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Abstract

Background: OncotypeDXVR recurrence score (RS) aids therapeutic decision-making in oestrogen-receptor-positive (ERþ) breast can-
cer. Radiomics is an evolving field that aims to examine the relationship between radiological features and the underlying genomic
landscape of disease processes. The aim of this study was to perform a systematic review of current evidence evaluating the compa-
rability of radiomics and RS.

Methods: A systematic review was performed as per PRISMA guidelines. Studies comparing radiomic MRI tumour analyses and RS
were identified. Sensitivity, specificity and area under curve (AUC) delineating low risk (RS less than 18) versus intermediate–high risk
(equal to or greater than 18) and low–intermediate risk (RS less than 30) and high risk (RS greater than 30) were recorded. Log rate ra-
tios (lnRR) and standard error were determined from AUC and 95 per cent confidence intervals.

Results: Nine studies including 1216 patients met inclusion criteria; the mean age at diagnosis was 52.9 years. Mean RS was 16 (range
0–75); 401 patients with RS less than 18, 287 patients with RS 18–30 and 100 patients with RS greater than 30. Radiomic analysis and
RS were comparable for differentiating RS less than 18 versus RS 18 or greater (RR 0.93 (95 per cent c.i. 0.85 to 1.01); P¼ 0.010, heteroge-
neity (I2)¼0%) as well as RS less than 30 versus RS 30 or greater (RR 0.76 (95 per cent c.i. 0.70 to 0.83); P< 0.001, I2¼0%). MRI sensitivity
and specificity for RS less than 18 versus 18 or greater was 0.89 (95 per cent c.i. 0.85 to 0.93) and 0.72 (95 per cent c.i. 0.66 to 0.78) respec-
tively, and 0.79 (95 per cent c.i. 0.72 to 0.86) and 0.74 (95 per cent c.i. 0.68 to 0.80) for RS less than 30 versus 30 or greater.

Conclusion: Radiomic tumour analysis is comparable to RS in differentiating patients into clinically relevant subgroups. For
patients requiring MRI, radiomics may complement and enhance RS for prognostication and therapeutic decision making in ERþ
breast cancer.

Introduction
Breast cancer is a ubiquitous disease responsible for 11.6 per cent
of new cancer diagnoses and is the second most common cause
of cancer-related mortality, following lung carcinoma1.
Historically, breast carcinoma was considered a homogeneous
entity, with large-scale surgical resection and conventional cyto-
toxic chemotherapy prescription the cornerstone of controlling
disease recurrence2. In the wake of the molecular era, heteroge-
neous biological properties have facilitated substratification of
the disease into several distinct subtypes, with various multi-
modal treatment strategies being indicated, depending on the
molecular and genetic processes driving tumorigenesis3.
Although whole-genome sequencing is required to evaluate com-
prehensively intrinsic biological tumour characteristics, routine
immunohistochemical appraisal of oestrogen receptor (ER), pro-
gesterone receptor (PgR) and human epidermal growth factor
receptor-2 (HER2/neu) has been rapidly incorporated into clinical
practice, and reliably separates breast cancer into four molecu-
larly diverse subtypes3. Luminal molecular subtypes, often per-
ceived to carry favourable prognoses and to be indolent in

nature, are best treated with adjuvant endocrine hormonal ther-

apy, and judicious systemic chemotherapy prescription4,5.
In the era of personalized medicine, multiomic analyses are

now the norm for oncological patient management6,7. Multigene

molecular panels, such as the OncotypeDXVR (Genomic Health

Inc.VR , Redwood City, California, US) 21-gene recurrence score

(RS), have clearly segregated tumour types into those likely to

benefit from systemic chemotherapy and those that would not8.

However, despite validation and incorporation into European

Society of Medical OncologyVR , National Institute of Clinical

ExcellenceVR , American Society of Clinical OncologyVR and National

Comprehensive Cancer NetworkVR guidelines9–12, the assay carries

several disadvantages, such as its cost and lengthy turnover

time13,14. Radiomics is an evolving field that aims to examine the

relationship between radiological features and the underlying ge-

nomic landscape of disease processes. This involves a radiologist

acquiring imaging and performing segmentation, before quanti-

tative analyses of medical imaging are performed using artificial

intelligence software, with the aim of enhancing existing data

available to clinicians through non-intuitive mathematical
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evaluation of disease properties, many of which are impercepti-
ble to the human eye15,16. In recent times, alternatives to RS test-
ing have been proposed, such as the application of radiomic
tumour analysis into clinical practice to aid therapeutic decision
making and prognostication in certain cases. A recent hypothesis
suggests that radiomics tumour analysis may have a role in aug-
menting multiomic cancer care, and studies evaluating the value
of radiomics in comparing genomic and radiomic profiles of can-
cers may shed some light on to this proposition. Accordingly, the
aim of the present systematic review and meta-analysis was to
determine whether radiomic evaluation offers a feasible alterna-
tive to RS testing in substratifying patients diagnosed with early-
stage, oestrogen-receptor-positive (ERþ) breast cancer.

