independent subsample of the posterior. This subsample was
then considered for the following analyses.

Results

Individual-specific model simulations
As a verification of the individual level model and the structural properties of the PBPK model,
individual simulations were performed out of the posterior sample and compared to the experi-
mental data. Fig 2 shows the individual PK behavior for all individuals. The PBPK model was
parameterized one after another with all of the 500 posterior subsamples and the PK was simu-
lated. The 95% confidence interval of all model simulations is shown together with the experi-
mental data and the mean value curve. Furthermore, Fig 3 shows the predicted values versus
the observed data for a better visual inspection of the quality of the fit.

Fig 2. Individual-specific model simulations of theophylline venous plasma concentrations. For each of the 12 individuals the PBPKmodel was
subsequently parameterized and simulated with each of 500 individual and independent parameter vectors out of the posterior distribution. The 95%
confidence interval of all simulations (grey area) is shown together with the mean value curve (blue dotted line) and the experimental data (red circles). Dark
grey dotted lines depict the upper and lower bound of the 95% confidence interval of all simulations including the inferred measurement error.

doi:10.1371/journal.pone.0139423.g002

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 11 / 22



Except for individual no. 10, the PK behavior is described well. Individual no. 10 seems to
have a much slower absorption of the drug, which can be related e.g. to a tablet that does not
dissolve completely. Such effects cannot be described by our model. The confidence intervals
of the PK simulations are narrow indicating only small uncertainty in the simulations. Notably,
by including the measurement uncertainty into the simulations all experimental data can be
fully explained by the model approach. S2 Fig additionally depicts the simulations in linear
scale.

Inference on parameter level
The Bayesian inference that is generated with the Bayesian population PBPK approach is rep-
resented by the high dimensional posterior distribution of all parameters. Simulations and
extrapolations on the PK level can only be performed by using high dimensional samples of the
posterior. However, the consideration of marginal parameter distributions is an appropriate
instrument to illustrate parameter inference. Fig 4 shows the marginal posterior population
distributions for nine exemplary parameters: the intestinal permeability (intP), the specific
hepatic clearance rate (specCL), the specific tubular secretion rate (specTS), the gastric empty-
ing time (GET), the intestinal transit time (ITT) and four organ volumes. 10000 random itera-
tions out of the posterior sample were considered to estimate the marginal population
distributions. The uncertainty of the population mean values and standard deviations were
integrated by using Eqs 11 and 12 for generation of the parameters. To account for the parame-
ter constraints, truncated distributions were considered. The probability density function (pdf)
was estimated using kernel density estimation (for more information about kernel density esti-
mation see [52]).

The marginal posterior distributions were then compared to the prior distributions. The
comparison, as also shown in Table 1, reveals a reduction of the variability in most parameters

Fig 3. Comparison of observed experimental data and simulated values.Mean simulated values are
plotted against the observed data at the same time points for all individuals (different markers, see legend in
the figure).

doi:10.1371/journal.pone.0139423.g003
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in the posterior distribution. GET and ITT both increase in their mean value but shrink in
their CV indicating that the examined population has a delayed and prolonged absorption in
comparison to previous studies. The three parameters intP, specCL and specTS, which were
uninformed a priori in their population mean values (except for physiological constraints), are

Fig 4. Comparison of marginal prior and posterior distributions of nine exemplary physiological parameters. For each parameter, the marginal
posterior density estimate out of the full posterior (red line) is compared to the corresponding prior distribution (green dotted line). Limits on x axis represent
physiological constraints as defined in S1 Table (except for intP where the maximum x value was reduced by a factor of 20 and for specCL were the
maximum x value was reduced by a factor of 2 for better visualization)

doi:10.1371/journal.pone.0139423.g004

Table 1. Comparison of characteristic parameters of the prior and posterior population distributions. Prior and posterior geometric mean values and
coefficients of variations (CV) are shown for nine exemplary physiological parameters.

