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Abstract

3-nitrotoluene dioxygenase (3NTDO) from Diaphorobacter sp. strain DS2 catalyses the con-

version of 3-nitrotoluene (3NT) into a mixture of 3- and 4-methylcatechols with release of

nitrite. We report here, X-ray crystal structures of oxygenase and ferredoxin components of

3NTDO at 2.9 Å and 2.4 Å, respectively. The residues responsible for nitrite release in

3NTDO were further probed by four single and two double mutations in the catalytic site of

α-subunit of the dioxygenase. Modification of Val 350 to Phe, Ile 204 to Ala, and Asn258 to

Val by site directed mutagenesis resulted in inactive enzymes revealing the importance of

these residues in catalysis. Docking studies of meta nitrotoluene to the active site of 3NTDO

suggested possible orientations of binding that favor the formation of 3-methylcatechol

(3MC) over 4-methylcatechol energetically. The electron transfer pathway from ferredoxin

subunit to the active site of the oxygenase subunit is also proposed.

Introduction

Nitroaromatic compounds are widely used in the production of dyes, pigments, pesticides and

explosives [1]. These compounds are toxic and recalcitrant due to the inherent stability of the

nitroaromatic ring. Bacterial strains that completely mineralize nitrobenzene [2], 2-nitrotoluene

(2NT)[3], 3-nitrotoluene (3NT)[4], 2,4-dinitrotoluene, 2,6-dinitrotoluene have been isolated

and characterized previously[5, 6]. Diaphorobacter sp. strain DS2 utilizes 3-nitrotoluene as a

sole source of carbon, nitrogen and energy [4]. The initial enzyme in the degradation pathway

is 3-nitrotoluene dioxygenase (3NTDO) which catalyses the oxidation of 3-nitrotoluene into a

mixture of methylcatechols and nitrite [7]. 3NTDO is a multicomponent enzyme system which

adds two atoms of molecular oxygen to the substrate through the sequential action of three sep-

arate proteins[7]. In this reaction, electrons originating from NADH/NADPH are transferred

to FAD in the reductase, the first redox center which subsequently reduces the plant type [2Fe-

2S] cluster in the reductase that, in turn, reduces the terminal oxygenase through a ferredoxin.
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The terminal oxygenase is an α3β3 hetero-hexamer wherein the catalytic α subunits contain a

Rieske [2Fe-2S] cluster and mononuclear iron at the active site[8]. The catalytic mononuclear

iron is coordinated by two histidines and an aspartic acid. This His-His-carboxylate facial triad

is conserved in all known Rieske oxygenases (ROs) [9]. Naphthalene dioxygenase (NDO) from

Pseudomonas sp. strain NCIB9816-4 is the first dioxygenase for which a high resolution crystal

structure has been reported[10].

3NTDO from Diaphorobacter sp. strain DS2 belongs to the family of naphthalene dioxy-

genases, and has the ability to remove nitrite from all isomers of mononitrotoluene,

2-chloronitrobenzene, 2,6-dinitrotoluene and partially from 3-chloronitrobenzene[11, 12].

Active site residues of 3NTDO were compared with other nitroarene dioxygenases like nitro-

benzene dioxygenase (NBDO) from Comamonas sp. JS765[13], 2-nitrotoluene dioxygenase

(2NTDO) from Acidovorax sp. strain JS42[14], 2,4-dinitrotoluene dioxygenase (DNTDO)

from Burkholderia sp. strain DNT[15]and Burkholderia cepacia R34[16]. It has been reported

that Asn258 is an important residue for nitrite removal in NBDO[17] and 2NTDO[18]. Crys-

tal structure of NBDO bound with 3NT shows the hydrogen bonding between nitro group of

the substrate with Asn258[13]. Similarly, DNTDO removes one nitrite from 2,4-dinitrotoluene

(2,4-DNT) producing a catechol and has a valine at 258 instead of aspargine in its active site

