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Abstract To understand the brain, molecular details need to be overlaid onto neural wiring

diagrams so that synaptic mode, neuromodulation and critical signaling operations can be

considered. Single-cell transcriptomics provide a unique opportunity to collect this information.

Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that

were acquired using Drop-Seq. A number of approaches permitted the assignment of

transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic

enzymes and reuptake mechanisms allows all the neurons to be typed according to the

neurotransmitter or neuromodulator that they produce and presumably release. Some

neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter,

or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the

potential of these molecules in generating complexity in neural circuit function. This cell atlas

dataset provides an important resource to link molecular operations to brain regions and complex

neural processes.

DOI: https://doi.org/10.7554/eLife.34550.001

Introduction
Neuroscience is typically studied at the systems, cellular, or molecular level. However, it will be nec-

essary to bridge these traditional boundaries to fully understand how the brain operates. Such a

momentous task is somewhat simplified if analyses are focused on an animal with a relatively small

brain, but where systems-level processes are evident. In many respects, the vinegar fly Drosophila

melanogaster fits the bill (Haberkern and Jayaraman, 2016). Drosophila have an estimated 150,000

neurons in the entire brain, of which the optic lobes, or visual neuropils, comprise two thirds of this

neural mass. The remaining approximately 50,000 neurons, or midbrain, houses many key neural

structures such as the mushroom bodies and central complex, which are, amongst other things, criti-

cal for memory-directed behavior (Cognigni et al., 2018) and navigation (Seelig and Jayaraman,

2015), respectively.

Recent large-scale electron-microscopy projects have generated wiring diagrams, or connec-

tomes, of parts of the larval and adult fly nervous system (Berck et al., 2016; Eichler et al., 2017;

Ohyama et al., 2015; Takemura et al., 2013; Takemura et al., 2017a; Takemura et al., 2017b;

Tobin et al., 2017; Zheng et al., 2017). While these efforts are an essential part of the quest to

decipher brain function, they are not enough. Genes determine the anatomy and mode of connectiv-

ity, the biophysical properties, and the information-processing limits of individual constituent neu-

rons. Therefore, understanding any given wiring diagram requires a systematic view of gene

expression within their functionally relevant cellular context. With this knowledge in hand, investiga-

tors can begin to examine how gene products contribute to cell- and circuit-specific functions and,

ultimately, organismal behavior.
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New developments in single-cell sequencing technology provide a unique means to generate

such a brain-wide view of gene expression with cellular resolution. Massively parallel approaches,

such as Drop-seq (Macosko et al., 2015), permit simultaneous analysis of the transcriptomes of

1000 s of individual cells. In brief, each cell from a dissociated tissue is first captured with an oligonu-

cleotide bar-coded bead in a nanoliter aqueous droplet. Inside each droplet, the same cell identifier

sequence becomes attached to all mRNA molecules from an individual cell. Following this critical

cell-specific hybridization step, all the material from 1000 s of individual cells can be pooled and

processed together for mRNA sequencing. Drop-seq therefore provides the means to access the

transcriptomes of a representation of most cells in the fly midbrain.

A key hurdle in generating a single-cell atlas of the brain is the ability to assign individual tran-

scriptome profiles to the correct cell, or at least cell-type. Again, using an animal whose brain has an

intermediate number of neurons and presumably neural diversity simplifies the task. Moreover, years

of genetic analyses in Drosophila have provided a considerable number of established transgenic

and intrinsic markers for specific brain regions and cell-types. These identifiers often allow one to

extract the relevant cell profiles from the larger dataset.

Here we report the application and an initial analysis of Drop-seq data to investigate the cellular

diversity of the Drosophila midbrain. We demonstrate the ability to assign many single-cell profiles

to identified cell-types and brain regions, and identify novel markers for these regions. Moreover,

cells can be robustly classified based on their neurotransmitter profile. We find that certain neuro-

peptides preferentially accompany particular fast-acting transmitters, or monoamines. In addition,

we detail the apparent complexity of modulatory and neurotransmitter receptor subunit expression.

This single-cell dataset provides an indication of the extent of neural diversity in the fly brain, and

provides essential cellular context linking molecules to neural circuits and brain function.

Results

Drop-seq analysis of the Drosophila midbrain
We first optimized the conditions required to effectively dissociate and capture individual Drosophila

melanogaster cells with DNA bar-coded microparticles in aqueous droplets, using a commercially

available apparatus. Drosophila neurons are about a tenth of the size of mammalian cells. We there-

fore first verified the efficiency of processing insect cells and of single-cell capture by generating sin-

gle-cell transcriptomes attached to microparticles (STAMPs) from a cell suspension comprised of a

1:1 mixture of Drosophila S2 and Spodoptera frugiperda (fall armyworm) Sf9 cultured cells. We then

sequenced these S2/Sf9 STAMPs (Figure 1—figure supplement 1A). This procedure retrieved 764

barcode-associated transcriptomes, of which 368 were identifiable as Drosophila and 384 as Spo-

doptera. Importantly, only 12 transcriptomes contained cDNA coming from both species (Figure 1—

figure supplement 1B), indicating that only 3.2% of all sequenced transcriptomes resulted from cap-

turing two cells together. This analysis suggested that the Drop-seq system and our chosen parame-

ters are suitable for barcoding single insect cells and are optimized to minimize capture of cell

doublets.

We next used these same parameters and concentrations to collect STAMPs from thousands of

cells from the Drosophila midbrain, in eight independent biological replicates, over eight different

days. Each day we isolated single-cells from 80 to 100 dissected brains taken from an equal number

of male and female flies. Brains were removed from the head capsule, optic lobes were manually dis-

sected away and a single-cell suspension was prepared from the remaining fly midbrains. Larger tis-

sue fragments were removed by filtration, and the eluant was inspected under a microscope to

confirm the presence of single cells and the absence of clumps. Cells were individually paired with

DNA barcoded beads and cDNA libraries were generated from bead-bound single-cell transcrip-

tomes, and sequenced (Figure 1A) (Macosko et al., 2015). Pooling the data from the eight inde-

pendent experiments resulted in a dataset of 19,260 cells, with each containing between 200 and

10,000 unique molecular identifiers (UMIs) and therefore, single mRNA molecules. We performed a

Principal Component Analysis (PCA) on these transcriptomes and reduced the top 50 PCs into two

dimensions using t-SNE (Van Der Maaten, 2014) (Figure 1—figure supplement 2A). We selected

the cut-off for the optimal number of UMIs per cell to be included in our analyses by generating

t-SNE plots from data with a variety of quality thresholds. These analyses revealed that discarding
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Figure 1. Drop-seq reveals neuronal clusters in the Drosophila brain. (A) Schematic of the experimental procedure. Drosophila brains were dissected

and dissociated prior to Drop-seq. After sequencing and alignment, a digital expression matrix containing information about the number of UMIs found

for each gene, in each cell, was generated and used for PCA and subsequent analyses. See Materials and methods section for details. (B) Two-

dimensional representation (t-SNE) of 10,286 Drosophila brain cells, manually classified into 28 clusters. Based on the recovery of cell-types of known

abundance in the brain, we estimate that there are 45,000 cells in the fly midbrain.

DOI: https://doi.org/10.7554/eLife.34550.002

The following source data and figure supplements are available for figure 1:

Source data 1. Digital Expression Matrix.

DOI: https://doi.org/10.7554/eLife.34550.007

Source data 2. List of marker genes for each cluster in Figure 1.

DOI: https://doi.org/10.7554/eLife.34550.008

Figure supplement 1. Preliminary validation of Drop-seq on insect cells.

DOI: https://doi.org/10.7554/eLife.34550.003

Figure supplement 2. – Comparison of different quality filters.

DOI: https://doi.org/10.7554/eLife.34550.004

Figure 1 continued on next page
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cells with less than 800 UMIs, resulted in a data set of 10,286 high quality cells, segregated with

k-means clustering into 29 cell clusters, with several corresponding to most of the known iterative,

or large populations of, cell types in the Drosophila brain (Figure 1—figure supplement 2B). More

stringent criteria decreased the number of cells included without further improving the clustering

(Figure 1—figure supplement 2C). A comparison between our eight individual replicate experi-

ments revealed that all of them contributed equally to all but one cluster (Figure 1—figure supple-

ment 3). We therefore chose to use the 10,286 cells that have �800 UMIs from our eight pooled

replicates for our subsequent analyses.

We assessed the transcript drop-out rate by determining the number of neurons that express the

male-specific long non-coding RNA on the X 1 (roX1) gene (Kelley and Kuroda, 2003; Amrein and

Axel, 1997). For this analysis we excluded non-neuronal tissue, and Cluster M – see descriptions

below. The distribution of neurons containing UMIs for rox1 was biphasic, with one peak at 0, and

another at 9 UMIs (Figure 1—figure supplement 4A). Since our data were prepared from an equal

number of male and female brains we reasoned that these two cell populations correspond to neu-

rons from female and male flies, respectively. We used the median between the two peaks (4.5) as a

cut-off to separate the two populations, which revealed that 55.9% of neurons are positive for roX1

(Figure 1—figure supplement 4B). Since this number is greater than 50%, this distribution suggests

that drop-out of the roX1 transcript is low in our high-quality dataset. However, given that the drop-

out rate for each gene is influenced by the expression level and other factors that influence the abil-

ity to capture transcripts from the cell bodies using the polyadenylated tail, it is not possible to

determine a global drop-out rate. Nevertheless, the rate of roX1 drop-out provides a useful measure

to compare data between different samples and preparation techniques. The neuronal Cluster J is

almost exclusively comprised of roX1-negative cells. This could either mean that cells in this cluster

are only present in the female brain, or that they represent a subset of roX1 negative neurons that

are present in both male and female brains.