prior posterior

geometric mean val. CV [%] geometric mean val. CV [%]

intP [dm/min] 3.68E-06 2841 1.76E-06 222

specCL [1/min] 0.05 204 0.017 26

specTS [1/min] 0.02 206 0.071 30

GET [min] 17.25 31 24.46 14

ITT [min] 146.4 28 183.68 18

fat vol. [L] 14.98 65 14.49 46

kidney vol. [L] 0.44 30 0.34 25

liver vol. [L] 2.36 28 2.1 30

muscle vol. [L] 32.099 26 26.35 11

doi:10.1371/journal.pone.0139423.t001
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all informed by the experimental data such that sharp marginal posterior distributions are
obtained. Nevertheless, the posterior population variability of intP has a very large coefficient
of variation (CV), which indicates large interindividual variability in this parameter. Here, fur-
ther studies could try to investigate if such large variability may be unphysiological and
whether absolute constraints should have been set narrower.

To investigate possible dependencies in the high dimensional posterior population distribu-
tion, a correlation analysis was performed. Thereby, the correlation matrix of all individual
parameters was calculated along the individuals to estimate the parameter dependencies within
the population as described in Eqs (10) and (11). To account for the uncertainty within this
analysis, the correlation matrix was calculated for each of the 500 subsamples out of the poste-
rior distribution. Fig 5 shows the distribution of correlations between exemplary parameters.
In particular, a significant mean negative correlation of about 70% (p< 0.05, mean confidence
interval [-0.85–0.49]) between specTS and kidney volume can be obtained. The other three
exemplary distributions do not have a significant mean correlations; however, a mean positive
correlation of about 30% (p> 0.05, mean confidence interval [-0.31 0.70]) can be obtained
between specCL and specTS. No further significant correlations could be found after perform-
ing a complete analysis of all possible individual parameter combinations (results not shown).
Notably, such correlations are derived despite the prior assumption of independent random
effects as described in Eq 3. Furthermore, the distinction between individual level and popula-
tion level is important for the correct meaning of parameter correlations. For population simu-
lations, parameter correlations along individuals are important since such correlations need to
be included for the parameterization of a new individual. For model characterization, the afore-
mentioned correlations of individual parameters along the samples of the Markov chain are
important. For example, a significant positive correlation of about 42% can be identified for

Fig 5. Exemplary representation of derived distributions of correlation between the population parameters. The correlation of a pair of parameters
along all individuals was calculated for each of the 500 subsamples of the posterior distribution. For each pair of parameters the histogram of all correlations
is shown, representing the uncertainty of the respective correlation.

doi:10.1371/journal.pone.0139423.g005
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intP and GET (p< 0.05) along the autocorrelation-free samples. Such dependencies denote an
essential part of intraindividual uncertainty and need consideration when simulating individ-
ual PK profiles as demonstrated in Fig 2.

Visual predictive check of population pharmacokinetics
Next, a visual predictive check (VPC) was performed with the assessed posterior distribution of
the population parameters, to verify the estimated posterior dependency structure of the random
effects and our estimated interindividual variability [53]. The VPC diagnoses the fixed effects as
well as the random effects by calculating the confidence intervals of the median and the 5% and
95% percentile of a large amount of simulations of the experimental setting. This was important
to interpret objectively if the simulations with the posterior results describe the data well.

For each individual, 500 parameters sets were randomly drawn from the full posterior distri-
bution using the multivariate approach in Eqs (10–12). Next, 500 simulations were performed
with the generated parameter sets, whereby one simulation consisted of the simulation of all
individuals. Fig 6A depicts the resulting 95% confidence intervals for the median and the 5%
and 95% percentiles in linear and logarithmic scale, respectively. In addition, the experimental
data together with the corresponding median and percentiles are illustrated. The confidence
interval of the simulation medians fits the median of the experimental data well, indicating a
good identification of the parameter distributions and a good estimation of the covariance
structure. In addition, the confidence interval of the simulation medians is relatively narrow. In
contrast, the confidence intervals of the percentiles are wider and slightly underestimate the
percentiles of the experimental data.