[19]. This system is also known to give 4-methyl catechol (4MC) from 4NT but is unable to

remove nitrite from 2NT and 3NT[20]. NDO variants from Ralstonia U2 at Phe350 and

Gly407 positions yield 3-methyl-4-nitrocatechol from 2,6-DNT with the removal of one nitrite

group and Ralstonia U2 does not have Asn258[21]. However, NDO variants from Pseudomo-
nas putida NCIB9816-4 have been reported to be unable to detach nitrite from any nitroaro-

matic compound even when Val 260 was modified to Asn[22]. In order to elucidate the atomic

resolution details of the unique specificity of 3NTDO, we solved the crystal structure of the

oxygenase component of 3NTDO and selected four active site residues for site directed muta-

genesis. The docking of 3NT to the oxygenase structure has also been carried out. Here, we

also report the crystal structure of the ferredoxin component of 3NTDO and we propose the

residues involved in the electron transfer pathway from ferredoxin to the mononuclear iron

center at the active site of the oxygenase for naphthalene dioxygenase family members.

Materials and methods

Bacterial strains, plasmids and growth conditions

The reductase, ferredoxin and oxygenase components of 3NTDO from Diaphorobacter sp.

strain DS2 were cloned separately in pET21a vector and reported previously[11]. E.coli BL21

(DE3)(pDS5), BL21(DE3)(pDS2) and BL21(DE3)(pDS21) were grown in minimal salts

medium supplemented with 10mM glucose, 1mM thiamine and 200μg/ml ampicillin for the

reductase, ferredoxin and oxygenase, respectively [23]. Cells were harvested by centrifugation

and pDS21 cells were resuspended in BTGD buffer [50mM bis-tris (pH 6.8), 5% (v/v) glycerol,

1mM dithiothreitol] and pDS5 and pDS2 cells were suspended in MGD buffer [25mM MOPS

(pH 7.4), 5% glycerol, 1mM DTT] with 50 and 100mM NaCl, respectively and frozen at -70˚C.

Purification of reductase

Cell extracts(BL21(DE3)(pDS5))were applied to a HiPrep QFF(20ml) column equilibrated

with 25mM 3-(N-morpholino) propanesulfonic acid (MOPS), 50mM NaCl, 5% glycerol and

1mM DTT(buffer 1). Unbound proteins were eluted with six column volumes of this buffer

and the bound protein was eluted using a linear gradient of 0.05M to 0.8M NaCl. The reduc-

tase fractions were pooled and concentrated using amicon1 MWCO30 kDa filter. Ammo-

nium sulphate was added to a final concentration of 1M, incubated for 2h and centrifuged for
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20min at 20,000g. The supernatant was loaded onto a Hitrap phenyl sepharose HP column

equilibrated with a buffer I containing 1M ammonium sulphate. Unbound protein was eluted

with a buffer containing ammonium sulphate and the bound protein was eluted at linear gradi-

ent from 1M to 0M ammonium sulphate. The reductase fractions were pooled and concen-

trated and finally loaded onto Hiload superdexS-75 gel filtration column equilibrated with

buffer 1. A monodispersed peak of the reductase was observed. The peak fractions were pooled,

concentrated and buffer exchanged with 50mM MES buffer, pH 6.8 and finally stored at -80˚C.

Purification of ferredoxin

The purification method for ferredoxin (BL21(DE3)(pDS2)) was modified from the previously

reported method [11]. The cell extract from BL21(DE3)(pDS2) was applied to a HiPrep QFF

(20ml) column equilibrated with 25mM MOPS,100mM NaCl, 5% glycerol and 0.5mM DTT

(buffer II). Unbound protein was eluted with six column volumes of buffer II and the bound

protein was eluted with a linear gradient of 0.1M to 0.8M NaCl. The ferredoxin fractions were

pooled and concentrated in an amicon MWCO 10 kDa filter unit. Ammonium sulphate was

added to the protein to a final concentration of 1.5M, incubated for 2hrs and centrifuged for

20min at 20,000g. The supernatant was loaded onto Hiload superdex S-75 column which was

pre-equilibrated with buffer II. Active fractions were pooled, concentrated and buffer

exchanged with 50mM MES buffer, pH 6.8.

