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As compared with the computational fluid dynamics(CFD), the airfoil

optimization based on deep learning significantly reduces the computational

cost. In the airfoil optimization based on deep learning, due to the uncertainty in

the neural network, the optimization results deviate from the true value. In this

work, a multi-network collaborative lift-to-drag ratio prediction model is

constructed based on ResNet and penalty functions. Latin supersampling is

used to select four angles of attack in the range of 2°–10° with significant

uncertainty to limit the prediction error. Moreover, the random drift particle

swarm optimization (RDPSO) algorithm is used to control the prediction error.

The experimental results show that multi-network collaboration significantly

reduces the error in the optimization results. As comparedwith the optimization

based on a single network, themaximumerror ofmulti-network coordination in

single angle of attack optimization reduces by 16.0%. Consequently, this

improves the reliability of airfoil optimization based on deep learning.
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Introduction

The airfoils are widely used in aerospace, marine engineering, new energy exploration,

and other fields. In the field of new energy, in addition to environmental benefits, the wind

power has the potential to make a significant contribution to the growing energy demand

Office (2004). The airfoil structure significantly influences the energy efficiency of wind

power generation Sharma, Gupta, Pandey, Sharma, &Mishra (2021). Due to the high cost

of CFD calculation Koziel & Leifsson (2013), - The aerodynamic performance

optimization Bedon et al. (2016); Chen and Li (2019); Kallath et al. (2021); Mukesh

et al. (2012); Saleem and Kim (2020); Tang et al. (2017) and robustness optimization Reis
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et al. (2019) of Airfoil Based on CFD are limited. Therefore,

optimizing the efficiency of airfoil structures has been a focus of

research community.

Improving the optimization algorithm is an important

approach for improving the efficiency of airfoilX. Liu et al.

(2022a); Liu et al. (2022b). The traditional optimization

algorithms include genetic algorithm (GA) Bagley (1967),

simulated annealing algorithm (SA) Bangert (2012), and

particle swarm optimization (PSO) Kennedy and Eberhart,

(1995); Wu et al. (2022). Ram et al. combined the CFD with

genetic algorithms to optimize the blades of wind turbine under

low Reynolds number with multiple objectives Ram et al. (2013).

This improved the performance of airfoil under adverse

conditions. Mukesh et al. studied the performance of different

optimization algorithms, such as GA and PSO based on CFD.

The authors concluded that as compared with other methods, the

PSO method has a greater ability to find the global optimal value

Mukesh et al. (2012). Chen et al. further fused the GA and PSO to

optimize the NACA0018 wing sail and obtained a larger thrust

than the original wing Chen and Li (2019). The random drift

particle swarm optimization (RDPSO) simulates the random

thermal motion of particles by adding a temperature term to

the PSO, which improves the global search capability of particles

Sun, Wu, Palade, Fang, & Shi (2015). In addition, some scholars

have tried to use deep learning to improve the numerical solution

of <u>Pawar et al. (2019); Yin et al. (2020).

Using a proxy model is another effective way to enhance the

efficiency of airfoil. The common proxy models include Kriging

He et al. (2020); LI and PAN (2019); Bu et al. (2020) and the

response surface mo Ahn et al. (2001); Sun, (2011); Vavalle and

Qin (2012). Recently, deep learning methods have advanced

rapidly Huang et al. (2022);Huang et al. (2021); Jiang et al.

(2021a); Jiang et al. (2021b). The convolutional neural network

(CNN) Fukushima (1980) has achieved good results in various

tasks, such as image classification >Gong & Cao (2014);

Mahapatra et al. (2016) and prediction <u>Kouhi & Keynia

(2013);Mozo et al. (2018). Yu et al. used an improved CNN for

predicting airfoil lift coefficients. Forecast so that the root mean

square error is less than 3.0 × 10−4 Yu, Xie, & Wang (2020). In

addition to CNN, other types of networks are also used in airfoil

optimization. Haryanto, I et al. used ANN and GA methods to

optimize the maximum lift-to-drag ratio of an airfoil with high

accuracy Haryanto, Utomo, Sinaga, Rosalia, & Putra (2014). Tao

et al. used the deep belief network (DBN) to construct a multi-

fidelity proxy model for optimizing the robustness of the airfoil

Tao & Sun (2019). Considering the training difficulty of deep

networks, He et al. proposed ResNet, which further improved the

mapping ability of the neural networks by enabling the network

to learn the residuals between layers He, Zhang, Ren, & Sun

(2016).