A second VPC was then performed using only prior information to compare against the
VPC using the presented Bayesian population PBPK approach. The parameter distributions
that need to be considered for the approach consist of the prior knowledge that was integrated
into our population PBPK approach. For the three uninformed parameters intP, specCL and
specTS a lognormal distribution with a geometric standard deviation of 1.5 was considered.
That should provide reasonable values regarding to the literature [18, 54]. The mean value was
assumed to be the respective parameter value of the adjusted mean value model. The resulting
confidence intervals are shown in Fig 6B and show considerably different results. Especially in
the terminal phase (time> 12 h), the confidence interval of the 95% percentile is much wider
than the one in Fig 6A. More variability can also be observed when comparing the confidence
intervals of the median. With regard to the experimental data, the simulated confidence inter-
val of the 95% percentile overestimates the 95% percentile of the experimental data. The confi-
dence interval of the median overestimates the data in the absorption phase but fits the
experimental data well in the elimination phase.

As described above, the generation of new parameter sets out of the posterior takes the
inferred uncertainty of the population mean value and the population standard deviation into
account. Often, maximum posterior estimates of the population parameters are considered for
analyses with the posterior distribution [22, 53, 55]. Fig 6C depicts a VPC based on the poste-
rior estimates of the population parameters. The posterior estimate was chosen as the parame-
ter set with the highest posterior probability. The results show a very good agreement to the
experimental data. Especially the confidence interval of the 5% percentile is in better agreement
with the data than in Fig 6A and 6B.

Positive control
In addition, we performed a positive control run to further validate our approach. By sampling
from the defined prior distributions (for the population mean values of intP, spec CL and spec
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TS we used normal distributed priors) for the population mean values and standard deviations
we generated a dataset of 12 individuals from the population distribution. We put noise on the
data to simulate a relative measurement error of 10%. We run the approach for 150,000 itera-
tions. The first 50,000 iterations were discarded as burn-in, the resulting 100,000 iterations
were converged with a maximum Gelman-Rubin criterion of 1.05. Result analyses were per-
formed as described above. No appreciable deviations between prior and posterior could be

Fig 6. Comparison of visual predictive checks of population pharmacokinetics. (a) Visual predicive
check (VPC) of the pharmacokinetic behavior using the posterior distributions based on the presented
Bayesian population PBPK approach. The uncertainty in population parameters was included in the VPC. (b)
Visual predicive check of the pharmacokinetic behavior using the prior distributions of all parameters. (c)
Visual predicive check (VPC) of the pharmacokinetic behavior using the maximum posterior estimates of the
posterior distribution based on the presented Bayesian population PBPK approach. Each VPC is presented
in linear scale (left) and logarithmic scale (right). The VPCs were performed as described in the text. In each
VPC, the 5% and 95% percentiles (black dotted lines) and the median (black line) of the experimental data
(red dots) are compared against the 95% confidence intervals of the 5% and 95% percentile of the simulation
(light blue area) and the median (blue area).

doi:10.1371/journal.pone.0139423.g006
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observed (S5 Table). No significant correlations were obtained. The VPC considering the maxi-
mum posterior estimates showed a very good agreement to the experimental data (S3 Fig).

Discussion
In this work, a combined Bayesian population PBPK approach is presented for the characteri-
zation and identification of physiologically-realistic interindividual variability. The approach
consists of an hierarchical model, which describes the experimental data at an individual level
and at the same time identifies the variability in physiological parameters at the population
level. By use of a highly detailed mechanistic PBPK model the interindividual variability in spe-
cific parameters can be assigned to a physiological process, such as time of intestinal transit or
the volume of a specific organ. The incorporation of the model approach in a Bayesian frame-
work allows integrating large amounts of prior knowledge about the population’s physiology.
The Bayesian population PBPK approach calibrates such knowledge to the experimental data
and the resulting posterior distribution contains the full information about all parameters and
their variation in the population.

The application example simulating theophylline PK revealed the variety of information
that is possible to obtain by using the approach. As a first result, individual-specific simulations
under consideration of assessed parameter uncertainty described the experimental data in
good agreement and with little uncertainty on the PK level. Such information can be consid-
ered e.g. to identify possible heterogeneities in the population or even to identify subgroups
related to genetic or physiological differences or diseases [56].

