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ABSTRACT

Nonsynonymous single nucleotide polymorphisms
(nsSNPs) are prevalent in genomes and are closely
associated with inherited diseases. To facilitate
identifying disease-associated nsSNPs from a large
number of neutral nsSNPs, it is important to develop
computational tools to predict the nsSNP’s pheno-
typic effect (disease-associated versus neutral).
nsSNPAnalyzer, a web-based software developed
for this purpose, extracts structural and evolutionary
information from a query nsSNP and uses a machine
learning method called Random Forest to predict
thensSNP’sphenotypiceffect.nsSNPAnalyzerserver
is available at http://snpanalyzer.utmem.edu/.

INTRODUCTION

Assessing susceptibility to diseases based on an individual’s
genotype has long been a central theme of genetics studies.
Among inherited gene variations in humans, nonsynonymous
single nucleotide polymorphisms (nsSNPs) that lead to an
amino acid change in the protein product are most relevant
to human inherited diseases (1). nsSNPs can be classified into
two categories according to their phenotypic effects: those that
cause deleterious effects on protein functions and are hence
disease-associated and those that are functionally neutral.
Given the huge number of nsSNPs already discovered (2,3),
a major challenge is to predict which of them are potentially
disease associated. Computational tools have been developed
to predict the nsSNP’s phenotypic effect, e.g. the SIFT server
(4) and the PolyPhen server (5). Recently, studies have shown
that combining information obtained from multiple sequence
alignment and three-dimensional protein structure can increase
the prediction accuracy (6). nsSNPAnalyzer server integrates
multiple sequences alignment and protein structure analysis
to identify disease-associated nsSNPs. nsSNPAnalyzer takes a
protein sequence and the accompanying nsSNP as inputs and
reports whether the nsSNP is likely to be disease-associated or

functionally neutral. nsSNPAnalyzer also provides additional
useful information about the nsSNP to facilitate the biological
interpretation of results, e.g. structural environment class and
multiple sequence alignment.

PROGRAM DESCRIPTION

Algorithm and implementation

nsSNPAnalyzer is a web server implementing machine learn-
ing methods for nsSNP classification. The program design
and data flow are illustrated in Figure 1. Briefly, on receiving
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Figure 1. The program design and data flow of nsSNPAnalyzer.
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the input sequence, nsSNPAnalyzer searches the ASTRAL
database (7) for homologous protein structures. This step is
skipped if the users provide the protein structure themselves.
nsSNPAnalyzer calculates three types of information from
user’s input: (i) the structural environment of the SNP,
including the solvent accessibility, environmental polarity
and secondary structure (8); (ii) the normalized probability
of the substitution in the multiple sequence alignment (9);
and (iii) the similarity and dissimilarity between the original
amino acid and mutated amino acid. nsSNPAnalyzer then
uses a machine learning method called Random Forest
(10) to classify the nsSNPs. Random Forest is a classifier
consisting of an ensemble of tree-structured classifiers. The
Random Forest classifier was trained to optimally combine
the heterogeneous sources of predictors using a curated
training dataset prepared from the SwissProt database (11).
Several recent studies have demonstrated the better perform-
ance of Random Forest over other machine learning
approaches (12–14). For the nsSNP phenotypic effect pre-
diction, we also found that Random Forest gave the best results
on this training dataset. In a cross-validation test, the false
positive rate is 38% and the false negative rate is 21% (15).
The nsSNPAnalyzer web server is implemented on a Linux
Redhat 8.0 platform with the Common Gateway Interface
scripts written in PHP.

Input

Two inputs are mandatory: protein sequence in FASTA format
and the nsSNP identities to be analyzed. An nsSNP is denoted
as X#Y, where X is the original amino acid in one letter, # is
the position of the substitution (starting from 1), and Y is the
mutated amino acid in one letter. Multiple nsSNPs in a protein
should be separated by new-line characters. Users may provide
the inputs by copy-paste or file uploading. In addition to the
two mandatory inputs, users may also upload an accompany-
ing protein structure file in PDB format if they want their own
structure to be used. Finally, because the calculation usually

takes a while, users may provide their email addresses to avoid
waiting online. The results are sent to the email address when
the calculations are finished. Users can use the sample data to
learn the input format and perform a demo run.

Output

The results of nsSNPAnalyzer are displayed on a web page and
stored on the server for a week. A link to the results page can
also be sent to the user via email. A sample output is shown
in Figure 2. The output includes several calculated features of
the nsSNP: (i) predicted phenotypic class (disease-associated
versus neutral); (ii) a hyperlink to the homologous structure
with a SCOP identifier (7); (iii) the normalized probability of
the substitution calculated by the SIFT program (4); (iv) area
buried score, a measure of the solvent accessibility; (v) frac-
tion polar score, a measure of environmental polarity related to
hydrogen bond formation; (vi) secondary structure (helix,
sheet and coil); and (vii) the structural environment class,
a discrete environment class definition by combining features
(iv)–(vi) (8). The area buried score and fraction polar score are
calculated by the ENVIRONMENT program (8), and the sec-
ondary structure is calculated by the STRIDE program (16).
The user can click the ‘View Alignment’ button to see the local
sequence alignment spanning the substitution sites and get a
direct sight on the mutability of the substitution. The original
amino acid is highlighted in blue, and the mutated amino acid
is highlighted in red.

FUTURE PLANS

Considering the remarkable CPU cost of calculation, we are
planning to provide precalculated results for all human nsSNPs
in the dbSNP (17) with homologous structures available. We
will also test the applicability of extracting structural predict-
ors from predicted structures to eliminate the requirement of
having experimentally determined structures available.

Figure 2. The output of nsSNPAnalyzer. (A) The main output page of nsSNPAnalyzer. The user can click the icon to see the interpretation of each field.
(B) An example of local sequence alignment spanning the nsSNP (D7N). The original amino acid (D) is highlighted in blue, and the mutated amino acid (N) is
highlighted in red.
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