However, the optimization based on deep learning is

accompanied by black-box adversarial attacks on the neural

networks by optimization algorithms Papernot, Mcdaniel, &

Goodfellow (2016). That is, the optimization algorithm only

requires the value of the optimization function to be optimal,

which may lead the neural network to give false optimal

predictions. There are various methods to suppress over-

fitting Ying (2019) and improve the robustness of the neural

networks. Few researchers have proposed methods to defend

against these attacks, such as random input transformation Xie,

Wang, Zhang, Ren, & Yuille (2017), random noise Liu et al.

(2018), and random pruning Dhillon et al. (2018). These

methods have achieved good results in graph classification.

However, the prediction of airfoil lift-drag ratio requires the

neural network to give accurate prediction values. The

disturbance of airfoil geometric parameters affects its

aerodynamic parameters, limiting the application of the

aforementioned methods in airfoil optimization.

The lift-to-drag ratio is unique for certain airfoils and

operating conditions. Therefore, the values predicted by

different networks should converge to the true values. When

the network gives false predictions due to the uncertainty in the

neural network Kendall & Gal (2017), the predicted value of

different networks has large differences in probability. Based on

this principle, in this work, we use multiple ResNets to

collaboratively predict the lift-to-drag ratio of the airfoil. In

addition, we combine the RDPSO algorithm for optimizing

the airfoil for verifying that the collaborative network is in

lift-to-drag ratio.

PARSEC parameterization has been applied in several studies

(Mukesh et al., 2012; Da et al., 2017, MANAS S. K., 2008). The

research by DA et al. and MANAS is based on the PSO algorithm

for airfoil optimization. Based on the PARSEC parameterization

method, Mukesh et al. (Mukesh, R et al., 2012) compared the

optimization results of the Panel Technique and the PSO

algorithm. They concluded that the PSO algorithm could find

the optimal solution more effectively.

Materials and methods

The overall process of this paper is shown in the figure below.

The GAN network for generating the initial airfoil and the CNN

and ResNet for predicting the lift-drag ratio are trained based on

the data set. After the GAN generates the initial airfoil, the airfoil

is optimized using ResNet and CNN combined with the RDPSO

algorithm. Finally, the optimization results are verified by CFD.

The optimization process is shown in Figure 1.

Resnet

The ResNet was proposed by He et al., in 2016 He et al.

(2016). It uses shortcut paths in the CNN architecture

Fukushima (1980) so that the network can learn the residuals

during the training process, thus making the training process
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easier. The convolutional layers, activation functions, and

shortcuts are used to form the blocks in a certain order. Then,

these blocks are used to build the entire network.

The ResNet architecture used in this work is shown in

Figure 2. In He et al. (2016), the author uses convolution for

down-sampling. In the preliminary tests, the performance of the

average pooling layer is slightly better than convolution.

Therefore, in this work, we use average pooling for

performing down-sampling. We add the dropout Ying (2019)

between the last convolutional layer and fully connected (FC)

layer to suppress overfitting. In addition, in this work, we use the

traditional CNN architecture similar to ResNet (Figure 3A) and a

simplified CNN architecture (Figure 3B to build different

networks, and compare the prediction capabilities of various

networks for airfoil lift-drag ratio.

Based on the three aforementioned types of blocks, in this

work, a total of six networks are constructed for training, among

which three networks are CNN. As shown in Figure 4, the CNN Ⅰ
is composed of CNN Block A, and CNN Ⅱ and CNN Ⅲ are

composed of CNN Block B. The other three networks are

ResNets, which are composed of ResNet blocks. The input

information is a single-channel airfoil geometry. After down-

sampling based on convolution, normalization, and pooling, it

enters the block for processing. In Figure 4, it is noticeable that

the dropout probability of each network is different. This is due

to the slight adjustment in the dropout probability of each

network during the tests, so that the network is able to reach

the lowest possible value of the loss function.

Airfoil parameterization

The improved geometric parameter (IPG) parameterization

method was proposed by Liu et al. This method can decompose

the airfoil geometry into the midline and thickness expressions

Lu, Huang, Song, & Li (2018) and establish the relationship

between the geometric parameters and curve parameters.