Methods
This systematic review was performed in accordance to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines17 and the Cochrane Handbook for
Systematic Reviews of Diagnostic Test Accuracy18. As this is a system-
atic review of current literature, local institutional ethical ap-
proval was not required.

The study
population was patients diagnosed with ERþ/human epidermal
growth factor receptor-2 negative (HER2-) breast cancer with 0 to
3 metastatic lymph nodes who had undergone preoperative MRI,
surgical resection, and subsequent RS testing on their resected
breast cancer specimen.

Radiomic analyses were carried out using preoperative MRI of
tumour tissue, and the discriminative ability of radiomic soft-
ware was compared with the current standard RS testing for
prognostication and therapeutic decision making in early ERþ
breast cancer.

Primary outcomes included the evaluation of the clinical util-
ity of breast MRI to stratify cancers into RS categories for the pre-
diction of the likelihood of recurrence (indicated through
recurrence score). Sensitivity, specificity and area under the
curve (AUC) scores from receiver operating characteristic (ROC)
curve analyses were also used to establish the reliability of MRI
in determining RS. Secondary outcomes included correlating RS
testing and MRI findings to determine their predictive value in de-
lineating clinically actionable versus non-actionable RS groups
(i.e., those indicated for combined adjuvant chemoendocrine
therapy (actionable) versus adjuvant endocrine as monotherapy
(non-actionable)).

Search strategy
An electronic search of the PubMed Medline, EMBASE and Scopus
databases for relevant studies was performed on 30 November
2020. The search was performed for the following headings:
(Breast Cancer) AND (Radiomics) AND (Biomarker). Included
studies were limited to manuscripts published in the English lan-
guage and studies were not restricted based on their year of pub-
lication. All duplicate studies were removed before titles were
screened, and studies deemed appropriate had their abstracts
and full texts reviewed. This search was performed by two inde-
pendent reviewers.

Inclusion and exclusion criteria
Studies deemed appropriate for inclusion were those applying
radiomic artificial intelligence computational algorithms and
methods (machine-learning techniques, conventional neural

networks and deep-learning techniques) in order to predict RS
group from preoperative imaging. Studies relying upon subjective
judgement of independent radiologists were excluded.

Studies meeting the following inclusion criteria were included:
studies with patients with histologically confirmed ERþ/HER2-
breast cancer with 0 to 3 positive metastatic lymph nodes; stud-
ies in which RS testing had been performed on resected tumour
specimens; studies in which breast MRI was performed before op-
eration; studies detailing ROC curve analyses assessing the reli-
ability of radiomic testing in differentiating RS groups (for
example, RS 18 or less versus RS greater than 18, RS 29 or less ver-
sus RS greater than 30, etc.) or clinicopathological data with RS.

Studies meeting any of the following exclusion criteria were
excluded from this study: studies detailing RS testing and other
imaging modalities (for example, CT, ultrasound sonography im-
aging, mammographic imaging, etc.); review articles; studies in-
cluding less than five patients or case reports; editorial articles;
and conference abstracts.

Data extraction and quality assessment
The literature search was performed by two independent
reviewers (M.G.D. and M.S.D) using the previously discussed pre-
designed search strategy. Duplicate studies were removed.
Retrieved manuscripts were reviewed independently by both
reviewers to ensure all inclusion criteria were met, before
extracting the following data: first author name, year of publica-
tion, study design, country, level of evidence, study title, number
of patients, RS data and AUC scores from ROC analyses. Data
specific to AUC (expressed as rate ratios (RR), 95 per cent confi-
dence intervals and P values) were directly extracted from tables
and study text. Assessment of the quality of included radiomic
studies was performed using the radiomics quality score, as out-
lined by Lambin and colleagues19. Where discrepancies in opin-
ion occurred between the reviewers, a third reviewer was asked
to arbitrate (M.R.B).