Purification of oxygenase

Oxygenase purification method was also modified from the previously reported method[11].

The cell extract from the BL21(DE3)(pDS21) was applied onto a HiPrep QFF(20ml) column

equilibrated with 50mM bis-Tris, 5% glycerol and 0.5mM DTT (buffer III). Unbound protein

was eluted with six column volumes of this buffer and the bound protein was eluted using a

linear gradient of 0 to 0.8M KCl. Oxygenase fractions were pooled and concentrated using an

amicon MWCO 100 kDa filter. Ammonium sulphate was added to the protein till a final con-

centration of 1M is obtained, incubated for 2hrs and centrifuged for 20min at 20,000g. The

supernatant was loaded onto a Hitrap butyl sepharose HP column that was equilibrated with

buffer III containing 1M ammonium sulphate. Unbound protein was eluted with buffer con-

taining ammonium sulphate and the bound protein was eluted using a linear gradient from

1M to 0M ammonium sulphate. Oxygenase fractions were pooled, concentrated and finally

loaded onto Hiload superdex S-200 gel filtration column equilibrated with buffer III. A mono-

dispersed peak of the oxygenase was obtained. The protein fractions were concentrated and

buffer exchanged with 50mM MES buffer pH 6.8 before storage.

Crystallization

Initial crystallization screenings were carried out with Nextal classic suite, Nextal classic suite

II, Emerald wizard screen I/II, Crystal screen I /II and Hampton PEG ion I/II. Oxygenase

(25-38mg/ml) was crystallized using hanging drop vapor diffusion methods at 277K. Drops

containing 0.2 μl protein and 0.2 μl of precipitant were equilibrated against 100μl of reservoir

solution for screening. Nanodrop crystallization setup was done with the help of MOS-

QUITO1. Ferredoxin (10-32mg/ml) and reductase (15–26 mg/ml) were also crystallized using

hanging drop vapor diffusion at 277K in the screening plate.

Data collection and processing

Data were collected on the beamline ID29 and ID23-2 at the European synchrotron Radiation

Facility (ESRF), Grenoble, France. The oxygenase crystals were frozen by using 20% ethylene
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glycol as a cryoprotectant. Ferredoxin crystals were frozen without any cryoprotectant. The

data were indexed, integrated scaled and merged using Mosflm[24]and SCALA[25].

Structure determination and refinement

The structure of oxygenase of 3-nitrotoluene dioxygenase was solved by molecular replace-

ment using the program MOLREP[26]. The coordinates of native naphthalene dioxygenase

(PDB code: 1NDO) which has the sequence identity of nearly 80% to 3NTDO-ODS2 was used

as a search model[10]. The structure of ferredoxin was solved by molecular replacement using

the ferredoxin of naphthalene dioxygenase from Pseudomonas sp. NCIB9816-4(PDB code:

2QPZ)[27]with sequence identity of 76% to 3NTDO-FDS2. Refinement was carried out using

Phenix[28] and model building was performed by Coot[29].

Site-directed mutagenesis

Site-directed mutagenesis was performed using the pDS21 plasmid as a template by Quik1

Change Site-Directed Mutagenesis system according to the manufacturer’s instruction. The

whole plasmid was amplified with mutant primers (Table 1) using the kit protocol and after

PCR cycles, the parent template was digested with DpnI enzyme at 37˚C overnight and trans-

formed in DH5α cells. Oligonucleotides were synthesized from Bioserve, Hyderabad, India.

All mutations were confirmed by DNA sequencing by using both forward IspINF (5’-AACC
CACCTTCAAGCACTCTGG-3’)and reverse ACR2 (5’-TTAGCGATCAGTTGTCTTGGTGA
GTTCGGTG-3’) primers that were carried out at DNA sequencing facility of National Center

for Biological Science, TIFR, Bangalore, India. The resulting derivatives of pDS21 were used to

transform in DH5α for sequencing and BL21 (DE3) was used for expression and substrate

specificity studies.