In the IPG parameterization, the airfoil centerline is

expressed as follows:

{ xc � 3c1k(1 − k)2 + 3c2(1 − k)k2 + k3

yc � 3c3k(1 − k)2 + 2c4(1 − k)k2 (1)

where, K denotes the curve parameter and k ∈ [0, 1], and

c1, c2, c3, c4 denote the airfoil design parameters.

The airfoil thickness is expressed as follows:

t � t1x
0.5 + t2x + t3x

2 + t4x
4 (2)

where, x denotes the abscissa of the airfoil centerline and

x � xc(k), and ti(i � 1, 2, 3, 4, 5) denotes the airfoil design

parameter. In order to ensure that the end of the airfoil is

closed, t5 � −∑4
i�1ti.

Random drift particle swarm optimization
(RDPSO)

The RDPSO is an optimization method Sun et al. (2015)

based on PSO Kennedy & Eberhart (1995). For a particle in a

dimensional space, the particle coordinate iteration process is

expressed as follows:

for n � 1, 2, 3, . . . , Iterations

for i � 1, 2, 3, . . . ,M

for j � 1, 2, 3, . . . , N

pj
i,n � ϕj

i,nP
j
i,n + (1 − ϕj

i,n)Gj
n

Cj
n �

1
M

∑M
k�1

Pj
k,n

Vj
i,n+1 � α

∣∣∣∣∣Cj
n −Xj

i,n

∣∣∣∣∣φj
i,n+1 + β(pj

i,n −Xj
i,n)

Xj
i,n+1 � Xj

i,n + Vj
i,n+1

end

end

end

where, the superscript represents the component of the particles

in dimension j and, the subscript i denotes the particle number

and i � 1, 2, 3, . . . ,M, n represents the number of iterations, Pj
i,n

denotes the coordinate of the individual optimal value of the

particle i in dimension j during the first n iterations, ϕji,n denotes a

random number distributed between 0 and 1, i.e., ϕji,n ~ U\(0, 1),
Gj
n denotes the coordinate of the optimal particle in dimension j

during the first n iterations, Cj
n denotes the average value of the

coordinates corresponding to the optimal values of all particles,

V denotes the particle velocity, which is the coordinate migration

of the particle in this iteration, α represents the temperature

factor and 0< α< 1, β denotes the drift factor and 0< β< 2, X

FIGURE 1
Flow chart of optimization of lift-drag ratio.
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denotes the particle coordinate, i.e., the optimization variable,

and φ denotes a normally distributed random value,

i.e., φ ~ N(0, 1).
When the coordinate of a certain particle is randomly

selected as C′n with a probability of 1/M, the expected value

of C′,jn is equivalent to Cj
n, but the ability of the particle to search

for the optimal value can be improved. This method is called

RDPSO-Gbest-RP. In this work, we use RDPSO-Gbest-RP for

optimization.

Generative adversarial network (GAN)

The RDPSO method requires that optimization starts from a

random number of particles. Usually, the random particles are

generated separately in each dimension in the optimized space

based on random numbers. As the optimization parameters in

the IPG parameterization may not be independent, and the

optimization space is irregular, random number generation

may cause a large number of particle coordinates

corresponding to the airfoil geometry to be abnormal. GAN

Goodfellow, (2020) can generate data with the same distribution

as the input samples. WGAN-GP Gulrajani, Ahmed, Arjovsky,

Dumoulin, & Courville (2017) overcomes the problem of GAN

mode collapse. In this work, WGAN-GP is used to generate the

random particles to ensure particle randomness and a reasonable

range for each parameter. The network architecture is presented

in Figure 5.

Joint network and constraints

This work uses a penalty function for any target angle of

attack Deb (2000) to constrain the parameters. The traditional

penalty function is mathematically expressed as follows:

Fα(x) � f(x) + σ∑n
i�1
hi(x) , (3)

where f(x) denotes the original optimization objective function,

Fα(x) denotes the optimization objective function, σ denotes the

penalty factor, and hi(x) denotes the constraint.
For inequality constraints

g1(x)≥g1 (x0) (4)

So,

h1(x) � min{0, g1(x) − g1(x0)} (5)

When the resistance ratio is predicted for a certain angle of

attack, the original optimization objective function is

expressed as:

FIGURE 2
ResBlock structure.