We manually annotated 30 clusters in the t-SNE plot of 10,286 cells, with each containing

between 9 and 7167 cells (Figure 1B). For each cluster, we identified a series of genes whose

expression was significantly higher than in the rest of the brain (Figure 1—source data 2). We then

used the published expression patterns for many of these genes to assign identity to several clusters

(Figure 1—source data 2). This approach allowed us to identify the mushroom body Kenyon Cells

(KCs), olfactory projection neurons (PNs), ellipsoid body ring neurons, monoaminergic neurons,

astrocytes and other glia, and insulin producing cells (IPCs). We also identified a few cells from the

ocelli, in addition to fat body tissue, some of which is present in the head capsule and therefore is

also expected to be included in our dissected brain tissue. We also identified 13 additional cell clus-

ters that we could not at this time assign to a particular neuronal type, and that we name with the

letters A-M. Surprisingly, cluster G only contained cells obtained from a single replicate experiment

(Figure 1—figure supplement 3). The largest cluster of all contains 7167 cells with a variety of

expression profiles, that at this stage of analysis, we marked as ‘unannotated’, but that can neverthe-

less be segregated for example, based on their primary fast-acting neurotransmitter (see below, and

Figure 5).

Identification of mushroom body Kenyon Cells
The easiest and most certain way to assign a Drop-seq cluster to a specific cell-type is to track the

expression of a transgenically expressed marker. For this reason, our single-cell expression dataset

was generated from a genotype of flies that express an mCherry transgene specifically in the ab sub-

set of mushroom body KCs (Figure 2A). To our surprise, visualizing mCherry expression levels in our

dataset revealed labeling of a very distinct group of cells (Figure 2B), that allowed us to assign this

cluster to ab KCs.

Figure 1 continued

Figure supplement 3. – t-SNE plot showing all eight replicates.

DOI: https://doi.org/10.7554/eLife.34550.005

Figure supplement 4. – Sex-determination of individual neurons.

DOI: https://doi.org/10.7554/eLife.34550.006
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Figure 2. Identification of Kenyon Cells and mushroom body-specific genes. (A) mCherry labeling of MB008B neurons in the Drosophila brain.

Neuropil, labeled by nc82 anti-Brp antibody, is shown in grey. (B) Expression of mCherry in the t-SNE-clustered brain cells shown in Figure 1B.

mCherry-positive cells are labeled red and identify this cluster as ab Kenyon Cells (KCs). Intensity of red (or other colors in the panels below) is

proportional to the normalized expression level. (C) and (D) Expression of eyeless and Dop1R2 (damb), in t-SNE-clustered brain cells. The three

numbered clusters containing indigo cells are KCs. (E) Expression of sNPF, Fas2 and trio in the three t-SNE clusters numbered in (C) and (D). Cells in

light blue, orange and purple express each of these genes in ab, g, and a´b´ KCs, respectively. sNPF and Fas2 are mostly expressed in ab and g KCs,

while trio is mostly detected in g and a´b´ KCs. (F) Violin plots showing the main markers that distinguish KC subtypes from each other (pairwise

comparisons for genes expressed in >50% of cells in either cluster; Log2 FC >1.5, Wilcoxon rank-sum test with Bonferroni-corrected p-value<0.01). The

column on the right (grey) indicates the level of expression of these genes across all non-MB neurons in the brain.

DOI: https://doi.org/10.7554/eLife.34550.009

The following source data and figure supplement are available for figure 2:

Source data 1. Primer pairs used for qPCR.

DOI: https://doi.org/10.7554/eLife.34550.011

Figure supplement 1. – Confirmation of Kenyon Cell type specific gene expression using qPCR on FAC-sorted cells.

DOI: https://doi.org/10.7554/eLife.34550.010
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The mushroom bodies are brain structures that are critical for olfactory learning and memory

(de Belle and Heisenberg, 1994; Cognigni et al., 2018; Heisenberg, 2003) and they are comprised

of three main classes of neurons, the ab, a0b’ and g neurons, that are morphologically unique and

have dissociable roles in memory processing and expression (Crittenden et al., 1998;

Krashes et al., 2007; Trannoy et al., 2011). We first identified the a0b’ and g KC types, using the

expression of the previously known general KC markers eyeless and Dop1R2 (also known as Dopa-

mine receptor in mushroom bodies, damb) (Han et al., 1996; Kurusu et al., 2000). Cells expressing

these two markers were contained within three distinct clusters, including the ab cluster identified as

expressing mCherry (Figure 2C–D). The ab and g KCs have previously been shown to be distinguish-

able from the a0b’ neurons using the expression of molecular markers. The ab and g KCs express

short neuropeptide F precursor (sNPF) (Johard et al., 2008) and Fasciclin 2 (Fas2) (Cheng et al.,

2001; Crittenden et al., 1998), whilst a0b’ and g KCs express the rho guanyl-nucleotide exchange

factor gene trio (Awasaki et al., 2000). The expression patterns of these three genes permitted us

to assign each KC cluster to one of these KC subtypes (Figure 2E). By comparing gene expression

profiles in these KC subsets, we identified 26 additional genes whose expression levels significantly

differ between them (Figure 2F). Of these, eleven are involved in gene regulation (pros, Eip93F, Bx,

bol, trv, Mef2, mamo, ab, Rbp6, Imp, fru), five in signal transduction (Ca-alpha1T, Pka-C3, CG8641,

cmpy, norpA), and three in synapse function (Sytalpha, cmpy, DAT), indicating plausible mechanistic

differences between these three major classes of KCs. We independently validated these differential

expression patterns by purifying mRNA from the three KC subtypes labeled with mCherry driven by

the MB008B (ab), MB131B (g) or MB461B (a0b0) GAL4 drivers (Aso et al., 2014) and isolated by Fluo-

rescence Activated Cell Sorting (FACS). Bulk mRNA was extracted from groups of 500–2500 of each

KC type and real-time qPCR analysis was used to compare the expression levels for the 29 genes in

Figure 2F. Despite the low starting amounts of mRNA, we obtained consistent qPCR signal for thir-

teen of these genes (Figure 2—figure supplement 1). Importantly, the differences in expression

measured by qPCR for these 13 genes precisely matched the profiles detected in the Drop-seq

data. These data confirm the accuracy of our measurements of expression with Drop-seq.

Identification of olfactory projection neurons
We assigned two cell clusters containing PNs (Figure 1B), based on the strong expression of previ-

ously described markers, including cut (ct) and abnormal chemosensory jump 6 (acj6). The ct gene

encodes a homeobox transcription factor involved in dendrite targeting in PNs and is known to be

expressed in a subset of the antero-dorsal (ad-), lateral (l-) and ventral (v-) PNs (Komiyama and Luo,

2007). The acj6 gene encodes a POU-domain transcription factor that is also necessary for PN devel-

opment and has been described to label all adPNs and a subset of lPNs (Komiyama et al., 2003;

Lai et al., 2008) (Figure 3C). Although, other cells that are not PNs might express ct and acj6

(Certel et al., 2000), these two putative PN clusters are the only ones strongly expressing, both of

these genes. We therefore next focused analyses on these acj6/ct expressing cells and performed a

new PCA and t-SNE analysis on the top six PCs. This segregated them into four distinct subclusters,

each of which expresses a specific transcriptional signature (Figure 3A–B). Consistent with the

expression patterns mentioned above, ct transcripts were found in all four clusters, whereas acj6 was

only identified in three (Clusters 1, 2 and 4; Figure 3C). Interestingly, ventral veins lacking (vvl),

another POU-domain transcription factor reported to be expressed in acj6-negative lPNs

(Komiyama et al., 2003; Li et al., 2017) only labeled a small number of neurons, which were all part

of the cluster that was negative for acj6 (Cluster 3; Figure 3C). Our data therefore confirm the non-

overlapping expression patterns of acj6 and vvl, and support the assignment of the vvl expressing

cluster to cells including the lPNs.

To identify putative ventral PNs (vPNs), we used expression of Lim1, which encodes a LIM-homeo-

domain transcription factor reported to be expressed in most vPNs, but not in adPNs or lPNs

(Komiyama and Luo, 2007; Li et al., 2017). Surprisingly, Lim1 labeled one of the three acj6-positive

clusters, and several neurons co-expressed both Lim1 and acj6 (Cluster 4; Figure 3C). This contrasts

with a previous study that indicated that acj6 and Lim1 do not overlap, as a result of these two

genes being expressed in progeny derived from discrete PN neuroblasts (Komiyama and Luo,

2007). About 50% of the acj6-positive neurons were recently shown to express knot (kn), another

transcription factor involved in dendrite morphology (Jinushi-Nakao et al., 2007; Li et al., 2017).
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Consistently, we found that the two acj6+/Lim1- clusters (clusters 1 and 2) segregate according to kn

expression (Figure 3B).

We also identified three to eight genes in each PN cluster that were significantly over-expressed,

as compared to the expression in other PN clusters (Figure 3B). Of potential functional importance,

we found that the acj6+/kn+ PNs strongly express the sNPF neuropeptide gene, whereas neurons

encompassing the putative lPNs express Tachykinin (Tk). These data suggest that these two classes

of otherwise cholinergic neurons might co-release different neuropeptides. Interestingly, the sNPF

and Tk neuropeptides have previously been reported to have a modulatory role in the antennal

lobe, although these studies concluded that the peptides were released from olfactory receptor neu-

rons and local interneurons, respectively (Ignell et al., 2009; Nässel et al., 2008). More recently,

others have also detected the expression of Tk in PNs (Li et al., 2017).