Biotransformation of aromatic substrates

Biotransformation reactions were performed in a 250ml flask containing 50ml total reaction

mixture. The reaction mixture composition was same as used previously for the enzyme assay

[11], which contained reductase, ferredoxin, oxygenase, NADH, ferrous ammonium sulphate

and the substrate (250mM). The reaction was initiated by the addition of oxygenase and it was

incubated with shaking at 30˚C on a rotatory orbital shaker for an hour. After that, the reaction

mixture was acidified (pH 5–6) with 2N HCl. Transformation products were extracted with

ethylacetate, dried over anhydrous sodium sulphate and concentrated in vacuo. Products from

all mononitrotoluene isomers were identified by GC-MS. The chiral product from

Table 1. Primers used in this study.

Mutation Mutagenic oligonucleotidea

M251L (For) 5’-TGTGGTTACCGGCGTAGTAGTCCCAAAGTAGGCTCATT-3’

M251L (Rev) 5’-AGTGGAATGAGCCTACTTTGGGACTACTACGCCGGTAAC-3’

N258V (For) 5’-ACTACTACGCCGGTGTGCACAGCGCTGATCTGGTT-3’

N258V (Rev) 5’-GAACCAGATCAGCGCTGTGCACACCGGCGTAG-3’

V350F (For) 5’-ACGCGGTTCAGCGCACTTTCGGACCAGGAGGATAC-3’

V350F (Rev) 5’-CTTTCCCACTATCCTCCTGGTCCGAAAGTGCGCTGAAC-3’

I204A (For) 5’-GCGGAAAACTTTGTAGGTGATGCATACCACGTTGGTTGG-3’

I204A (Rev) 5’-CGTGCGTCCAACCAACGTGGTATGCATCACCTACAA-3’

a Codons are underlined and italicsindicates bases thatwere changed

https://doi.org/10.1371/journal.pone.0176398.t001
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naphthalene was also characterized by HPLC. The GCMS parameters and HPLC gradients are

same as previously reported [11].

Docking studies

The ligands were built using the sketch module of Avogadro 1.1.0 (http://avogadro.

openmolecules.net). Each substrate was minimized using the universal force field (UFF) avail-

able in the Avogadro tool[30]. Crystal structure of the oxygenase was used to perform the

docking experiments. The pdb file was used as an input structure to add all hydrogen atoms.

The hydrogenated protein was then prepared for docking calculations using the autodocktools

package. Docking experiments were performed using Autodock 4.2 (http://autodock.scripps.

edu) for the substrate. Other parameters were left to their respective default values. Active site

residues were kept as the flexible residues. The results were ranked in terms of the affinity

energy and the occurrence of the given docked conformation. All the results were compared

with different crystal structures of nitrobenzene dioxygenase (NBDO) and naphthalene dioxy-

genase (NDO). The pocket volume was calculated with the help of CASTp software tool[31].

The docking conformations were also confirmed by Discovery studio 2.5. Seventeen residues

that line the active site of oxygenase were used for docking.

Results and discussion

Crystallization of 3NTDO components

The ferredoxin crystallized in 0.2M CaCl2, 0.1M HEPES pH 7.5 and 28% PEG 400 at 4 to 8˚C.

These crystallization conditions were optimized further to 0.1 to 0.25 M CaCl2, 22–32%

PEG400 and 0.1M HEPES (pH 7.1 to 7.7). Typically, brown crystals (0.2X0.1X0.05mm)

appeared after 2–3 weeks.

The oxygenase crystallized in 0.2M sodium citrate tribasic and 20% PEG 3350 pH 8.3 con-

dition at 4 to 8˚C. This crystallization condition was optimized to 15–25% PEG 3350 at same

temperature. Orange hexagonal plate crystals (0.1X0.1X0.05mm) were obtained after 7 days.