FIGURE 3
CNN Block structure (A) Based on ResBlock and Shortcut bypass deletion (B) Typical CNN structure.
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FIGURE 5
WGAN structure diagram.

FIGURE 4
CNN and ResNet structure (when two blocks with the same output channel overlap, Only mark once, such as c = 64. When two blocks with
different output channels overlap, mark in order, such as c = 64, 48means that the output channel of the previous block is 64, and the output channel
of the next block is 48)
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f � 0.5 − 0.5(wVU + (1 − w)VL) (6)

The optimization constraint is mathematically expressed as

follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 � tmin|0.1< x< 0.9 ≥ 0.01

g2 � |VU − VL|
Vs,U

≤ emax

g3 � c1 ≥ 0.01

g4 � c21 − c1c2 − c1 + c22 < 0

(7)

Among them, g1 constrains the minimum thickness of the

airfoil, g2 constrains the prediction error of the lift-drag ratio,

and g3 and g4 are constraints on the airfoil parameters in the IPG

parameterization. The original objective function, VU, VL

denotes the larger and the smaller output values of the two

neural networks, respectively. Since the tan h() activation

function is added at the end of the network, and we get

−1<V< 1. In (6), w denotes the coefficient that controls the

proportion of the larger value to the smaller value.

In the constraint expression, the first item denotes the

minimum thickness constraint. The second term represents

the error limit, which is used to filter the inconsistent results

from the predictions of the two networks and represents the

allowable relative error of the two network predictions. It is the

maximum value of the lift-to-drag ratio in the sample scaled to

the output range of the network. The third item represents the

constraint on the parameter. The lower limit of this parameter

is presented in Lu et al. (2018). The fourth term is used to

prevent the airfoil from curling, when the parameter

satisfies (3).

During the optimization process, in addition to the error

control of the m target angles of attack, the error penalty should

also be performed on the additional n angles of attack, i.e.,

Fnet � ∑m
i�1
wα,iFα,i +∑n

i�1
g2,i (8)

where, Fnet denotes the value applied to the RDPSO algorithm, m

denotes the number of target angles of attack, wα,i denotes the

weight of the ith angle of attack, Fα,i denotes the optimized function

value of the ith angle of attack, n denotes the number of error

sampling points selected from the error limit area, and g2,i denotes

the value of the penalty term for the ith error sampling point.

Results and discussion

Network training

Airfoiltools Pescador (2016) is a free online airfoil research

tool, which currently provides the data of 1,638 airfoils. This tool

provides the coordinates of interpolation point of the airfoil, and

a list of angles of attack and aerodynamic parameters under the

partial Reynolds number. We collected 1,638 airfoils from this

website. In order to ensure the quality of the dataset,

1,546 available airfoils are manually screened out, accounting

for 94.4% of the total samples. The discarded airfoils include

possible coordinate errors, and the data samples where the

chord length is significantly smaller than most of the other

airfoils. We randomly select 1,233 airfoils for training the

network. The remaining data samples are used as an

evaluation set. We use the matplotlib library to convert the

airfoil into an image with a height of 2 inches, a length of

4 inches, a resolution of 128 × 64, and a line width of 5.0 pixels.

The angle of attack used for each airfoil ranges from -15° to +15°

with a step of 1°. We obtain 40,165 images for the dataset. The

angle of attack and lift-to-drag ratio have been scaled to

between -1.0 and +1.0. Few samples of the airfoil images are

presented in Figure 6.

We use the Adam optimizer to optimize the weights of the

network. According to the situation that the network occupies

the video memory, we select a higher value for epochs,

i.e., between 80 and 180. The initial learning rate is 0.001, and

it is reduced by 70% every five iterations. When all the data in the

training set has been used for training (once per iteration), we

disable the dropout and use the validation set to calculate the

value of loss function. During the training process, a total of

35 iterations are performed. We observe that the value of the loss

function no longer decreases and remains stable. The loss

function curve obtained using the verification set is shown in

Figure 7.