Furthermore, a comparison of marginal population distributions of the posterior against
the prior distributions demonstrated, which information can be inferred by the experimental
data. Since the experimental data represented the PK of a very homogenous population related
to their physiology, several population parameter distributions showed a decrease of their vari-
ance. Additionally, changes in the mean values indicated a different behavior of the drug, for
example in the absorption processes. In particular, theophylline seemed to be absorbed more
slowly, which was represented by prolonged GET and ITT. A possible reason could be that the
individuals have not been in fasted state during the experimental investigation. Moreover, the
posterior population distributions of the organ volumes suggested a lower average body weight
of the individuals, since e.g. muscle volume decreases in its mean value and the body weight is
composed of the organ volumes in the PBPK model [15].

However, simple observation of the marginal distributions is insufficient to thoroughly ana-
lyze the posterior distribution. Only the investigation of the complete high dimensional poste-
rior distribution provides the full information, at least if the prior assumption of independence
between parameters cannot be assumed anymore. The illustrated distributions of correlations
demonstrated that the assumption of independence between the parameters does not hold and
information about the model and the physiology of the population can only be described by
the complete multivariate posterior. This can be seen as a natural consequence of incorporation
of a physiologically-realistic PBPK model into the Bayesian framework, since effective parame-
ters like a total clearance rate are divided into physiological relationships of e.g. catalytic con-
stants of enzymes and the corresponding volume of an organ. However it has to be noted
though that large uncertainty could be observed on the estimated correlations. A possible rea-
son could be the small sample size of 12 individuals that have been considered for the determi-
nation of the correlations. Here, investigations that integrate a larger population would deliver
more precise results regarding the correlations.

The findings of a dependent multivariate posterior distribution were further supported by
consideration of the performance of the VPCs. The use of independent a priori information
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(Fig 6B) of the parameters led to a too large interindividual variability and would provide
vague information about the PK behavior of theophylline in a homogenous population. The
Bayesian population PBPK approach (Fig 6A) provided a smaller interindividual variability
especially in the mean value, and the shape of the intervals was in better agreement with the
experimental data. Hence, the VPC also served as a validation for the estimated high dimen-
sional posterior distribution of the population parameters.

The final comparison of a VPC based on the maximum posterior estimate (Fig 6C) and the
VPC based on the full posterior information revealed the influence of parameter uncertainty
on the population level. Due to the small population that was investigated in our application,
large uncertainty is expected in the identified population distribution. Such uncertainty should
also be taken into account in model extrapolations; otherwise the extrapolations could underes-
timate the interindividual variability. Nevertheless, for validation of our approach, the maxi-
mum posterior estimate more appropriately demonstrates the successful estimation of the
population distributions.

Notably, the assumption of a multivariate normal distribution for the estimation of the
dependency structure of the random effects could also be crosschecked against other depen-
dency structures, such as copulas. However, we do not expect large variations in the effect of
different dependency structures, since only one significant correlation was identified and all
correlations were afflicted with large uncertainties. Nevertheless, the analyses revealed the exis-
tence of correlations between population parameters.

The additional consideration of a positive control run demonstrated the validity of the pre-
sented results obtained from our Bayesian population PBPK approach. With our approach we
successfully extracted information out of the experimental data to update the predefined prior
distributions. When no information was included by the experimental data as tested in the pos-
itive control, the posterior distributions reflected only the defined prior knowledge.

In classical PopPK, various additional covariates are tested during model identification,
such as body weight or creatinine clearance. In this work we used an approach by Willmann
et al [15], where age, gender and height were chosen as covariates to create a large physiological
database. We used this database for definition of our prior distributions and to implement the
covariate approach. This is in line with [32], who demonstrated that the organ weights were
better correlated with body height than with BMI or BW. However, other approaches show
contrary results and could be tested in future studies to use e.g. lean body mass as covariates
[57]. For the theophylline dataset used in our approach, in a PopPK approach Tornøe et al.
showed that body weight is no significant covariate [3], however, body weight has also been
shown to be a covariate of e.g. clearance in markedly obese patients [58, 59].