Extensive crystal screening with needle shaped crystal of reductase of 3NTDO was carried out;

however,it did not yield a diffraction quality crystal.

Molecular structure of ferredoxin and oxygenase components of 3NTDO

A structure of ferredoxin (3NTDO-FDS2) (Fig 1A) was solved to 2.4Å resolution using the

molecular replacement method and by using the ferredoxin component of NDO

(NDO-F9816-4) (PDB code: 2QPZ)[27] from Pseudomonas putida NCIB9816-4 as a search

model. The final refined structure has Rwork = 23% and Rfree = 26.2% (Table 2). The asymmet-

ric unit contains only one molecule of 3NTDO-FDS2. The final model contains a [2Fe-2S] clus-

ter and clear electron density for 3 to 104 residues. Similarly, the data from an orange crystal

was used to solve the structure of 3NTDO-ODS2 by molecular replacement using the coordi-

nates of NDO (PDB code: 1NDO)[10]. The crystals have one αβ hetero dimer in an asymmet-

ric unit. The structure has been refined to a final R value of 24% (Rfree = 28%) to 2.9Å
resolution. All the residues except the three residues at the C-terminus of the α subunit could

be located in the electron density map.

3NTDO-FDS2 is an elongated molecule with similar dimensions as those reported for

NDO-F9816-4 (40Å X 30Å X 20Å). The molecular structure is composed of three antiparallel β-

sheets with a Rieske [2Fe-2S] cluster present at the tip of the molecule which is common to

other Rieske [2Fe-2S] proteins, such as cytochrome bc1[32],b6f[33], BphF[34], CarAc[35] and

TDO-F[36]. Cys45, His47 (of the β turn of β4 and β5) and Cys64, His67 (of β-hairpin between
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Fig 1. Overall structure of ferredoxin and oxygenase components of 3NTDO. (A) 3NTDO-FDS2, the Rieske center and

coordinating side chain residues are shown in stick representation. (B) 2Fo-Fc electron density contoured at 1.0 σ level in the

Rieske cluster of ferredoxin shown as a ball and stick model and in blue wire mesh. (C) 3NTDO-ODS2, the three αsubunits are

colored green, blue and red and β subunits are in yellow, grey and cyan. The Rieske center and the catalytic iron are shown in

CPK model representation. (D) 2Fo-Fc electron density contoured at 1.5σ level in the vicinity of catalytic iron center with the
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β6 and β7)coordinates the Rieske [2Fe-2S] center(Fig 1B). The overall sequence identity

between 3NTDO-FDS2 and NDO-F9816-4 is 76% and the structure could be superimposed with

an rmsd of 0.43 Å for theCα positions.

3NTDO-ODS2 is a mushroom shaped hetero hexamer (α3β3) protein with a cap and a stem

composed of the α3 and β3 subunits, respectively (Fig 1C). The α-subunit contains Rieske

domain (residues 38–158) with a Rieske [2Fe-2S] center and a catalytic domain (residues

1–37, 159–447) that contains a mononuclear iron at the active site (Fig 1D–1E). The

completely conserved residues His206, His211 and Asp360 coordinate mononuclear iron[10].

The tertiary and secondary structural elements as well as the essential residues in the electron

transfer are conserved between 3NTDO-O and other known oxygenases[10, 36].

Proposed electron transfer pathway from ferredoxin to oxygenase. The electron trans-

fer pathway from ferredoxin to the α3 type of oxygenase of carbazole 1,9 dioxygenase

(CARDO) (PDB code: 2DE5) has been studied previously [37]. For NDO and 3NTDO, the fer-

redoxin and oxygenase were aligned separately with the oxygenase:ferredoxin complex

ligand His206, His211 and Asp360 shown as a ball and stick model. (E) View along the molecular threefold axis of

3NTDO-ODS2. The iron, sulphur, nitrogen and water are shown in magenta, yellow, blue and red colors, respectively.

https://doi.org/10.1371/journal.pone.0176398.g001

Table 2. Data collection and refinement statistics of 3NTDO-FDS2 and 3NTDO-ODS2.