Lift-to-drag ratio prediction

We use the trained network to predict the lift-to-drag ratio

using the samples from the validation set. The error of the

prediction results is shown in Table 1. Among all the single

networks, ResNet Ⅲ, ResNet Ⅱ, and CNN Ⅲ have the highest

prediction accuracy. Therefore, the subsequent airfoil

optimization work is based on these three networks.

FIGURE 6
Some airfoil geometry samples in the database.
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As a conventional deep learning algorithm, CNN has good

prediction performance Yun et al. (2022); Sun et al. (2022).

Based on the network architecture presented in Figure 4, it is

evident that the predictive ability of the neural network is

affected by the number of single-layer convolution channels

and the number of layers. The network with more layers and

channels has a stronger predictive ability. The ResNet Ⅲ and

CNNⅢ have the same number of convolutional layers, number

of channels, and similar architecture. There is no obvious

difference between CNN Ⅲ and ResNet Ⅲ in predicting the

lift-to-drag ratio. ResNet Ⅲ has a lower root mean square error

considering the loss function value. In the detailed error

distribution, there are more sample errors in the prediction

results of CNNⅢ that are less than 1%. Contrary, the ResNetⅢ

has more sample errors less than 15%. Therefore, the CNN Ⅲ
achieves higher accuracy. But ResNet Ⅲ has better

generalization performance. Similarly, the ResNet Ⅱ also

achieves good prediction results. The predicted values of the

two networks are weighted and averaged (the weight is 0.5) to

improve the prediction accuracy of the network’s lift-to-drag

ratio. The prediction accuracy after this combination is better

than a single network within most of the error ranges.

Figure 8A shows the predicted value of the lift-to-drag ratio

between the trusted airfoil and the unknown airfoil. Figure 8B

shows that the predicted values of the lift-to-drag ratio for the

credible airfoils of different networks are similar. Within the

range of angle of attack, i.e., -15°–15°, the lift-to-drag ratio

curves coincide, and the largest error occurs in the case of

FIGURE 7
Loss function curve of network training (A) CNN Ⅲ (B) ResNet Ⅱ (C) ResNet Ⅲ (D) Validation set of all networks Loss function curve.

TABLE 1 The error distribution of each neural network in the predicted value of the lift-to-drag ratio in the verification set.

Network Less than 1% Less than 5% Less than 10% Less than 15%

CNN Ⅰ 23.2 78.7 95.5 98.8

CNN Ⅱ 26.8 84.3 96.7 99.1

CNN Ⅲ 31.3 85.6 96.9 98.9

ResNet Ⅰ 26.6 83.6 96.6 99.0

ResNet Ⅱ 29.2 85.3 97.0 99.0

ResNet Ⅲ 29.6 85.3 97.0 99.4

Adjective (ResNet Ⅲ& ResNet Ⅱ) 30.4 86.2 97.3 99.3

The best results under each error level are shown in bold.
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ResNetⅡ. In ResNetⅢ, the maximum error is 11.8% at 6° angle

of attack. When the network output is uncertain, the predicted

values of the three networks are very different. The error for

ResNet Ⅱ and ResNetⅢ reaches 30.1% at an angle of attack of 8°.

The error between ResNet Ⅲ and CNN Ⅲ is 8° and the angle

error is 59.0%.

Based on the aforementioned results, we observe that:

(1) The uncertainty in network output is mainly concentrated in

the range.

(2) In the range of the angle of attack, where the output

uncertainty is obvious, there may be some points where

the error is small, as shown in Figure 8C.

Ideally, the error sampling points are as dense as possible,

i.e., In formula (8), the number of constraint points n of the lift-

drag ratio prediction error should be as large as possible to ensure

that the prediction error meets the requirements in the entire

optimization range. However, at the same time, this increases the

computational complexity. Considering comprehensively, in this

work, we select an error limit area. At the same time, four angles

of attacks are randomly selected for error control within the

range of angle of attack by Latin super-sampling Mckay &

Beckman (1979).

Lift-to-drag ratio optimization

The lift-to-drag ratio optimization is based on randomly

distributed particles. These particles are generated by using

WGAN-GP. The distribution of the generated particles and

the samples in the dataset are shown in Figure 9. The particle

distribution of WGAN-GP is similar to the dataset.