Statistical analysis
Data pertaining to RS testing and clinicopathological data were
presented as proportions using descriptive statistics. Statistical
analysis was performed according to the Cochrane guidelines18.
Study-specific estimates of sensitivity and specificity were calcu-
lated from study data. Summary ROC analysis was used to illus-
trate the relationship between sensitivity and specificity of MRI
radiomic analysis and RS testing, and to convey the diagnostic
test performance of MRI and RS testing. In cases where sensitivity
and specificity were not outlined by authors, estimated diagnos-
tic test sensitivity and specificity were extracted from ROC analy-
ses with most accurate sensitivity prioritized. AUC were
expressed as RR and each corresponding confidence interval was
retrieved directly for use in this meta-analysis, as described by
Kester and colleagues20. Either fixed or random effects models
were applied on the basis of whether significant heterogeneity (I2

> 50%) existed between studies included in any particular analy-
sis. Symmetry of funnel plots were used to assess publication
bias. Statistical heterogeneity was determined using I2 statistics.
Statistical significance was determined to be P< 0.050. Statistical
analysis was performed using Review Manager (RevMan), version
5.4 (Nordic Cochrane Centre, Copenhagen, Denmark).

Results
The initial electronic search resulted in a total of 740 studies.
Following removal of the 55 identified duplicate studies, the
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remaining 685 titles were screened for relevance, of which 40 had

their abstracts or full texts assessed for eligibility. Overall, nine

clinical studies were included in this analysis, as depicted in

Fig. 1 21–29.
Eight of these studies were from the US, while one study

reported results from Korean patients25. Of the included studies,

six used radiomic artificial intelligence, two used machine-learn-

ing techniques23,26, and a single study used conventional neural

networking to determine RS groups22. Individual studies included

in this analysis are outlined in Table 1.

Clinical characteristics and OncotypeDXVR

recurrence score
Overall, 1216 patients were included in this study. The mean age

at diagnosis was 52.9 (range 27–83) years. Four studies reported

on menopausal status at the time of diagnosis; 50.8 per cent were

postmenopausal (452 of 889 patients). Of 788 patients, the mean

RS was 16 (range 0–75), with 401 patients (50.9 per cent) with RS

less than 18, 287 (36.4 per cent) with RS 18–30, and 100 (12.7 per

cent) with RS greater than 30 (Table 1).

RS was associated with histopathological tumour subtype, tu-
mour grade, ER, PgR and HER2 expression (all P< 0.001 (v2 test)).
In this analysis, 78.4 per cent of patients had node-negative dis-
ease (N0) and nodal status was not associated with RS (P¼ 0.115
(v2 test)), as illustrated in Table S1.

Comparability with MRI
Radiomic analysis of MRI images of resected tumour tissue was
comparable for differentiating cancers with RS less than 18 and
18 or greater (RR 0.93 (95 per cent c.i. 0.85 to 1.01); P¼ 0.010,
I2¼0%), although less comprehensive in providing disparity be-
tween RS less than 30 and 30 or greater (RR 0.76 (95 per cent c.i.
0.70 to 0.83); P< 0.001, I2¼0%) (Fig. 2). The sensitivity and specific-
ity of MRI in delineating RS less than 18 versus 18 or greater was
0.89 (95 per cent c.i. 0.85 to 0.93) and 0.72 (95 per cent c.i. 0.66 to
0.78) respectively (Fig. 3a; Table S2). The sensitivity and specificity
of MRI in delineating RS less than 30 versus 30 or greater was 0.79
(95 per cent c.i. 0.72 to 0.86) and 0.74 (95 per cent c.i. 0.68 to 0.80)
respectively (Fig. 3b; Table S2). ROC curve for RS testing is outlined
in Fig. 3c. No single radiomic biomarker that correlated directly
with RS could be ascertained from more than one study.
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Fig. 1 PRISMA flow diagram detailing the systematic search process
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Discussion
Contemporary oncological practice recognizes that each tumour
has an idiosyncratic gene expression profile, enabling differentia-
tion of cancers into diverse biological and molecular groups and
profiles, even within the same molecular subtypes30. This pro-
vides a unique challenge and opportunity to the clinician, as the
correct classification facilitates personalized medicine, with the
identification of patients who respond to particular therapeutic
strategies based on careful elucidation of their underlying host
and tumour characteristics. RS testing, which has been incorpo-
rated into international guidelines following validation in pro-
spective analyses4,9–12, attempts to address this, and has
facilitated the shift in the paradigm from pervasive conventional
chemotherapy prescription to a more refined, personalized ap-
proach, within early-stage ERþ breast cancer. This systematic re-
view and meta-analysis is the first appraising the feasibility of
utilizing radiomic tumour analysis as a surrogate for RS, and
incorporates data from 1216 breast cancers with corresponding
MRI and genomic results. In the era of multiomic cancer care,
radiomics offers the prospect of a novel, non-invasive modality
for the personalization of treatment, as well as allowing for po-
tential opportunities to augment or perhaps even replace current
strategies in the future.