All in all, the here presented Bayesian population PBPK approach identifies the interindi-
vidual variability in the PK of a population and thereby also characterizes the interindividual
variability in the underlying physiological and ADME-related parameters as well as the drug-
specific parameters. The resulting high dimensional parameter distribution can be described
well via a multivariate normal distribution, which integrates covariance information between
physiological parameters that are needed to thoroughly describe the PK behavior of the popu-
lation. The highly-detailed mechanistic PBPK model offers very good extrapolation capacities,
since the derived physiological parameter distribution is easily transferable to other investiga-
tions with the same population, where it can be used as new prior information. Further applica-
tions of this approach therefore arise in the characterization of special populations where only
very sparse data is available. Due to the generalized PBPK model the approach can be executed
iteratively and therefore is able to calibrate the posterior distribution over several clinical stud-
ies, which will sharpen predictions of the PK behavior of new drugs in special disease states or
elderly or pediatric populations.

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 18 / 22



Supporting Information
S1 Fig. Experimental data of theophylline pharmacokinetics.
(PDF)

S2 Fig. Individual-specific model simulations of theophylline venous plasma concentra-
tions in linear scale.
(PDF)

S3 Fig. Visual predicive check (VPC) of the pharmacokinetic behavior using the posterior
distributions of the positive control run based on the presented Bayesian population PBPK
approach.
(PDF)

S1 Table. Varied individual parameters together with start value and parameter constraints
of the final MCMC run.
(PDF)

S2 Table. Experimental data of theophylline pharmacokinetics.
(PDF)

S3 Table. Anthropometric parameters of the considered cohort of individuals.
(PDF)

S4 Table. Gelman and Rubin convergence criterion.
(PDF)

S5 Table. Comparison of prior and posterior geometric mean values and coefficients of var-
iations (CV) for nine exemplary physiological parameters of the positive control run.
(PDF)

Author Contributions
Conceived and designed the experiments: MK KT AS LG. Performed the experiments: MK KT.
Analyzed the data: MK KT AS LK LG. Contributed reagents/materials/analysis tools: MK KT
AS LK LG. Wrote the paper: MK KT AS LK LG.

References
1. Lu AYH. Drug-Metabolism Research Challenges in the NewMillennium: Individual Variability in Drug

Therapy and Drug Safety. Drug Metab Dispos. 1998 December 1, 1998; 26(12):1217–22. PMID:
9860931

2. Lippert J, Brosch M, von Kampen O, Meyer M, Siegmund HU, Schafmayer C, et al. A Mechanistic,
Model-Based Approach to Safety Assessment in Clinical Development. CPT: pharmacomet syst phar-
macol. 2012; 1:e13.

3. Tornøe CW, Agersø H, Jonsson EN, Madsen H, Nielsen HA. Non-linear mixed-effects pharmacoki-
netic/pharmacodynamic modelling in NLME using differential equations. Comput Meth Prog Bio. 2004;
76(1):31–40.

4. Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling.
Int J Clin Pharm Th. 1997; 35(10):401–13.

5. Davidian M, Giltinan DM. Nonlinear models for repeated measurement data: an overview and update. J
Agr Biol Envir St. 2003; 8(4):387–419.

6. Leil TA, Kasichayanula S, Boulton DW, LaCreta F. Evaluation of 4[beta]-Hydroxycholesterol as a Clini-
cal Biomarker of CYP3A4 Drug Interactions Using a Bayesian Mechanism-Based Pharmacometric
Model. CPT: pharmacomet syst pharmacol. 2014; 3:e120.

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139423.s008
http://www.ncbi.nlm.nih.gov/pubmed/9860931


7. Jin R, Fossler MJ, McHutchison JG, Howell CD, Dowling TC. Population pharmacokinetics and phar-
macodynamics of ribavirin in patients with chronic hepatitis C genotype 1 infection. AAPS J. 2012; 14
(3):571–80. doi: 10.1208/s12248-012-9368-z PMID: 22639111

8. Bouazza N, Pestre V, Jullien V, Curis E, Urien S, Salmon D, et al. Population pharmacokinetics of clin-
damycin orally and intravenously administered in patients with osteomyelitis. Br J Clin Pharmacol.
2012; 74(6):971–7. doi: 10.1111/j.1365-2125.2012.04292.x PMID: 22486719

9. Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxi-
col. 2007; 3(2):235–49. PMID: 17428153

10. Schmitt W, Willmann S. Physiology-based pharmacokinetic modeling: ready to be used. Drug Discov
Today: Technologies. 2004; 1(4):449–56. doi: 10.1016/j.ddtec.2004.09.006 PMID: 24981626

11. Rowland M, Peck C, Tucker G. Physiologically-Based Pharmacokinetics in Drug Development and
Regulatory Science. Annu Rev Pharmacol Toxicol. 2011; 51(1):45–73.

12. Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation
of the fraction dose absorbed in humans. J Med Chem. 2004; 47(16):4022–31. PMID: 15267240

13. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tis-
sue distribution of moderate-to-strong bases. J Pharm Sci. 2005; 94(6):1259–76. PMID: 15858854

14. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distri-
bution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006; 95(6):1238–57. PMID:
16639716

15. Willmann S, Hohn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiol-
ogy-based whole-body population model for assessing the influence of individual variability on the phar-
macokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007; 34(3):401–31. PMID: 17431751

16. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, et al. Modeling Interindividual
Variation in Physiological Factors Used in PBPKModels of Humans. Crit Rev Toxicol. 2003; 33
(5):469–503. PMID: 14594104

17. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in
pharmacokinetics using virtual human populations and integrating general knowledge of physical
chemistry, biology, anatomy, physiology and genetics: A tale of 'bottom-up' vs 'top-down' recognition of
covariates. Drug Metab Pharmacokinet. 2009; 24(1):53–75. PMID: 19252336

18. Willmann S, Edginton AN, Kleine‐Besten M, Jantratid E, Thelen K, Dressman JB. Whole‐body physio-
logically based pharmacokinetic population modelling of oral drug administration: inter‐individual vari-
ability of cimetidine absorption. J Pharm Pharmacol. 2009; 61(7):891–9. doi: 10.1211/jpp/61.07.0008
PMID: 19589231

19. Yang F, Tong X, McCarver DG, Hines RN, Beard DA. Population-based analysis of methadone distri-
bution and metabolism using an age-dependent physiologically based pharmacokinetic model. J Phar-
macokinet Pharmacodyn. 2006; 33(4):485–518. PMID: 16758333

20. Zeise L, Bois F, Chiu W, Hattis D, Rusyn I, Guyton K. Addressing Human Variability in Next-Generation
Human Health Risk Assessments of Environmental Chemicals. Environ Health Perspect. 2013; 121
(1):23–31. doi: 10.1289/ehp.1205687 PMID: 23086705

21. Bois FY, Jamei M, Clewell HJ. PBPKmodelling of inter-individual variability in the pharmacokinetics of
environmental chemicals. Toxicology. 2010; 278(3):256–67. doi: 10.1016/j.tox.2010.06.007 PMID:
20600548

22. Bernillon P, Bois FY. Statistical Issues in Toxicokinetic Modeling: A Bayesian Perspective. Environ
Health Perspect. 2000; 108:883–93. PMID: 11035998

23. ChiuWA, Okino MS, Evans MV. Characterizing uncertainty and population variability in the toxicoki-
netics of trichloroethylene and metabolites in mice, rats, and humans using an updated database,
physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl Pharma-
col. 2009; 241(1):36–60. doi: 10.1016/j.taap.2009.07.032 PMID: 19660485

24. Krauss M, Burghaus R, Lippert J, Niemi M, Neuvonen P, Schuppert A, et al. Using Bayesian-PBPK
modeling for assessment of inter-individual variability and subgroup stratification. In Silico Pharmacol.
2013; 1(1):1–11.

25. Stamyr K, Mörk A-K, Johanson G. Physiologically based pharmacokinetic modeling of hydrogen cya-
nide levels in human breath. Arch Toxicol. 2014:1–10.

26. Tsamandouras N, Dickinson G, Guo Y, Hall S, Rostami-Hodjegan A, Galetin A, et al. Development and
Application of a Mechanistic Pharmacokinetic Model for Simvastatin and its Active Metabolite Simva-
statin Acid Using an Integrated Population PBPK Approach. Pharm Res. 2014:1–20.

27. Zurlinden T, Reisfeld B. Physiologically based modeling of the pharmacokinetics of acetaminophen
and its major metabolites in humans using a Bayesian population approach. Eur J Drug Metab Pharma-
cokinet. 2015:1–14.