During the optimization process of RDPSO-Gbest-R, the

initial maximum particle velocity is 0.4. Consequently, the

particles move randomly in the entire allowable optimization

space and converge to the global optimal value. Afterwards, the

maximum speed is halved after every 20 iterations so that the

optimization results become gradually accurate. This principle is

similar to the simulated annealing algorithm Bangert (2012).

(1) The influence of the number of particles on the optimization

results

Machine learning algorithms are widely used in various

fields of studies Tian et al. (2021); Xu et al. (2022); Yao et al.

(2021). Optimization algorithms can boost predictive

performance of machine learning Liu X. et al. (2022),Liu

et al. (2022b); Zhao et al. (2022). In this work, we use the

number of particles in RDPSO algorithm M = 50 and M =

100 to optimize the airfoil under the same optimization

objective and compare the influence of the numbers of

FIGURE 8
Geometry and lift-to-drag ratio prediction of the determined airfoil and the uncertain airfoil (A) solid line: the determined airfoil from the data
set; dashed line: the uncertain airfoil generated byWGAN (B) different network pairs Determine the lift-to-drag ratio prediction of the airfoil, showing
consistency (C) The lift-to-drag ratio predictions of the uncertain airfoil of different networks are significantly different.

FIGURE 9
The IPG parameter distribution of theWGAN generated airfoil
and the data set airfoil.
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particles on optimization results. To avoid contingency, the

airfoil optimization is repeated 5 times for each parameter. The

optimization goal is the weighted average of the lift-to-drag

ratio under the angle of attack (here, the weight coefficients are

all), and formula (6) takes 0.5.

Figures 10, 11 show the optimization results for M = 50 and

M = 100, respectively. In the lift-to-drag ratio prediction of the

optimization results, it is evident from Figures 10A, B that there is a

difference between the multi-network joint prediction and the

network CNN III that has not participated in the optimization. The

optimization results are performed in the networks participating in

optimization. This phenomenon is also evident in Figures 10A, B.

In the optimization results where M = 50, there are four

results that converge to a consistent airfoil geometry. In the

optimization results where M = 100, the lift-to-drag ratio curve,

the airfoil geometry, and the weighted value of the lift-to-drag

ratio converge to a consistent solution. In this case, the lift-to-

drag ratio increases from 120 of the initial airfoil to at least 157,

i.e., about 30.8%. GAN randomly generates the initial airfoil for

each optimization, and finally a consistent optimization result is

obtained. Therefore, this optimization result can be considered as

the global optimal solution. The subsequent optimization

calculations are performed with M = 100.

(2) Comparison of multi-network joint and single-network

optimization results

To verify the improvement in accuracy of the optimization

results obtained by using multi-network collaboration, in this

work, we use ResNetⅢ as it is the best performing network in lift-

to-drag ratio prediction (Table 1; Figure 7D), and the multi-

network collaborative adjective for a single attack. We optimize

FIGURE 10
The optimization result of ion number M = 50 (A) The lift-drag ratio prediction of the five optimization results by Adjective and CNN Ⅲ (B) The
airfoil geometry of the five optimization results and the initial airfoil optimized at one time (C) 5 times The change curve of the weighted value of the
lift-to-drag ratio during the optimization process.

FIGURE 11
The optimization result of the number of ions M = 100 (A) The prediction of the lift-to-drag ratio of the fifth optimization result by Adjective and
CNNⅢ (B) The airfoil geometry of the fifth optimization result And the initial airfoil of one of the optimizations (C) The weighted value change curve
of the lift-drag ratio during the fifth optimization process.
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the angle (2°) and multiple angles of attack (same as the previous

section). The number of particles and the optimization results of

lift-to-drag ratio are shown in Figure 12. The triangles represent

the predicted value of the lift-to-drag ratio of the network

participating in the optimization based on ResNet Ⅲ or

adjective. The "+" marks represent the predicted value of the

lift-to-drag ratio of the independent network CNN III.

In the optimization result of a single angle of attack

(Figure 12A), there is a significant difference between the

single network predicted value and the actual value, and

the maximum error reaches 32.7%. In contrast, the multi-

network collaboration significantly reduces the difference

between the predicted value of the optimized network and the

verified network (Figure 12B). The maximum error in this case is

16.7%, which is 16.0% lower as compared to a single network. As

shown in Table 2.