Identification of glia and astrocytes
The two known neuronal markers embryonic lethal abnormal vision (elav) and neuronal Synaptobre-

vin (nSyb) (DiAntonio et al., 1993; Robinow and White, 1988) were broadly expressed in most cells

but were conspicuously absent from four clusters (Figure 4—figure supplement 1A–B), indicating

that these cell populations were possibly not neuronal. One of these clusters expressed a series of

genes previously associated with fat body, such as Secreted protein, acidic, cysteine-rich (SPARC),

Metallothionein A (MtnA), I’m not dead yet (Indy) and pudgy (pdgy) (Catalán et al., 2016;

Knauf et al., 2002; Shahab et al., 2015; Xu et al., 2012) (Figure 1—source data 2). We therefore

expect these cells to represent residual fat body tissue that remains after brain dissection. The three

Figure 3. Sub-populations of olfactory projection neurons. (A) Re-clustering of the two Projection Neuron (PN) clusters from Figure 1B. Clusters are

color-coded. (B) Dot plots showing the main markers distinguishing PN populations from each other (pairwise comparisons for genes expressed

in >50% of cells in either cluster; Log2 FC >1.5, Wilcoxon rank-sum test with Bonferroni-corrected p-value<0.01). Dot diameter represents the fraction

of cells expressing each gene in each cluster, as shown in scale. Color intensity represents the average normalized expression level. (C) t-SNE-plots for

some known markers of PNs. ct labels all PN clusters, acj6 and vvl are mutually exclusive in Clusters 1, 2 and 4, versus Cluster 3, while Lim1 is specifically

expressed in Cluster 4. Some of these cells may be antennal lobe local interneurons.

DOI: https://doi.org/10.7554/eLife.34550.012
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other elav/nSyb negative clusters expressed two known glial markers: the homeobox transcription

factor reversed polarity (repo) (Xiong et al., 1994) was found at variable levels, while the Na+/K+

transporting ATPase nervana 2 (nrv2) (Sun and Salvaterra, 1995) was broadly expressed in all cells

in these clusters (Figure 4—figure supplement 1C–D). Interestingly, one of these three putative

glial clusters also robustly expressed the astrocytic leucine-rich repeat molecule (alrm) and wunen-2

(wun2) genes (Figure 4—figure supplement 1E, Figure 1—source data 2), which are known to be

specifically expressed in astrocytes (Doherty et al., 2009; Huang et al., 2015). We therefore define

these three clusters ‘Glia 1’ and ‘Glia 2’ and astrocytes..

Given the previous morphological subdivision of glia into cortex, neuropil, surface and astrocyte

types (Freeman and Doherty, 2006), we also attempted to sub-cluster the glial cell populations, as

described above for PNs. However, this analysis did not reveal additional obvious cluster substruc-

ture (Figure 4A), suggesting that at this sequencing depth and number of cells, these three glial

populations may be fairly homogeneous. However, we identified a large number of genes that were

differentially expressed between these three clusters (Figure 4B, Figure 1—source data 2).

Figure 4. Genetic markers of glial subtypes. (A) Re-clustering of the glial and astrocyte populations identified in Figure 1B. The same three sub-clusters

are identified. (B) Violin plots showing the main markers that distinguish glial subtypes from each other (pairwise comparisons for genes expressed

in >75% of cells in either cluster; Log2 FC >2, Wilcoxon rank-sum test with Bonferroni-corrected p-value<0.01). The column on the right (grey) indicates

the level of expression of each gene across all neurons in the brain (excluding glia, astrocytes and fat body).

DOI: https://doi.org/10.7554/eLife.34550.013

The following figure supplement is available for figure 4:

Figure supplement 1. Expression levels of glia-specific genes and Ilp 6.

DOI: https://doi.org/10.7554/eLife.34550.014
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Importantly, several genes that are known to be glial- or astrocyte-specific are amongst the 37 genes

we found with Drop-seq to be most differentially expressed between these glial clusters

(DeSalvo et al., 2014; Huang et al., 2015). Unfortunately, these known markers do not permit us to

assign Glial one and Glial two to a particular glial cell-type at this stage.

Surprisingly, cells in Cluster M robustly express both the neuronal markers elav and nSyb and also

the glial nrv2 and a number of other glial markers, although for the majority of them, in lesser

amounts than in those clusters we assigned to glia above (Figure 1—source data 2). Since these

cells are also notable for not expressing repo (Figure 4—figure supplement 1D), it seems plausible

that they represent a novel hybrid cell type. However, we cannot exclude that they arose from frag-

ments of cortex glia that remained attached to neuronal cell bodies.

Assigning fast-acting neurotransmitters
We next assessed the proportion and distribution of cells in our data set that express genes that

would indicate they release a particular fast-acting neurotransmitter; acetylcholine (ACh), glutamate

(Glu) and gamma-aminobutyric acid (GABA). We determined that cells were cholinergic, glutamater-

gic or GABA-ergic based on the expression of vesicular acetylcholine transporter (VAChT), vesicular

glutamate transporter (VGlut) and glutamic acid decarboxylase 1 (Gad1), three key proteins that are

either required for the vesicular loading, or metabolism, of ACh, Glu and GABA respectively. Consis-

tent with our expectations, this analysis labelled the cell clusters that most likely represent KCs and

PNs as being cholinergic (Barnstedt et al., 2016; Tanaka et al., 2012), while the ellipsoid body clus-

ter is comprised of GABAergic cells (Figure 5A) (Kahsai et al., 2012). Reassuringly, we did not find

significant neurotransmitter marker expression in glia, including astrocytes.

Cells expressing these neurotransmitter-specific marker genes were largely exclusive, although

8% of cells contained markers for ACh and GABA and 7% for ACh and Glu. It is therefore conceiv-

able that some cells release excitatory and inhibitory neurotransmitters. A smaller percentage of

cells expressed markers for Glu and GABA (3%), of which a third (1%) expressed all three neurotrans-

mitter markers (although these possibly represent multiple cell captures) (Figure 5B).

Figure 5. Distribution of fast-acting neurotransmitters. (A) t-SNE plot showing the distribution of cells expressing vesicular acetylcholine transporter

(VAChT, cholinergic neurons), vesicular glutamate transporter (VGlut, glutamatergic neurons) and glutamic acid decarboxylase 1 (Gad1, GABA-ergic

neurons). For graphical reasons only cells expressing each marker above a log normalized value of 2 are shown. (B) Quantification of cells expressing

markers displayed in A. The difference to 100% are cells that did not express any of the three markers.

DOI: https://doi.org/10.7554/eLife.34550.015
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Analysis of neuropeptide expression
We also analyzed the expression of neuropeptides in our Drop-seq dataset. We first investigated

whether individual neuropeptide-encoding genes were preferentially expressed in neurons that co-

transmit/co-release a particular fast-acting neurotransmitter ACh, Glu or GABA (Figure 6A). sNPF,

CCHamide-2 (CCHa2), Tk, space blanket (spab), jelly belly (jeb) and amnesiac (amn) showed a strong

preference for expression in cholinergic neurons, whereas Diuretic hormone 31 (Dh31) is highly

biased to GABA-ergic neurons. Neuropeptide-like precursor 1 (Nplp1) and Allatostatin A (AstA)

were mainly expressed in glutamatergic cells.

Some other peptide-encoding genes show a strong anti-correlation with a particular transmitter.

For example neuropeptide F (dNPF), sNPF, Tk, spab, jeb, Allatostatin C (AstC), Diuretic hormone 44

(Dh44), CCHa2 and Myosuppressin (Ms) were anti-correlated with GABA-ergic cells. Similarly, Myoin-

hibitory peptide precursor (Mip), pigment-dispersing factor (PDF) and SIFamide (SIFa) were absent

from cholinergic neurons.

Ms showed an interesting bias for expression in cells that express two (Glu and ACh or Glu and

GABA) or all three fast acting neurotransmitters. We also noticed that the specificity towards cells

expressing only one type of fast-acting neurotransmitter varied between neuropeptides, with some

such as PDF, exhibiting a broad and general expression pattern, other than the anti-correlation with

ACh.

The abundance and specificity of expression across the midbrain also varied between individual

neuropeptides. Some neuropeptide-encoding genes are only expressed in 1–2% of cells (e.g.

CCHa2, amn, dNPF, Mip, PDF and SIFa), and their release could therefore potentially represent sig-

nals of, for example, internal states. Others, such as spab, sNPF and Nplp1, are very broadly

expressed in 20–25% of all cells (see Figure 1—source data 1), suggesting that these neuropeptides

likely act as modulatory co-transmitters with fast-acting neurotransmitters.

Some neuropeptide expression patterns are highly specific to certain cell types. For example,

Dh31 is mainly expressed by ellipsoid body neurons whereas sNPF is strongly expressed in ab and g

KCs (Figure 2E), in acj6+/kn+ PNs (Figure 3B) and in clusters C and D, that have not yet been

assigned to a specific cell-type. Furthermore, although both spab and Nplp1 are very broadly

expressed, their expression patterns are strongly anti-correlated, suggesting that they may have

complementary functions in the Drosophila midbrain.