Ferredoxin(3NTDO-FDS2) Oxygenase (3NTDO-ODS2)

PDB-ID 5BOK 5XBP

Wavelength (Ã. . .) 0.873 0.976

Resolution range (Ã. . .) 33.81–2.4 (2.486–2.4) 47.71–2.9 (2.95–2.90)

Space group I 4 2 2 P 31 2 1

Unit cell 79.53 79.53 108.97 90 9090 178.80 178.80 242.32 90 90 120

Unique reflections 7092 (688) 95735 (4714)

Completeness (%) 99.12 (99.28) 96.2 (96.57)

Mean I/sigma(I) 17.28 (6.27) 7.3 (1.11)

Wilson B-factor 55.6 45.46

R-merge 0.063 (0.799) 0.170 (1.346)

Rpim 0.022 (0.283) 0.113 (1.043)

Multiplicity 8.6 (8.4) 5.2 (3.4)

Mn(I) half set correlation CC(1/2) 0.999 (0.811) 0.984 (0.491)

R-factor 0.2312 (0.5345) 0.2406 (0.3594)

R-free 0.2619 (0.5928) 0.2839 (0.3965)

Number of atoms 816 15339

macromolecules 796 15267

ligands 5 15

water 15 57

Protein residues 102 1908

RMS(bonds) 0.011 0.012

RMS(angles) 1.39 1.56

Ramachandran favored (%) 92 93

Ramachandran outliers (%) 0.99 0.69

Clashscore 12.67 21.44

Average B-factor 51.50 40.10

macromolecules 51.60 40.10

solvent 46.40 39.0

https://doi.org/10.1371/journal.pone.0176398.t002
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structure of CARDO. The ferredoxin binding site was proposed by Friemann et.al[36] and

Ashikawa et.al[37] which was the groove between the two α subunits that represent the cap of

mushroom shaped structure (Fig 2A). The average distance between the ligand atoms of the

Rieske cluster in oxygenase and ferredoxin of 3NTDO and NDO was 11-12Å (Fig 2B) and it

was within the 14Å threshold defining the limit of electron tunneling in proteins[38]. The resi-

dues proposed for electron transfer were conserved in both 3NTDO and NDO complex struc-

tures. Here, the residues of NDO were used for pathway identification because of the

availability of high resolution data. For the proper electron transfer process from the Rieske

cluster of ferredoxin to oxygenase, the residues of the two α subunits of the oxygenase are

required. In NDO, His66 (NDO-F)-Ser15 (NDO-O)-Leu383-Arg84-Leu384-Glu410-His83

(NDO-O) residues are involved in electron transfer (Fig 2C). Glu410, present at hydrogen

bonding distance with the His83 (chain C) reduces the [2Fe-2S] cluster of the oxygenase. In

carbazole 1,9-dioxygenase, the proposed pathway has Asp359 that finally transfers electrons

from Rieske ferredoxin to the oxygenase[37]. In the naphthalene dioxygenase family, Glu410

plays the role of Asp359 of CARDO system. These sequences of residues are conserved in

3NTDO, NBDO, 2NTDO and DNTDO. During the reaction, the electron flows from Rieske

cluster of oxygenase to active site mononuclear iron through Asp205, which is already estab-

lished [39]. This proposed pathway requires a water molecule [between these pair of residues

Ser15 (chain A): Leu383 (chain A); Leu383 (chain A):Arg84 (chain C) and Leu 384 (chain A):

Glu410 (chain A)] for electron transfer that is not seen in the modeled structure.

Substrate specificity of 3NTDO mutants with mononitrotoluenes

Four residues at the active site in the α subunit of 3NTDO were selected for mutagenesis and

were modified based on the sequence of NDO. Ile204, Met251, Asn258 and Val350 which line

the pocket of the active site of 3NTDO, were mutated to corresponding residues of NDO

(Ala206, Leu253, Val260 and Phe352). To check the expression of the recombinant proteins,

crude proteins were run on a 12% SDS-PAGE which showed similar levels of expression. The

active site residues of NBDO and 3NTDO are shown in Fig 3.