While optimizing multiple angles of attack (Figure 12C), there

is still a significant difference between the predicted value of the

single network and the test network, i.e., the maximum error is

13.0%. The multi-network prediction results have a slightly lower

error than a single-network prediction result, i.e., the maximum

error is 12.7%, which is a decrease of 0.7%. This is because when

the multi-angle attack optimization is performed, the output result

may be too small or too large due to the uncertain output state of

the network. In addition, the output of the small result makes the

final weighted value lower than the certain value. To a certain

extent, the shape of the optimal airfoil suppresses the influence of

uncertainty during the optimization process.

(3) Comparison of optimization results with the best airfoil in

the dataset

Figure13 compares the optimization results of single angle of

attack and multiple angles of attack targets. In addition, it also

presents the comparison of the best airfoil geometry in the dataset

for the corresponding target angles of attack. The optimization

results are shown in Table 3. Figures 13A, C present the single

angle of attack optimization results. The initial airfoil, optimal

airfoil, and the optimization results are relatively similar, and the

lift-to-drag ratio curve presented in Figure 13C also has the similar

characteristics. There is an obvious peak at the target angle of

attack at 6°, and the maximum lift-to-drag ratio reaches 172. The

lift-to-drag ratio at other angles of attack degenerates rapidly,

indicating that this optimization algorithm has obvious pertinence

to the optimization target.

Figures 13B, D present the optimization results ofmultiple angles

of attack. For the optimization goal, the weighted value of lift-to-drag

ratio after deep learning optimization is 147 (the optimal estimate is

159), which is equivalent to the best airfoil lift-to-drag ratio in the

dataset.However, there is a big difference in the airfoil geometry. Both

the optimization results and the best airfoils in the dataset maintain a

high lift-to-drag ratio within a large angle of attack.

FIGURE 12
The optimization results are in the network participating in the optimization (ResNet Ⅲ or Adjective) and the network not participating in the
optimization (CNNⅢ) The lift-to-drag ratio prediction curve in (A) is based on the optimization result of ResNetⅢ for single target angle of attack (B)
is based on the optimization result of Adjective for single target angle of attack (C) is based on the optimization result of ResNet Ⅲ for multi-target
angle of attack (D) Optimization results based on Adjective for multi-target angles of attack.
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4) CFD-based lift-to-drag ratio verification and stall

characteristic research We use the k-ε turbulence model of

COMSOL Multiphysics to calculate the lift-to-drag ratio of

the initial airfoil, the optimized airfoil, and the optimal airfoil

in the database for verification. The calculation results are shown

in Figure 13.

FIGURE 13
Comparison of optimization results with the best airfoil under the corresponding target in the data set (A) Airfoil geometry with 6° single angle of
attack lift-to-drag ratio as the optimization target (B) The multi-angle of attack lift-drag ratio is the airfoil geometry under the target (C) The lift-drag
ratio curve under the target with 6° single angle of attack lift-drag ratio (D) The lift-drag ratio curve under the target with multiple angles of attack lift-
drag ratio.

TABLE 2 Single network (ResNet Ⅲ) and multi-network collaboration (Adjective) optimize the angle of attack of single and multi-target. The
maximum error between the predicted value of the lift-to-drag ratio of the network participating in the optimization and the predicted value of
the result of the independent reference network CNN Ⅲ.

Optimization target ResNet Ⅲ maximum error
(%)

Adjective

Maximum error (%)

Single target angle of attack 32.7 16.7

Multi-target angle of attack 13.0 12.3

TABLE 3 The optimization results ofmulti-network coordination atmultiple angles of attack and single angle of attack, comparedwith the best airfoil
in the data set.

Optimization target ResNet Ⅲ maximum error
(%)

Adjective

Maximum error (%)

Single target angle of attack 32.7 16.7

Multi-target angle of attack 13.0 12.3
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Figure 14A shows the grid independence verification. The

changing trend of lift-drag ratio is observed by changing the

number of grid cells. When the number of grids is greater than

167,000, the calculation results no longer change significantly,

indicating converging. Figure 14B shows the calculation results of

the lift-drag ratio of each airfoil. The lift-drag ratio calculated by

CFD is quite different from the value in the database. The reason

is that the lift coefficient calculated by CFD is the same as the

value in the database. In contrast, the value calculated by CFD

The drag coefficient is larger, resulting in a significant difference

in its ratio. The lift-drag ratio calculated in this paper is close to

the airfoils in most other studies.