We also found transcripts for the Drosophila insulin-like peptides 2, 3, 5 and 6 (Figure 6B). The

Ilp2, Ilp3 and Ilp5 peptides are exclusively expressed in IPCs in the brain, whilst Ilp6 is expressed in

glia (Brogiolo et al., 2001; Okamoto et al., 2009). We found that Ilp2, 3 and 5 expression was only

weakly correlated with that of neurotransmitters, whilst Ilp6 expression is strongly correlated with

cells that do not express neurotransmitter markers, but that are positive for the glia-specific genes

repo and nrv2 (Figure 4—figure supplement 1) (Freeman et al., 2003; Sun and Salvaterra, 1995;

Xiong et al., 1994).

Assignment and subdivision of monoaminergic neurons
We used expression of the vesicular monoamine transporter (Vmat) gene to identify monoaminergic

neurons in our midbrain dataset (Figure 7A). Three discrete cell populations clearly expressed Vmat.

We performed a new PCA and tSNE analysis on cells from these three clusters, guided by known

markers for serotonin (5-HT), tyramine (TA), octopamine (OA) and dopamine (DA) releasing neurons.

Dopa decarboxylase (Ddc) labels 5-HT and DA neurons, Serotonin transporter (SerT) and Tryptophan

hydroxylase (Trh) mark 5-HT neurons, pale (ple; tyrosine hydroxylase) and Dopamine transporter

(DAT) DA neurons, Tyrosine decarboxylase 2 (Tdc2) TA and OA neurons, Tyramine b-hydroxylase

(Tbh) OA neurons. These labels allowed us to identify the neuronal clusters corresponding to each

of these cell types (Figure 7B).

In addition to known markers of monoaminergic neuronal types, we found new genes expressed

in these populations (Figure 7C), that are likely to have an important role for their development and

connectivity, such as kekkon 1 (kek1) in dopaminergic neurons (DANs) (Ghiglione et al., 1999), or

IGF-II mRNA-binding protein (Imp) and Jim Lovell (lov) in serotonergic neurons (Bjorum et al., 2013;

Geng and Macdonald, 2006; Munro et al., 2006). High expression in TA neurons of hikaru genki

(hig), which encodes a protein generally found in the synaptic clefts of cholinergic synapses

(Nakayama et al., 2014; 2016), may highlight the importance of cholinergic input to these neurons.
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Figure 6. Co-expression of neuropeptides with fast-acting neurotransmitters. (A) Radar plots showing the co-expression of 16 neuropeptides with the

three fast-acting neurotransmitters. Data represents the relative abundance of cells expressing a neuropeptide and either VAChT (ACh), VGlut (Glut),

Gad1 (GABA), combinations of these three genes, or none of them. (B) Co-expression of four insulin-like peptides, including the non-neuronal Ilp6, with

fast-acting neurotransmitters.

DOI: https://doi.org/10.7554/eLife.34550.016
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Many neurons release more than one neurotransmitter. We therefore investigated whether the

different types of monoaminergic neurons co-expressed markers for fast-acting transmitters. The

most striking evidence in these analyses suggest that many octopaminergic and tyraminergic neu-

rons likely co-release Glu, and less of them GABA, or ACh. (Figure 7D).

We also tested whether monoaminergic neurons co-expressed neuropeptide genes. Many mature

neuropeptides are amidated at their C-terminus through the sequential enzymatic action of the

Phm- and Pal2-encoded peptidylglycine-alpha-hydroxylating monooxygenase and peptidyl-alpha-

hydroxyglycine alpha-amidating lyase (Han et al., 2004; Jiang et al., 2000; Kolhekar et al., 1997).

These genes were expressed in 50% and 81% of all monoaminergic neurons, respectively

(Figure 7E), suggesting that a significant proportion of monoaminergic neurons likely co-release

neuropeptides. Indeed, we found expression of Dh44, Nplp1, Glycoprotein hormone beta 5 (Gpb5)

and Proctolin (proc; which is not amidated) in up to 21% of DANs (Figure 7E). 61% of DANs express

at least one neuropeptide and 32% express two, or more. Dh44, Nplp1 and spab were found in up

to 30% of 5-HT neurons, with 90% of these expressing one or two neuropeptides (Figure 7E).

Perhaps surprisingly, OA and TA neurons contained mRNA for many neuropeptides. We found

that 85% of OA neurons express at least one neuropeptide, whereas 46% express two, or more. Co-

expression was even more evident in TA neurons; 83% expressed one, whereas 78% express two or

more. Nplp1, Gpb5, and SIFa were detected in TA and OA neurons, whereas Dh44, Ms and spab

were only identified in OA neurons, and sNPF, Dh31, Mip, Ilp2 and ITP were exclusively found in TA

neurons (Figure 7E). Dh44 was the most broadly expressed, being detected in 46% of OA neurons.

Mip and SIFa were each expressed in 44% of TA neurons, and were co-expressed in 33% of them.

Together, these results indicate that neuropeptide expression, and co-expression, is a common fea-

ture of many monoaminergic neurons. The obvious complexity and possible heterogeneity of neuro-

peptide expression may reflect functional specialization of individual, or small groups of these

monoaminergic neurons.

Prior work has shown that DANs are anatomically and functionally divisible based on roles in moti-

vation, learning and memory and arousal (Huetteroth et al., 2015; Krashes et al., 2009; Nall et al.,

2016; Yamagata et al., 2015). Some of this DAN subdivision has also been associated with the

expression of particular transcription factors, receptors for specific neuropeptides, or other mono-

amines (Bou Dib et al., 2014; Ichinose et al., 2015; Krashes et al., 2009). DANs implicated in learn-

ing and memory reside in two discrete clusters, called PPL1 and PAM. PPL1 DANs mostly convey

the negative reinforcing effects of aversive stimuli, such as electric shock, high heat or bitter taste

(Aso et al., 2012; Das et al., 2014; Galili et al., 2014), whereas the numerically larger PAM cluster

contains DANs that appear somewhat specialized in representing particular types of rewards, such

as the sweet taste and nutrient value of sugars, or water (Burke et al., 2012; Huetteroth et al.,

2015; Lin et al., 2014; Liu et al., 2012; Yamagata et al., 2015). Prior work demonstrated that PAM

DANs express the transcription factor 48 related 2 (Fer2), which is required for their development

and survival (Bou Dib et al., 2014). We found that 44 neurons in the DA cluster (37%) express Fer2

(Figure 7B). We therefore consider these Fer2-positive cells to represent PAM DANs. 15 additional

genes are significantly over-expressed in these cells, in comparison to the rest of the brain

(Figure 7F). Amongst them we found Ddc, ple, Vmat and DAT, that are essential for DA synthesis,

vesicle loading and transport (Yamamoto and Seto, 2014). Potential new markers for PAM DANs

include the transcription factor scarecrow (scro), the amino-acid transporter Jhl1-21, the Dpr-inter-

acting protein DIP-delta, the PDGF- and VEGF-related growth factor Pvf3, the EGFR modulator

kek1, as well as five novel genes; CG1402, CG13330, CG17193, CG10384 and CG42817.

To corroborate the expression of these new markers in PAM neurons, we compared this data to a

transcriptome profiling dataset that we acquired from sequencing mRNA extracted from popula-

tions of GFP labeled PAM DANs. We used R58E02-GAL4, a PAM-specific line (Liu et al., 2012;

Pfeiffer et al., 2008) to express UAS-6xGFP (Shearin et al., 2014) specifically in PAM DANs, and

purified the cells by FACS. We prepared mRNA from GFP + and GFP- neurons, which was subse-

quently reverse-transcribed and amplified using Smart-seq2, and sequenced. This analysis identified

about 10 times more (143) genes that were significantly over-expressed in PAM neurons, as com-

pared to the number retrieved with Drop-seq (Figure 7F). This return is consistent with previous

reports showing a higher recovery rate with Smart-seq2 compared to Drop-seq, but also higher lev-

els of noise, as Smart-seq2 does not employ UMIs (Ziegenhain et al., 2017). Of the 15 genes found

to be over-expressed in PAM neurons in the Drop-seq experiment, 9 (ple, DAT, Fer2, JhI-21, scro,
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Figure 7. Genetic markers and co-transmission in monoaminergic neurons. (A) Expression of the Vesicular Monoamine Transporter (Vmat) labels three

clusters from Figure 1B (cells in indigo, highlighted with arrowheads and circles. (B) Re-clustering of the three cell populations labeled in (A). Four sub-

clusters are identified, representing dopaminergic, tyraminergic, octopaminergic, and serotonergic neurons. (C) Dot plots showing the main markers

distinguishing monoamine populations from each other (pairwise comparisons for genes expressed in >50% of cells in either cluster; Log2 FC >1,

Wilcoxon rank sum test with Bonferroni-corrected p-value<0.01). Dot diameter represents the fraction of cells expressing each gene in each cluster, as

shown in scale. Color intensity represents the average normalized expression level. (D) Percentage of cells in each monoaminergic cluster that are co-

expressing markers for fast neurotransmitter-releasing neurons (VGlut, Gad1, and VAChT). (E) Dot plots showing expression of genes encoding

neuropeptides and neuropeptide amidating enzymes across monoaminergic populations. Dot diameter represents the fraction of cells expressing each

gene in each cluster, as shown in scale. Color intensity represents the average normalized expression level. (F) Comparison of genes overexpressed in

PAM dopaminergic neurons compared to the rest of the brain, measured with Drop-seq or with FACS and Smart-seq2. 9 of the 15 genes identified with

Drop-seq (labeled in bold) were also found in the Smart-seq2 dataset.

DOI: https://doi.org/10.7554/eLife.34550.017
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DIP-delta, CG10384, CG17193 and CG42817) were also retrieved in the Smart-seq2 data

(Figure 7F). This confirms that these genes are specifically expressed in PAM neurons. Furthermore,

with the exception of ple, DAT and Fer2, these genes have not been previously localized to PAM

neurons, and therefore represent novel markers for this cell-type.