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 20 / 22

http://dx.doi.org/10.1208/s12248-012-9368-z
http://www.ncbi.nlm.nih.gov/pubmed/22639111
http://dx.doi.org/10.1111/j.1365-2125.2012.04292.x
http://www.ncbi.nlm.nih.gov/pubmed/22486719
http://www.ncbi.nlm.nih.gov/pubmed/17428153
http://dx.doi.org/10.1016/j.ddtec.2004.09.006
http://www.ncbi.nlm.nih.gov/pubmed/24981626
http://www.ncbi.nlm.nih.gov/pubmed/15267240
http://www.ncbi.nlm.nih.gov/pubmed/15858854
http://www.ncbi.nlm.nih.gov/pubmed/16639716
http://www.ncbi.nlm.nih.gov/pubmed/17431751
http://www.ncbi.nlm.nih.gov/pubmed/14594104
http://www.ncbi.nlm.nih.gov/pubmed/19252336
http://dx.doi.org/10.1211/jpp/61.07.0008
http://www.ncbi.nlm.nih.gov/pubmed/19589231
http://www.ncbi.nlm.nih.gov/pubmed/16758333
http://dx.doi.org/10.1289/ehp.1205687
http://www.ncbi.nlm.nih.gov/pubmed/23086705
http://dx.doi.org/10.1016/j.tox.2010.06.007
http://www.ncbi.nlm.nih.gov/pubmed/20600548
http://www.ncbi.nlm.nih.gov/pubmed/11035998
http://dx.doi.org/10.1016/j.taap.2009.07.032
http://www.ncbi.nlm.nih.gov/pubmed/19660485


28. Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim1: a physiologically based
pharmacokinetic ‘whole-body’model. Biosilico. 2003; 1(4):121–4.

29. Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structur-
ally unrelated drugs. J Pharm Sci. 2001; 90(4):436–47. PMID: 11170034

30. Willmann S, Schmitt W, Keldenich J, Dressman JB. A physiologic model for simulating gastrointestinal
flow and drug absorption in rats. Pharm Res. 2003; 20(11):1766–71. PMID: 14661920

31. Davidian M. Nonlinear models for repeated measurement data: CRC Press; 1995.

32. de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a
Caucasoid population. Forensic Sci Int. 2001; 119(2):149–54. PMID: 11376980

33. BolstadWM. Understanding Computational Bayesian Statistics. 1 ed. Guidici P, Givens GH, Mallick
BK, editors. New Jersey: JohnWiley & Sons; 2010.

34. Andrieu C, de Freitas N, Doucet A, Jordan MI. An Introduction to MCMC for Machine Learning. Machine
Learning. 2003; 50(1):5–43.

35. HastingsWK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.
1970 April 1, 1970; 57(1):97–109.

36. Schmidl D, Czado C, Hug S, Theis FJ. A Vine-copula Based Adaptive MCMC Sampler for Efficient
Inference of Dynamical Systems. Bayesian Anal. 2013; 8(1):1–22.

37. Haario H, Saksman E, Tamminen J. Componentwise adaptation for high dimensional MCMC. Comput
Statist. 2005; 20(2):265–73.

38. Girolami M, Calderhead B. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J Roy
Stat Soc B. 2011; 73(2):123–214.

39. Brooks S, Gelman A, Jones G, Meng X-L. Handbook of Markov Chain Monte Carlo: Taylor & Francis
US; 2011.

40. Bois FY. Statistical analysis of Fisher et al. PBPKmodel of trichloroethylene kinetics. Environ Health
Perspect. 2000; 108(Suppl 2):275. PMID: 10807558

41. Gelman A, Bois F, Jiang J. Physiological Pharmacokinetic Analysis Using Population Modeling and
Informative Prior Distributions. J Am Stat Assoc. 1996; 91:1400–12.

42. Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006; 1
(3):515–33.

43. Jeffreys H. An invariant form for the prior probability in estimation problems. P Roy Soc Lond AMat
1946; 186(1007):453–61.

44. Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive
mechanistic modelling and computational tools. Expert Opin Drug Metab Toxicol. 2005; 1(1):159–68.
PMID: 16922658

45. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology
software platform for multiscale modeling and simulation: integrating whole-body physiology, disease
biology, and molecular reaction networks. Front Physio. 2011; 2(4).