The most significant finding in this review is the data suggest-
ing radiomic tumour analysis may provide a potential alternative
to RS testing in discriminating early ERþ breast cancer with low
risk of disease recurrence (RS less than 18) from tumours with in-
termediate–high risk of recurrence (RS 18 or greater) based on
preoperative MRI, with a sensitivity of almost 90 per cent. For the
physician, these findings have a number of potential implications
for clinical practice: currently, combined chemoendocrine pre-
scription is indicated in select cases following RS testing, how-
ever, this pooled analysis suggests certain patients may bypass
postoperative tumour specimen genomic testing, proceeding di-
rectly to adjuvant endocrine therapy following curative oncologi-
cal resection, provided they have had a preoperative MRI and
their imaging is congruent with RS less than 18 on radiomic
analysis. Although current management guidelines for early
breast cancer do not include routine MRI staging to determine
the extent of locoregional disease burden31, cases such as inva-
sive lobular carcinoma histological subtype, BRCA mutation car-
riers and equivocal mammographic imaging often rely on this
modality to clarify diagnoses and to aid surgical planning32,33. In
such cases, radiomic analyses may be implemented to guide
therapeutic decision making, particularly as recent studies sug-
gest as many as 60 per cent of cancers are RS less than 1834,35.
Consequently, if the discriminative ability of radiomic analysis is

Table 1 Details regarding the nine independent patient cohorts included in this systematic review

Author Year Study
type (LOE)

Country MRI scanner
brand

n Median age
(years)

Mean RS
(range)

n RS
<18

n RS
18–30

n RS
>30

RQS

Ashaf et al.21 2014 RC (III) US 1.5T LxechoVR /SontanaVR 56 55.6 N/R 27 19 10 17
Ha et al.22 2018 RC (III) US 1.5T or 3 T SignaVR 95 55.9 16 (1–75) 42 26 7 16
Jacobs et al.23 2020 RC (III) US 3T PhillipsVR 31 53.0 N/R 21 9 1 17
Li et al.24 2016 RC (III) US 1.5T GEVR 134 53.6 N/R 77 40 17 18
Nam et al.25 2019 RC (III) Korea 3T PhillipsVR 80 45.1 14 (3–39) 19 49 12 15
Saha et al.26 2018 RC (III) US 1.5T or 3 T 84 54.0 16 25 32 27 18
Sutton et al.27 2016 RC (III) US 1.5T or 3 T SignaVR 67 50.3 16 (0–45) 45 19 3 19
Thakur et al.28 2019 RC (III) US 3T DiscoveryVR 261 53.2 15 (2–43) 145 93 23 16
Woodard et al.29 2018 RC (III) US N/R 408 53.5 18.9 N/R N/R N/R 15

LOE, level of evidence; n, number; RC, retrospective cohort; N/R, not reported; RS, OncotypeDXVR recurrence score; RQS, radiomic quality score.
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Fig. 2 Forest plots evaluating the comparability radiomic analysis of breast tumour MRI and OncotypeDXVR recurrence score

a Differentiating tumours with recurrence score (RS) less than18 versus RS 18 or greater. b Differentiating tumours with RS less than 30 versus RS 30 or greater. s.e.,
standard error; IV, inverse variance.
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Fig. 3 The specificity and sensitivity of MRI for evaluating tumours for OncotypeDXVR recurrence score

a Recurrence score (RS) less than 18 versus 18 or greater. b RS less than 30 versus greater than 30. c Receiver operating characteristic curve for RS less than 18 versus
18 or greater, and less than 30 versus 30 or greater. TP, true positive; FP, false positive; FN, false negative; TN, true negative.
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proven in well conducted randomized trials, preoperative radio-
mic evaluation of all early ERþ breast cancers requiring MRI
could complement or even replace RS testing with several clinical
and economic implications.