Dopamine receptors
Cells respond to DA using a variety of DA receptors in their cell membrane. Interestingly, our analy-

sis shows that all four DA receptors (Dop1R1, Dop1R2, Dop2R and DopEcR) are found in KCs, which

form numerous synapses with DA neurons in the mushroom body lobes (see above; Figure 8B).

However, our analyses suggest that Dop2R is less abundant in KCs than the three other receptors.

Many KCs appear to express multiple DA receptors but only 24% (250 of 1041) were found to co-

express all four (Figure 8C). The data also suggest that,individual ab KCs may express a combination

of fewer types of DA receptors, than do a0b’ and g KCs (Figure 8C). However, since we found 4.7%

of KCs (49 of 1041) that do not express any DA receptors, we cannot exclude that low-level expres-

sion accounts for some of these apparent differences,

Other cell types also express combinations of DA receptors, to varying degrees. In addition to

KCs, Dop1R1 (dumb) and Dop1R2 (damb) are found in a few other clusters (Figure 8B), in particular

in several of those that we could not attribute to any cell type. This information will be helpful for fur-

ther characterizing these clusters. Consistent with evidence showing that Dop1R1 is expressed in the

Central complex where it regulates arousal (Kahsai et al., 2012; Lebestky et al., 2009), we found

limited expression of Dop1R1 in the ellipsoid body,suggesting that only a subset of these neurons

are involved in this process. Dop1R1 also seems to be expressed in small numbers of monoaminergic

neurons, suggesting that it may play a role in autocrine signaling. However, the main candidate

receptor for DA autocrine signaling is Dop2R, which was found to be broadly expressed in DANs,

and also in large numbers of other monoaminergic neuronal types (Figure 8B). Interestingly, Dop2R

expression was also detected in some PNs and IPCs as well as a few non-attributed clusters, which

indicates that the activity of these neurons is also subject to dopaminergic modulation. Finally, the

Dopamine/Ecdysteroid receptor (DopEcR) was found in several cell types, including KCs, PNs, the

ocelli, and many other non-attributed clusters (Figure 8B), suggesting a broad role for this receptor.

Expression of this DopEcR in PNs corroborates previous data showing its involvement in pheromone

sensitization in these neurons, both in flies and moths (Abrieux et al., 2014; Aranda et al., 2017).

Dopamine metabolism
DA signaling is regulated by enzymatic degradation and reuptake through transporters. Recycled

metabolites can then be used to resynthesize DA. These steps can occur in different cell types, that

could be DA-releasing cells, post-synaptic neurons, or glia (Yamamoto and Seto, 2014)

(Figure 8A). We therefore used our Drop-seq data to determine which cell types expressed compo-

nents of the DA recycling and metabolic pathways.

As expected, the first step of DA synthesis, conversion of tyrosine into the DA precursor L-DOPA

catalyzed by the ple-encoded Tyrosine hydroxylase appears to occur exclusively in DANs

(Figure 8B). In comparison Ddc, which converts L-DOPA to DA, is also involved in 5-HT synthesis,

and so was expressed in DA and 5-HT neurons. Interestingly, Ddc also labels several other neuronal

populations, including a0b’ and g KCs, one cluster of olfactory PNs, and several non-identified, alpha-

bet labeled clusters (Figure 8B). It is not clear if Ddc in these neurons is involved in the metabolism

of DA or other aromatic L-amino acids.

Three enzymes have been described to play a role in DA degradation and recycling. The ebony

(e) gene product converts DA into N-beta-alanyldopamine (NBAD) (Hovemann et al., 1998;

Suh and Jackson, 2007) and was almost exclusively expressed in astrocytes in our data (Figure 8B).

Dopamine-N-acetyltransferase, encoded by Dat, converts DA into N-acetyl dopamine (NADA). Inter-

estingly, Dat was abundant in astrocytes, in smaller amounts in other glia, and was also detected in

the ellipsoid body and a few other subsets of neurons (Figure 8B). Although these results highlight

the important role of glia, and in particular astrocytes, in DA reuptake, metabolism and recycling,

other cells appear to convert DA into NADA rather than into NBAD. The fate and consequence of

these two metabolites in each cell type remains largely unknown. Finally, tan (t), a gene coding for a

hydrolase that can convert NBAD back into DA, was not found in any cell population from the
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central brain itself (Figure 8B), suggesting that this recycling pathway is not utilized there. However,

several cells from the ocelli express this enzyme, consistent with the function of t in histamine metab-

olism in photoreceptors (Borycz et al., 2002; True et al., 2005).

The vesicular monoamine transporter (encoded by Vmat) transports DA, 5-HT, OA and TA into

synaptic vesicles (Martin and Krantz, 2014). As already mentioned, Vmat was detected in all these

neuronal types. In addition, Vmat expression was evident in fat body cells. Although this has, to our

knowledge, never been demonstrated in flies, perivascular adipose tissue in rats contains mono-

amines acting on the sympathetic nervous system, and is thus likely to express VMAT (Ayala-

Figure 8. Localization of genes involved in dopamine metabolism and signaling. (A) Schematic of a dopaminergic synapse, representing the major

proteins involved in dopamine signaling and metabolism. Drawing inspired by Yamamoto and Seto (2014) (B) Dot plots showing the expression of

these genes across all cell populations identified in the Drosophila brain. Dot diameter represents the fraction of cells expressing each gene in each

cluster, as shown in scale. Color intensity represents the average normalized expression level. (C) Histogram showing the number of DA receptor types

in Kenyon Cells (as labeled in Figure 2C & D). Most cells express a combination of several receptor types.

DOI: https://doi.org/10.7554/eLife.34550.018
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Lopez et al., 2014). The DAT-encoded DA transporter mediates DA reuptake by DANs. Unlike

Vmat, DAT was specifically expressed in dopaminergic, but not other monoaminergic neurons. Sur-

prisingly, we also found DAT expression in a0b’ KCs, suggesting that these neurons might tightly

regulate the duration and magnitude of the DA signals that they receive.

Distribution of nicotinic neurotransmitter receptors
The response of a neuron to a particular neurotransmitter is determined by the types of receptors

that that cell expresses. In addition, most ionotropic neurotransmitter receptors are oligomers com-

prised of combinations of subunits, variations of which can have very different functional characteris-

tics (Sattelle et al., 2005). Acetylcholine is a major excitatory neurotransmitter in the insect brain

and is the primary fast-acting neurotransmitter released from olfactory receptor neurons, olfactory

PNs and mushroom body KCs. Nicotinic acetylcholine receptors (nAChR) are heteropentamers that

can be comprised of 2 or three alpha and the corresponding 3 or two beta subunits. Flies have seven

alpha subunit genes and 3 types of beta encoding genes. These receptors have mostly been studied

at the vertebrate neuromuscular junction (Albuquerque et al., 2009) and very little is known about

the composition of nAChR in neurons in a central nervous system. Although gene expression cannot

explicitly inform of subunit composition, co-expression is a prerequisite that limits the potential com-

plexity in any given neuron. We therefore analyzed the co-expression of nAChR subunits using all

cells from our Drop-seq dataset. We detected the expression, at varying frequencies, of all seven

known nAChR a-subunits, and two of the three known b-subunits in our samples (Figure 9A). a1,

a5, a6 and a7 are expressed in considerably more cells than a2, a3 and a4, whereas b1 is expressed

in more than twice as many cells as b2. Most subunits are broadly expressed across all cell types,

although some exhibit very distinct expression patterns. Most notably, a3 is broadly expressed in

the midbrain, but distinctly absent in KCs. We also tested for co-expression of different combina-

tions of receptor subunits (Figure 9B). Expression of a5 most strongly correlated with expression of

a6 and b1. In contrast a3 weakly correlated with expression of a6 and b2 and a2 weakly with a4.

Some of the patterns of expression are consistent with previously published pharmacological studies

that tested for co-assembly of receptors by co-immunoprecipitation using a-Bungarotoxin

(Chamaon et al., 2002; Schulz et al., 2000). For example, cells that express nAChR-a1 most fre-

quently also express a2, when compared to all other nAChR subunits and these two subunits have

been shown to preferentially co-assemble into the same receptor complex (Chamaon et al., 2002;

Schulz et al., 2000). Similarly, b1 is the most frequently co-expressed subunit in b2 expressing cells,

again confirming previous co-immunoprecipitation experiments. We also detected high expression

levels of the secreted protein quiver (qvr), a Ly-6/neurotoxin family member, in most neurons of our

Figure 9. Expression patterns of nicotinic acetylcholine receptor subunits. (A) Prevalence of nicotinic receptor

subunits. (B) Heatmap showing Pearson correlation coefficient Z-scores for each receptor subunit pair.

DOI: https://doi.org/10.7554/eLife.34550.019
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sample, with no preference for neurons using a particular transmitter (see Figure 1—source data 1).

The mammalian homologue of quiver, lynx1, has been shown to bind and regulate nAChR in the

mammalian nervous system (Miwa et al., 1999).