46. Powell JR, Vozeh S, Hopewell P, Costello J, Sheiner LB, Riegelman S. Theophylline disposition in
acutely ill hospitalized patients. The effect of smoking, heart failure, severe airway obstruction, and
pneumonia. Am Rev Respir Dis. 1978; 118(2):229–38. PMID: 697173

47. Ogilvie RI. Clinical Pharmacokinetics of Theophylline. Clin Pharmacokinet. 1978; 3(4):267–93. PMID:
354635

48. Obase Y, Shimoda T, Kawano T, Saeki S, Tomari S-y, Mitsuta-Izaki K, et al. Polymorphisms in the
CYP1A2 gene and theophylline metabolism in patients with asthma. Clin Pharmacol Ther. 2003; 73
(5):468–74. PMID: 12732846

49. Boeckmann A, Sheiner L, Beal S. NONMEMUsers Guide: Part V: University of California, San Fran-
cisco; 1994.

50. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992:457–
72.

51. Cowles MK, Carlin BP. Markov chain Monte Carlo convergence diagnostics: a comparative review. J
Am Stat Assoc. 1996; 91:883–904.

52. Bowman AW, Azzalini A. Applied smoothing techniques for data analysis: the kernel approach with S-
Plus illustrations. Oxford; New York: Clarendon Press; Oxford University Press; 1997.

53. Bergstrand M, Hooker A, Wallin J, Karlsson M. Prediction-Corrected Visual Predictive Checks for Diag-
nosing Nonlinear Mixed-Effects Models. AAPS J. 2011; 13(2):143–51. doi: 10.1208/s12248-011-9255-
z PMID: 21302010

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 21 / 22

http://www.ncbi.nlm.nih.gov/pubmed/11170034
http://www.ncbi.nlm.nih.gov/pubmed/14661920
http://www.ncbi.nlm.nih.gov/pubmed/11376980
http://www.ncbi.nlm.nih.gov/pubmed/10807558
http://www.ncbi.nlm.nih.gov/pubmed/16922658
http://www.ncbi.nlm.nih.gov/pubmed/697173
http://www.ncbi.nlm.nih.gov/pubmed/354635
http://www.ncbi.nlm.nih.gov/pubmed/12732846
http://dx.doi.org/10.1208/s12248-011-9255-z
http://dx.doi.org/10.1208/s12248-011-9255-z
http://www.ncbi.nlm.nih.gov/pubmed/21302010


54. Dorne J, Walton K, Renwick A. Uncertainty factors for chemical risk assessment: human variability in
the pharmacokinetics of CYP1A2 probe substrates. Food Chem Toxicol. 2001; 39(7):681–96. PMID:
11397515

55. Jonsson F, Jonsson EN, Bois FY, Marshall S. The application of a Bayesian approach to the analysis
of a complex, mechanistically based model. Journal of Biopharmaceutical Statistics. 2007; 17(1):65–
92. PMID: 17219756

56. Krauss M, Burghaus R, Lippert J, Niemi M, Neuvonen P, Schuppert A, et al. Using Bayesian-PBPK
modeling for assessment of inter-individual variability and subgroup stratification. In Silico Pharmacol-
ogy. 2013; 1(1):6.

57. HuisingaW, Solms A, Fronton L, Pilari S. Modeling Interindividual Variability in Physiologically Based
Pharmacokinetics and Its Link to Mechanistic Covariate Modeling. CPT: pharmacomet syst pharmacol.
2012; 1:e4.

58. Blouin RA, Elgert JF, Bauer LA. Theophylline clearance: effect of marked obesity. Clin Pharm Ther.
1980; 28(5):619–23.

59. Zahorska-Markiewicz B, Waluga M, Zielinski M, Klin M. Pharmacokinetics of theophylline in obesity. Int
J Clin Pharm Th. 1996; 34(9):393–5.

Bayesian Population PBPK Approach

PLOS ONE | DOI:10.1371/journal.pone.0139423 October 2, 2015 22 / 22

http://www.ncbi.nlm.nih.gov/pubmed/11397515
http://www.ncbi.nlm.nih.gov/pubmed/17219756