Additionally, data from this pooled analysis supports radio-
mics in delineating cancers with RS greater than 30, with an im-
plied sensitivity of almost 80 per cent, with similar specificity
rates. Within the framework of early-stage ERþ disease, RS has
emerged and successfully modulated cytotoxic chemotherapy
prescription for the vast majority. However, differentiating those
with RS greater than 30 is crucial, on account of the inherent in-
dication for chemoendocrine therapy following substratification
into this group, as proven through data published from the
National Surgical Adjuvant Breast and Bowel (NSABP) projects6.
However, it should be acknowledged that clinically relevant RS
subgroups have been redefined by the work of Sparano and col-
leagues through the Trial Assigning Individualized Options for
Treatment (TAILORx)4; the initial evidence for RS testing indi-
cated scores greater than 30 to represent accurately those likely
to benefit most from systemic treatment6, adding validity to the
results of this analysis. However, in modern oncological practice,
RS greater than 25 is utilized as the cut-off in postmenopausal
women, rendering the current analysis between the RS subgroups
discussed somewhat at odds with current clinical practice. Albeit
imperfect in the current form, non-invasive radiomic analysis
remains an exciting prospect in oncology on a global scale. Buy-
in from large international investment companies may be imper-
ative to finance technological enhancement, and validate current
concepts and principles prospectively, while refining machine-
learning strategies through high-throughput image-based screen-
ing. If given the opportunity to be validated, it is plausible that
radiomics has potential to become embedded into multidiscipli-
nary discussion within clinical oncological practice, and to fur-
ther personalize oncological patient care.

In recent times, there has been a move towards precision med-
icine in the field of oncology, with an emphasis placed on ensur-
ing cost-effectiveness where possible. Moreover, in most
European healthcare economies, the foundation for health and
personal services for the majority of residents is funded through
taxation of public funds . At present, the world’s economy is sub-
ject to impending recession following the COVID-19 pandemic,
and adaptations look imperative in ensuring cost-efficiency; RS
testing is associated with a reported cost of approximately
e300036, with turnaround times of up to several weeks, while the
cost of conventional MRI scanning is often substantially less in
certain healthcare economies37,38. Moreover, should radiomic
neural networking become routine, its offers more cost- and
time-effectiveness versus routine genomic analysis39,40. While
data procured from MRI pertaining to macroscopic features (for
example, tumour site, size, shape, degree of disease burden, etc.)
are of course invaluable, features occult to the radiologist, such
as grey-level co-occurrence matrix textural features, MR-derived
entropy and surface-to-volume ratio, may serve patients by per-
sonalizing their medical care41. Furthermore, some clinicians
may argue failure to extract such radiomic tumour data as rou-
tine, once MRI has been performed, is a disservice to prospective
patients. From this viewpoint, it seems appropriate and rational
that radiomic analyses are incorporated into the oncology para-
digm, with substitution or supplementation of current bio-
markers, to continue developing and adapting strategies of
patient management in a cost-effective manner.

This systematic review has a number of inherent limitations.
The field of radiomics involves a spectrum of artificial-

intelligence techniques, including machine learning, conven-
tional neural networks and deep-learning techniques. In this
analysis, all of these methods are appraised under the umbrella
term ‘radiomics’, despite variance in their reproducibility of
data42. In this analysis, there was no single radiomic biomarker
that correlated directly with RS that could be ascertained from
more than one study, rendering sensitivity, specificity and rate
ratios the most useful means of comparing radiomics and RS.
Moreover, there is a limited number of patients in this analysis
(1216 patients), and all included studies were of moderate levels
of evidence, with none of the included studies being prospective
in nature. Clinical cut-offs have been redefined following the
publication of the results of the TAILORx trial4, yet all studies in-
cluded this analysis use traditionally accepted cut-offs. This
shortcoming limits the relevance of the conclusions which can be
drawn from this analysis and fails to support its implementation
into clinical practice using traditional cut-offs (for example, in
the setting of a premenopausal woman with RS less than 18,
based on the results from the current analysis, radiomics would
spare such a patient combined chemoendocrine therapy (predic-
tive rate ratio of 0.93 in delineating RS less than 18 from 18 or
greater (Fig. 2a)) indicating possible undertreatment). Difficulty
ascertaining radiomic differences between RS less than 30 and
greater than 30 is possibly due to a paucity of patients in the
greater than 30 group being included in this analysis21,24.
Furthermore, current indications for preoperative MRI only in-
clude scenarios such as invasive lobular carcinoma and BRCA-
mutation carriers, reducing the value of implementing results of
this analysis into current clinical practice models. Furthermore,
the timely access to MRI in the preoperative period has not been
evaluated in this review and may pose a real-world challenge to
the clinical implementation of radiomics. In spite of these ac-
knowledged limitations, this analysis supports the mantra that
radiomic tumour analysis is imminent in personalizing cancer
care for prospective patients.
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