Co-expression of activity regulated genes
A recent study identified a set of genes whose expression was upregulated in response to prolonged

neuronal activation. These activity-regulated genes were identified using differential bulk transcrip-

tion profiling following broad neuronal activation, using three different artificial stimulation para-

digms (Chen et al., 2016). We plotted the expression patterns of the 11 most highly upregulated

genes that were identified following pan-neuronal optogenetic neuronal activation and found that

10 of them were also robustly expressed in our dataset (see Figure 1—source data 1). Interestingly,

the expression patterns of the most highly upregulated activity-regulated genes were strongly corre-

lated (Figure 10). For example, cells that express the transcription factor stripe (sr) are more likely to

also express Hormone receptor-like in 38 (Hr38, p-value<2.2�10�16, Pearson’s product-moment cor-

relation) and CG14186 (p-value<2.2�10�16). These three genes were the most highly upregulated in

Chen et al., 2016, following artificial optogenetic neuronal stimulation. Our data therefore demon-

strate that they are also likely to be co-regulated in the brain, following ordinary levels of neuronal

activity.

Figure 10. Co-expression of neuronal activity markers. Heatmap showing Pearson correlation coefficient Z-scores

of activity-regulated genes, as reported by Chen et al., 2016 (histogram on top). Ten most highly upregulated

genes following ChR2-XXL-induced activation of all neurons that are expressed in the brain, ranked by their

correlation.

DOI: https://doi.org/10.7554/eLife.34550.020
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We wondered whether the expression pattern of these activity-regulated genes might highlight

areas of the fly midbrain that have a high intrinsic level of activity. However, no specific cluster was

prominently marked with the expression of 9 out of the 10 activity-regulated genes tested. Only

CG13055 strongly labeled the cluster of g KCs (Figure 2F and Figure 1—source data 2). We also

noticed that expression of most activity-regulated genes was slightly higher in g KCs. Since prior

work suggested that the g neurons are the least active of all the KC subtypes (Turner et al., 2008),

we speculate that activity-regulated gene expression might be part of a homeostatic neuronal

response to reduce excitability.

Discussion
Generating an atlas of gene expression of every cell type in the human body is a goal of modern sci-

ence (Regev et al., 2017). Remarkable recent advance in high-throughput single-cell RNA sequenc-

ing methods have brought this ambitious goal within reach. However, the large size of mammalian

tissues means that huge numbers of cells need to be sequenced in order to capture a representative

sample of the overall number. Insects, such as Drosophila, provide an obvious solution to the tissue

size and cell number issues. Flies are complex organisms with tissues that serve analogous functions

to many mammalian organs. Moreover, each one of these fly tissues is comprised of a greatly

reduced number of cells, compared to their mammalian equivalent. This is perhaps most obvious

when considering the brain. Whereas the mouse brain is estimated to contain about 75 million neu-

rons, the Drosophila brain has only 150,000. Since two thirds of these cells comprise the optic lobes,

much of the computational cognitive power and behavioral orchestration is handled by about

50,000 neurons in the midbrain. In this study, we describe a global and unbiased single-cell tran-

scriptomic analysis, using Drop-seq (Macosko et al., 2015), that is representative of much of the

Drosophila midbrain. This initial cell atlas of the fly brain provides a unique resource of gene expres-

sion across many cell types and regions of neuropil.

The extent of neural diversity is not known in any brain. Analysis of the fly therefore provides a

useful inroad to this question. Even our initial clustering indicates a high level of neural complexity in

the fly brain. Labeling the cluster plot with markers for the ACh, Glu and GABA neurotransmitters

reveals that many diverse cells use each of these fast-acting neurotransmitters. For example,

although the three major subsets of mushroom body KCs are all cholinergic they each occupy a dis-

crete cluster and are distant to many other cholinergic neurons. The GABA-ergic ring neurons of the

ellipsoid body are similarly unique and distinct from other GABA-ergic neurons. At this stage, we

cannot tell whether cells in the major KC subtype and ellipsoid body neuron clusters are truly

homogenous, or whether further iterative clustering will separate them into additional distinguish-

able subtypes. We might expect to find that the anatomically unique core, surface and posterior sub-

divisions of the ab KCs have unique molecular profiles within the larger ab cluster (Aso et al., 2014;

Hattori et al., 2017; Ito et al., 1997; Lee et al., 1999; Lin et al., 2007; Perisse et al., 2013;

Tanaka et al., 2008). Similarly, the ellipsoid body ring neurons might be separable into layer specific

subtypes (Wolff et al., 2015). This will require additional analyses and perhaps the collection of

more cells. Comparing Drop-seq profiles from the fly brain to those from larger social insects, such

as ants and honeybees, and to neurons from the mammalian brain would be useful to address the

question of how a larger brain is constructed. As a brain evolves to be bigger, are there many more

cell types? Or is there simply an expansion of the number of copies of each cell-type? One might

imagine that just expanding the number of identical cortical units, such as pyramidal neurons or

mushroom body KCs, increases the computational power of the brain by permitting a higher degree

of parallel processing and that the resulting larger networks also provide more storage space.

A key element of our analysis here is the ability to assign many single-cell molecular signatures to

the relevant cell-type and brain region. We did this using a number of different approaches. Our

data was collected from individual neurons taken from brains that specifically express mCherry in the

ab KCs of the mushroom body. This allowed us to unequivocally identify these neurons in our cluster

plot and demonstrates the power of sequencing cells from a brain where some specific neurons are

genetically labeled. In theory, this strategy can be used to identify the profiles for any Drosophila

cell-type in a Drop-seq dataset, providing a corresponding specific GAL4 driver line is available. This

is a clear advantage of using Drosophila as a model for a brain cell-atlas, because thousands of

GAL4 lines are available that direct expression in specific subsets of neurons in the brain
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(Gohl et al., 2011; Jenett et al., 2012; Tirian and Dickson, 2017). Cell-specific transgene expres-

sion therefore presents the most straightforward means to link single-cell sequencing data to neuro-

anatomy and will be very useful to de-orphan our currently ‘unannotated’ cells.

The extensive collection of cell-specific GAL4 lines were constructed by fusing potential regula-

tory regions from genes to GAL4 coding sequence (Jenett et al., 2012; Pfeiffer et al., 2008;

Tirian and Dickson, 2017). Their expression patterns can therefore indicate elements of the expres-

sion of the gene from which they are taken. We also used this property of the GAL4 collections to

help us assign single-cell data to specific neurons. For example, we originally suspected that one of

the clusters corresponded to ellipsoid body ring neurons because cells in the cluster expressed the

Gad1 marker for GABA-ergic neurons and Fas2, an antibody for which is known to label this region

of neuropil (Whited et al., 2007). To corroborate this assignment to ellipsoid body we asked

whether promoter-GAL4 lines constructed from some of the other top new markers for this cluster,

such as Dh31 and Sox21b, labeled ellipsoid body ring neurons (Jenett et al., 2012; Tirian and Dick-

son, 2017). Indeed, we found that the R20A02 (Dh31) and R73A06 (Sox21b) GAL4 drivers very spe-

cifically express in these neurons, as do other drivers corresponding to the ellipsoid body expressed

genes Dichaete (R12G08), SoxN (R40E11, R41G11, VT004444), ara (VT029750) and gprk2 (R13C06,

R13F12). Therefore, by combining the expression of known markers, and querying the specificity of

new markers, it is possible to convincingly assign transcriptional profiles to cell-type.

Our initial analyses of the brain cell-atlas also immediately provided a lot of new information that

is of functional importance. We focused our first investigations on neurotransmitter usage and the

potential for synaptic co-release/co-transmission. These analyses clearly defined the main fast-acting

transmitters used by each cell cluster. For example, the KC transmitter was fairly recently determined

to be ACh (Barnstedt et al., 2016) and consequently all the KC clusters strongly labeled with the

cholinergic markers ChAT and VAChT. The cell-atlas dataset therefore allows one to easily deter-

mine the neurotransmitters that a particular cell-type uses, providing the cells of interest can be

identified in the cluster plot.

Important questions can also be addressed even without identifying how particular cells appear

in the cluster plot. One example is our analyses of potential co-release of multiple fast acting trans-

mitters or fast-acting transmitters with neuropeptides. Our data suggest that a small percentage of

neurons might co-release ACh and Glu, or ACh and GABA. Analyzing co-expression of transmitter

marker genes and neuropeptide-encoding genes revealed some very interesting and novel findings.

We found that some neuropeptides (Clynen et al., 2010; Hewes and Taghert, 2001; Nässel and

Winther, 2010), whether expressed in many or only a few cells, are exclusively detected in neurons

that use a particular fast-acting transmitter. These correlations suggest a fine relationship between

the fast-acting transmitter and neuropeptide-specific modulation. Our co-expression analyses also

reveal extensive expression of neuropeptide-encoding and processing genes in monoaminergic neu-

rons. It will be interesting to test whether the apparent heterogeneity of neuropeptide expression in

these neurons contributes to their apparent functional specialization (Aso et al., 2012;

2014; Burke et al., 2012; Claridge-Chang et al., 2009; Huetteroth et al., 2015; Krashes et al.,

2009; Lin et al., 2014; Liu et al., 2012; Yamagata et al., 2015).

The brain cell atlas is of great use to those with a gene-centered view of fly neurobiology. It is

now possible to query the atlas and ask how broadly, or cell-specifically, a given gene is expressed.

Our initial clustering allows one in some cases to pinpoint the expression to a defined cell-type and

region of neuropil. This seems particularly valuable information if one is working with a gene, for

example, one that has been implicated in neural disease, but does not know the anatomical context

in which it operates. Similarly, if a constitutive mutant fly strain has pleiotropic effects, the expression

pattern of the gene can indicate where the different phenotypes might manifest. Moreover, the

brain-atlas dataset can provide these answers quickly for multiple genes, and it therefore represents

a terrific complement to the usual time-consuming and ‘single-gene at a time’ approaches, such as

technically challenging in-situ hybridization to RNA, generating antibodies, making promoter fusions,

or knocking in epitope tags to individual loci. Perhaps most importantly, querying the cell-atlas pro-

vides single-cell resolution of gene expression across all the major cell-types in the fly midbrain.