From the trend of the lift-drag ratio, the CFD calculation

results are consistent with the prediction results of the neural

network. The optimized airfoil has a lift-drag ratio similar to the

best airfoil in the data set when the attack angle is greater than 5°,

and the airfoil is less than 5° when the attack angle is less than 5°.

The lower corners show a higher lift-to-drag ratio.

In the study of stall characteristics, we refer to the study of

Guilmineau et al. (1997), using the SST k-ω model in COMSOL

Multiphysics for the initial airfoil, the optimized airfoil, and the

best airfoil in the data set. Stall characteristic studies were carried

out. In the stall characteristic study, the airfoil rotates around 1/

4 chord, and the angle of attack changes cyclically as follows:

α � α0 + Δαsin(2πft) � α0 + Δαsin(2ktp) (9)

Where α0 � 5.0°, Δα � 15°, k � 0.15, t* � tU∞/c .

Figure 15A Shows the grid independence verification.

Different grid densities are used to calculate the lift coefficient

at an angle of attack of 10°. The comparison shows that when the

number of grids is greater than 38,000, the calculation results do

not change significantly, indicating that the number of grids is

sufficient. Stall characteristic calculations were performed using a

grid with 38,000 elements. The lift coefficient and drag coefficient

results are shown in Figures 15B, C, respectively.

The hydrodynamic prediction provides an important

reference for the optimal design of the structureSu et al. (2021).

In the pitch-up stage, when the angle of attack is greater than 5°, the

lift coefficient of the optimized airfoil is slightly higher than that of

the optimal airfoil in the data set, and the peak lift coefficient is also

FIGURE 14
Verification of lift-drag ratio based on CFD optimization results. (A) Calculation results of lift drag ratio of the best airfoil in the database at 0°

angle of attack with different grid numbers (B) lift drag ratio curves of the best airfoil, initial airfoil and optimized airfoil in the database.

FIGURE 15
Stall characteristics of optimization results. (A) Calculation results of lift drag ratio of different grid numbers for the best airfoil in the database at
10° angle of attack (B) change curve of lift coefficient of the best airfoil, initial airfoil and optimized airfoil in the database with angle of attack (C)
change curve of drag coefficient of the best airfoil, initial airfoil and optimized airfoil in the database with angle of attack.
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higher than that of the optimal airfoil in the data set (Figure 15B);

for the drag coefficient, when the angle of attack is greater than 5°,

the optimized airfoil is slightly higher than the optimal airfoil in the

data set. The peak drag coefficient is basically consistent with the

optimal airfoil in the data set (Figure 15C). During the descent, the

lift coefficient of the optimized airfoil is significantly higher than

that of the best airfoil in the data set. In contrast, the drag

coefficient has no significant difference.

In general, the peak drag coefficient of the optimized airfoil is

the same as that of the best airfoil in the data set, while the peak lift

coefficient is improved to a certain extent. The optimized airfoil

has a smaller lift coefficient hysteresis loop area and better stability.

Conclusion

Both ResNet and traditional CNN can achieve high accuracy

in lift-to-drag ratio prediction. These architectures are able to

achieve more than 96% of the airfoil prediction error of less than

10%, and more than 85% of the airfoil prediction error of less than

5%. The number of layers and the number of convolution channels

in a network significantly influence the prediction accuracy.

The multi-network coordination effectively suppresses the

deviation of the optimization result from the actual value in the

single-objective angle of attack optimization. The optimization results

show that the maximum error after multi-network collaborative

optimization is 16.7%, which is approximately half as compared

to the maximum error of single-network optimization. In case multi-

angle attack optimization, there is no significant difference.

Based on the airfoil optimization performed using RDPSO

and deep learning, a high-performance airfoil with a gap of less

than 5% from the best airfoil in the dataset is obtained in a

conservative estimation. In the more optimistic estimation, the

deep learning optimization results have a better performance as

compared to the best airfoil in the dataset. For practical

applications requiring higher reliability, the airfoil

optimization based on deep learning may be more suitable for

pre-optimization, providing a good initial airfoil for other

optimizations with higher accuracy.
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