We believe that the potential uses for the cell atlas are almost endless. The data reveal a huge

number of new genetic markers for known cell types, and as yet undefined cell types, in the fly brain.

Many of these are likely to be functionally important and represent new entry points to guide inter-

ventionist experiments to understand how specific molecules operate within the relevant neurons
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and networks. Although we focused most of our analyses on neuronal cells, different classes of glia

(Freeman, 2015) could also be defined.

Our initial analysis was performed on 10,286 of the highest quality cells (�800 UMIs) from a larger

dataset of 19,260 cells. This atlas is effectively a scaffold that can now be continuously updated and

expanded as additional cells are collected and sequenced (Davie et al.,

2017; Konstantinides et al., 2018). Our current dataset was derived from cells taken from unique

groups of flies, processed on eight separate days, and yet each biological replicate contributed

equally to the combined data set. This robustness and reproducibility of the approach is essential to

know in order to be able to add data from future experiments to the current cell cluster. Including

more cells with a comparably high number of UMIs per cell should increase statistical power and per-

mit further resolution of cell-type. Including more cells with a lower number of UMIs per cell did not

improve our analysis.

The current dataset was collected from young flies that were raised under ideal conditions with

ample food and water. Future experiments that aim to investigate the impact of changes to the state

of the fly, such as age, bacterial infection and starvation, can use the current cell atlas as a founda-

tion to identify changes in expression patterns that may occur in individual cells across the midbrain.

Similarly, brains from flies harboring specific mutations can be molecularly characterized using the

approach described here, to uncover molecular manifestations of the mutant phenotype.

The fly brain cell atlas described here should also be a valuable resource to researchers working

in other animals. Many markers for Drosophila cell-type are likely to be conserved in other insects

and arthropods, and so will be useful markers for regions of the brain in these animals (Thoen et al.,

2017; Wolff and Strausfeld, 2015). The orthologs of some of these new markers, for example those

expressed in subsets of dopaminergic neurons, might also extend to labeling comparable cells in

the mammalian brain.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Drosophila melanogaster)

MB008B Bloomington
Drosophila Stock
Center

RRID:BDSC_68291

Genetic reagent
(D. melanogaster)

MB131B Bloomington
Drosophila Stock
Center

RRID:BDSC_68265

Genetic reagent
(D. melanogaster)

MB461B Bloomington
Drosophila Stock
Center

RRID:BDSC_68327

Genetic reagent
(D. melanogaster)

uas-mCherry (III) other uas-mCherry(III) lab stock

Cell line
(D. melanogaster)

Drosophila S2 Cells in
Schneider’s Medium

Gibco, Waltham, MA R69007

Cell line
(Spodoptera frugiperda)

Sf9 cells in Sf-900 III SFM Gibco 12659–017

Sequence-based
reagent

Template switch oligo Sigma, St. Louis, MO AAGCAGTGGTATCAACGC
AGAGTGAATrGrGrG

Chemical compound,
drug

Schneider’s medium Gibco 21720–001

Chemical compound,
drug

FBS Sigma F0804

Chemical compound,
drug

penicillin-streptomycin Gibco 15070–063

Chemical compound,
drug

Sf-900 III SFM Gibco 12658019

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Chemical compound,
drug

DPBS (calcium and
magnesium free)

Gibco 14190–086

Chemical compound,
drug

Papain Sigma P4762

Chemical compound,
drug

Collagenase Sigma C2674

Chemical compound,
drug

d(�)�2-amino-5
-phosphonovaleric acid

Sigma A8054

Chemical compound,
drug

6,7-dinitroquinoxaline-2,3-dione Sigma D0540

Chemical compound,
drug

tetrodotoxin Abcam, UK ab120054

Other 10 mm CellTrix strainer Sysmex, Japan 04-0042-2314

Other Fuchs-Rosental
hemocytometer

VWR, Radnor, PA 631–1096

Commercial assay
or kit

Single Cell RNA-Seq system Dolomite Bio, UK 3200537

Chemical compound,
drug

Barcoded Beads SeqB ChemGenes Corp.,
Wilmington, MA

Chemical compound,
drug

Ficoll PM-400 VWR 17-0300-10

Chemical compound,
drug

N-Lauroylsarcosine sodium
salt solution

Sigma L7414

Chemical compound,
drug

QX200 Droplet generation
oil for EvaGreen

Biorad, Hercules, CA 1864006

Chemical compound,
drug

DTT Life Technologies, Carlsbad, CA P2325

Chemical compound,
drug

Maxima H Minus Reverse
Transcriptase

Thermo Scientific, Waltham, MA EP0753

Chemical compound,
drug

Exonuclease I NEB, Ipswich, MA M0293L

Sequence-based
reagent

SMART PCR primer Sigma AAGCAGTGGTATCAA
CGCAGAGT

Chemical compound,
drug

Hifi HotStart Readymix Kappa Biosystems, Switzerland KK2602, KK2611

Chemical compound,
drug

Agencourt AMPure XP beads Beckman-Coulter, Brea, CA A63880

Commercial assay,
kit

Bioanalyzer High-Sensitivity
DNA kit

Agilent, Santa Clara, CA 5067–4626

Commercial assay,
kit

Nextera XT DNA Sample
Preparation Kit

Illumina, San Diego, CA FC-131–1024

Sequence-based
reagent

New-P5-SMART PCR hybrid Sigma AAT GAT ACG GCG ACC ACC
GAG ATC TAC ACG CCT GTC
CGC GGA AGC AGT GGT ATC
AAC GCA GAG T*A*C

Commercial assay,
kit

PicoPureÔ RNA Isolation Kit Applied Biosystems, Foster City, CA KIT0204

Commercial assay,
kit

SuperScript III First-Strand
Synthesis SuperMix

Invitrogen, Carlsbad, CA 18080400

Commercial assay,
kit

QIAquick PCR Purification Kit Qiagen, Germany 28106

Commercial assay,
kit

Universal Probe Library system Roche, Switzerland 04683633001,
04869877001

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial assay,
kit

LightCyclerÒ 480 Probes Master Roche 4887301001

Commercial assay,
kit

SMART-Seq v4 Ultra Low
Input RNA Kit for Sequencing

Takara Clontech, Japan 634890

Commercial assay,
kit

TruSeq RNA Library Prep Kit v2 Illumina RS-122–2001

Fly strains
The Drosophila strains used were MB008B, MB131B and MB461B (Aso et al., 2014), R58E02

(Pfeiffer et al., 2008), w-;+;20XUAS-6XGFP (Shearin et al., 2014) and w-; +; UAS-mCherry. Flies

were raised at 25˚C in 12 hr:12 hr day-night cycles on standard food at 40–50% humidity.

Cell culture
S2 cells (Gibco, R69007) were grown in Schneider’s medium (Gibco 21720–001) supplemented with

10% FBS (Sigma, F0804) and 1% penicillin-streptomycin (Gibco, 15070–063). Sf9 cells (Gibco,

12659–017) were grown in Sf-900 III SFM (Gibco, 12658019). The Master Seed Bank for both Sf9 and

S2 cells was tested for contamination of bacteria, yeast, mycoplasma and virus and characterized by

isozyme and karyotype analysis by the supplier. All cells were incubated at 25˚C. Cells were grown in

adherent cultures to confluency. Vessels were gently tapped to detach cells, and supernatants were

centrifuged for 10 min at 100 x g. Cells were washed once with 1 x PBS and resuspended in 1 x PBS

and subsequently diluted to 200 cells/ul prior to pooling and Drop-seq.

Brain dissociation and cell collection
The brain dissociation protocol was adapted from previously described methods (Harzer et al.,

2013; Nagoshi et al., 2010). For each day of experiments, 80–100 central brains were individually

dissected in ice-cold calcium- and magnesium-free DPBS (Gibco, 14190–086) and immediately trans-

ferred into 1 mL toxin-supplemented Schneider’s medium (tSM: Gibco, 21720–001 + 50 mM d(�)�2-

amino-5-phosphonovaleric acid, 20 mM 6,7-dinitroquinoxaline-2,3-dione and 0.1 mM tetrodotoxin) on

ice. Brains were washed once with 1 mL tSM and incubated in tSM containing 1.11 mg/mL papain

(Sigma, P4762) and 1.11 mg/mL collagenase I (Sigma, C2674). Brains were washed once more with

tSM and subsequently triturated with flame-rounded 200 mL pipette tips. Dissociated brains were

resuspended into 1 mL PBS + 0.01% BSA and filtered through a 10 mm CellTrix strainer (Sysmex, 04-

0042-2314). Cell concentration was measured using a disposable Fuchs-Rosenthal hemocytometer

(VWR, 631–1096) under a Leica DMIL LED Fluo microscope, that also allowed detecting mCherry

fluorescence in dissociated KCs. Cells were diluted in PBS + 0.01% BSA up to a concentration of 200

cells/mL. Thus a typical preparation from 80 brains yielded ~2’000’000 single-cells in a volume of 10

mL.

Drop-seq procedure
Drop-seq was performed as described (Macosko et al., 2015), using a Dolomite Bio (Royston, UK)

Single Cell RNA-Seq system. Cells were diluted at a concentration of 200 cells/mL into PBS + 0.01%

BSA. Barcoded Beads SeqB (ChemGenes Corp., Wilmington, MA, USA) were diluted at a concentra-

tion of 200 particles/mL into 200 mM Tris pH 7.5, 6% Ficoll PM-400, 0.2% Sarkosyl, 20 mM

EDTA +50 mM DTT.

For each run, 700 mL of cells solution from dissociated brains were loaded into a microcentrifuge

tube inside a reservoir connected to a Mitos P-Pump (Dolomite microfluidics, 3200016) set to pro-

vide a constant flow of 30 mL/min. The reservoir was placed on a stirring plate and agitation was pro-

vided by a stir bar placed inside the reservoir but outside the tube to maintain the cells in

suspension while avoiding damaging the cells. 600 mL of beads solution were loaded into a 50 cm

sample loop connected to a second Mitos P-Pump set to provide a constant flow of 30 mL/min. The

sample loop was used to avoid beads sedimentation while eliminating the need for stirring, thus pre-

venting beads damage. QX200 Droplet Generation Oil for EvaGreen (BioRad, 1864006) was loaded
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directly inside a third Mitos P-Pump, set to provide a constant flow of 200 mL/min. Cells, beads and

oil flows were connected to a Single Cell RNA Seq Droplet Chip (Dolomite Bio) according to manu-

facturer’s instructions, allowing pairing of single-cells with single-beads and formation of 357 pL

droplets of aqueous cell/bead solution in oil. The chip was placed under a Meros High Speed Digital

Microscope and Camera with a HLB M Plan Apo 5X objective in order to monitor droplet formation.

Droplets were collected in 50 mL Falcon tubes. Reagents were reloaded and Falcon tubes replaced

every 15 min.

Droplets were subsequently broken and beads with captured mRNA were washed as described

(Macosko et al., 2015). In brief, bead-bound mRNA was immediately reverse-transcribed using a

Template Switch Oligo (5’ – AAG CAG TGG TAT CAA CGC AGA GTG AAT rGrGrG – 3’) and Max-

ima H Minus Reverse Transcriptase (Thermo Scientific, EP0753). cDNA was treated with Exonuclease

I (NEB, M0293L) and amplified in multiple 50 mL PCR reactions performed on aliquots of ~2000

beads, using a SMART PCR primer (5’ – AAG CAG TGG TAT CAA CGC AGA GT – 3’) and Hifi Hot-

Start Readymix (Kapa Biosystems, KK2602) for a total of 17 cycles. 10 mL from each PCR reaction

were pooled, and amplified cDNA was purified twice, with 0.6X and 1.0X volumes of Agencourt

AMPure XP beads (Beckman Coulter, A63880) and quantified on a Bioanalyzer, using a High-Sensi-

tivity DNA kit (Agilent, 5067–4626). From each sample, 2 � 600 pg of amplified cDNA were tag-

mented using the Nextera XT DNA Sample Preparation Kit (Illumina, FC-131–1024) with New-P5-

SMART PCR hybrid (5’ – AAT GAT ACG GCG ACC ACC GAG ATC TAC ACG CCT GTC CGC GGA

AGC AGT GGT ATC AAC GCA GAG T*A*C – 3’) and one of Nextera N701 to N706 oligos. cDNA

libraries were purified twice, with 0.6X and 1.0X volumes of Agencourt AMPure XP beads (Beckman

Coulter, A63880) and quantified on a Bioanalyzer, using a High-Sensitivity DNA kit (Agilent, 5067–

4626). Libraries were pooled together and sequenced on an Illumina HiSeq2500 sequencer using a

Custom Read1 primer (5’ – GCC TGT CCG CGG AAG CAG TGG TAT CAA CGC AGA GTA C – 3’)

and standard Illumina Read2 primers. All oligos were synthesized by Sigma, and HPLC purified. Sam-

ples from days 1 and 2 were sequenced together, on two separate lanes. Samples from days 3–8

were sequenced together, on three separate lanes.

Data processing and alignment
Sequencing data was processed as previously described (Macosko et al., 2015; Satija et al., 2015),

following the Drop-seq Computational Protocol v.1.0.1 and using the Drop-seq software tools v.1.13

from the McCarroll lab. Barcodes were extracted and reads were aligned to a combination of the

Drosophila melanogaster genome release 6.13 (from Flybase.org) and three reference sequences for

mCherry and each split-GAL4 transgenes of the flies that were used in this study. For the species

mix experiments, reads were also aligned to the Spodoptera frugiperda genome (Kakumani et al.,

2014), available at NCBI GenBank, assembly ASM221328v1. The Flybase v.FB2016_05 September

gene names were used for the creation of the Digital Gene Expression (DGE) Matrix.

t-SNE analysis on whole brain data
Analysis of DGEs was performed with the Seurat 2.1.0 R package (Macosko et al., 2015;

Satija et al., 2015). Cells with less than 200 genes were discarded. Several thresholds for the num-

ber of UMIs per cell were tested (see Figure 1—figure supplement 2). All results presented here

are based on 800 and 10,000 UMIs per cell as lower and higher threshold, respectively. Data was

log-normalized and scaled using default options. Variation driven by individual batches was

regressed out from the normalized, scaled data. PCA analysis was performed on the data as previ-

ously described (Macosko et al., 2015). To visualize the data, spectral t-SNE dimensionality reduc-

tion was performed, using the first 50 PCAs, as instructed by a Jack Straw resampling test

(Satija et al., 2015; Van Der Maaten, 2014). Clusters were identified by a shared nearest neighbor

modularity optimization (Waltman and van Eck, 2013), using a resolution of 2.5. Some of these clus-

ters were subsequently manually modified (compare Figure 1—figure supplement 2B (unmodified)

and Figure 1B (modified)). Main markers for each identified cluster were identified as genes with

Log2 FC �1 and a p-value of p<0.01 (after Bonferroni correction).
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Co-expression analysis
Gene co-expression was assessed by calculating the Pearson product-moment correlation of the

log-normalized, scaled expression values using R. For the radar plots, the number of cells expressing

each neuropeptide of interest and in addition either VACht (to identify cholinergic cells), VGlut (glu-

tamatergic), Gad1 (GABA-ergic) or combinations of the three were calculated and normalized to the

total number of cells expressing each neurotransmitter.

t-SNE analysis on PNs and monoaminergic neurons (re-clustering)
DGE columns corresponding to cells belonging to either PN or monoaminergic clusters were used

for PCA analyses. For re-clustering of monoaminergic neurons, a selection of known markers (ple,

DAT, SerT, Trh, Vmat, Oamb, Ddc, Tdc2 and Tbh) was used as input for PCA analysis. In both cases,

the first 6 PCAs were used for re-clustering, which was performed as above.

Quantitative PCR
Midbrains were dissected from flies expressing mCherry under the control of the MB008B, MB131B

or MB461B GAL4 drivers, dissociated and filtered as above. DAPI was added to the cell suspension

as a marker for dead cells or cells with compromised membrane (Kubista et al., 1987), and only

DAPI- cells were selected. Filtered cells were sorted with a MoFlo Astrios (Beckman Coulter) and

mCherry +cells were collected from each genotype, in biological triplicates. Total RNA was

extracted from these cells using the PicoPure RNA Isolation Kit (Applied Biosystems, KIT0204)

according to manufacturer’s instructions. mRNA was then retrotranscribed using the SuperScript III

First-Strand Synthesis SuperMix (Invitrogen, 18080400) according to manufacturer’s instructions.

Obtained cDNA was pre-amplified with the KAPA HiFi HotStart ReadyMix (Kapa Biosystems,

KK2611), using 0.4 mM of each primer (see primers list in Figure 2—source data 1). Pre-amplification

protocol was as follows: 98˚C, 2’; 18X [98˚C, 20’; 60˚C, 30’, 72˚C, 30’]; 72˚C, 2’. Pre-amplified cDNA

was purified with the QIAquick PCR Purification Kit (Qiagen, 28106). qPCR was performed in a Light-

Cycler 480 Instrument II (Roche, 05015243001) using the Universal Probe Library system (UPL;

Roche, 04683633001 and 04869877001). Each 10 mL reaction contained 2.4 mL of pre-amplified

cDNA, 0.4 mM of each primer (designed with Roche Assay Design Center), 0.2 mM of the corre-

sponding UPL probe (Figure 2—source data 1), and 5 mL LightCycler 480 Probes Master (Roche,

4887301001). Cycles were as follows: 95˚C, 10’; 45X [95˚C, 10’; 60˚C, 30’; Fluorescence acquisition;

72˚C, 1’]. Quantification was performed with the comparative 2-DDCt method (Livak and Schmitt-

gen, 2001), using SdhA as a housekeeping gene (Ling and Salvaterra, 2011; Treiber and Waddell,

2017). For each biological replicate, expression levels of each gene were normalized to the KC pop-

ulation with the highest expression level, and subsequently averaged. Genes for which qPCR signal

was not consistently observed across all samples and replicates were not included in the analysis.

RNA-sequencing of PAM-DA neurons
Central brains from flies expressing a brighter, hexameric GFP (20xUAS-6xGFP; [Shearin et al.,

2014]) specifically in PAM-DA neurons under the control of the R58E02 GAL4 line (Pfeiffer et al.,

2008) were dissected and dissociated as above. FACS was performed as above, and both GFP +and

GFP- cells were collected. Cells were lysed, and their mRNA was retro-transcribed and amplified (17

cycles) using the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara Clontech, 634890),

according to manufacturer’s instructions. Biological triplicates were made for each sample. cDNA

libraries were generated with TruSeq RNA Library Prep Kit v2 (Illumina, RS-122–2001), sequenced on

an Illumina HiSeq4000 sequencer. Results were analyzed using the Tuxedo RNA-seq pipeline

(Trapnell et al., 2012).
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