The ability of the mutant enzymes to oxidize 2-nitrotoluene (2NT), 3-nitrotoluene (3NT)

and 4-nitrotoluene (4NT) were also checked and the results are presented in Fig 4.

Met251 is present only in 3NTDO, while NDO and NBDO have Leu253 and Phe251,

respectively. M251L mutation had little effect on the product ratios formed from 2NT and

3NT (Fig 4). However, a significant change was found in the formation of 4-methylcatechol

(4MC) as the sole product from 4NT which was not a major product with the wild type

3NTDO. The major product of wild type 3NTDO was 5-methyl-2-nitrophenol (63%) from

4NT and 5-methyl-2-nitophenol was unique among all the nitoaromatic dioxygenase systems

as there is no report available for the formation of this product from 4NT either from wild

type or mutated NDO[22], NBDO[17], 2NTDO[18] and DNTDO[15].

Similarly, I204A mutation produced aromatic ring monohydroxylated 4-methyl-2-nitro-

phenol (22%) from 3NT and 2-methyl-3-nitrophenol (4%) from 2NT (Fig 4) which were not

the products either from the wild type 3NTDO or wild and mutants of NBDO[17], 2NTDO

[18], NDO [22] and DNTDO[15]. On comparing the formation of methylcatechols from all

isomers of mononitrotoluenes, it was found that nitrite release from aromatic systems also

decreased. The I204A mutation gave 58% 3MC from 2NT and 57% 4MC from 3NT and no

3MC from 3NT. In 4NT, no catechol formation was detected and it catalyzed the production

of 4-nitrobenzylalchohol (4NBA) (97%) as the major product which was only 3% in the wild

type 3NTDO. This position was found to be important in dinitrotoluene dioxygenase

(DNTDO) from strain Burkholderia sp. DNT[15]. I204L and I204Y variants of DNTDO have
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Fig 2. Proposed electron transfer pathway between 3NTDO-FDS2 and 3NTDO-ODS2. (A) Ferredoxin is shown in brown color at the

top of 3NTDO-ODS2; Iron and sulphur are shown in magenta and yellow. (B) A line is drawn from Rieske center of 3NTDO-FDS2 to the

mononuclear iron of 3NTDO-ODS2 through the Rieske cluster of 3NTDO-ODS2. (C) Proposed electron transfer pathway from Rieske

cluster of ferredoxin to active site mononuclear iron of oxygenase of NDO is plotted in ball and stick model, the residues of chain A and

chain C of oxygenase are shown in green and cyan color.

https://doi.org/10.1371/journal.pone.0176398.g002
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been reported to biotransform other dinitrotoluene compounds such as 2,3-dinitrotoluene

and 2,5-dinitrotoluene, 4NT to 4MC (major product) and 2NT to 2-nitrobenzylalcohol

(2NBA) [12].

Asn258 of NBDO and 2NTDO were proposed to be important residues in positioning the

nitro substrate for the oxidation. Asn258 was found to form a hydrogen bond with the nitro

group of nitrobenzene and 3-nitrotoluene in the substrate bound crystal structure of NBDO

[13]. Replacement of Asn-258 with Val in 3NTDO resulted in decreased specificity for attack at

the nitro group of 2NT and 3NT. As a result 2-nitrobenzyl alcohol (2NBA) and 3-nitrobenzyl

alcohol (3NBA) were formed as the dominant products from 2NT and 3NT, respectively while

from 4NT, this variant did not show any change and gave 4MC as a major product instead of

4-nitrobenzylalcohol (4NBA) (Fig 4). On comparing these results with 2NTDO and NBDO

mutagenesis studies, it was observed that N258V variant of 3NTDO behaved like N258V vari-

ant of 2NTDO and produces 82% 4MC from 4NT [18] while N258V variant of NBDO pro-

duces 99% 4NBA from 4NT [17]. The ratio of 4MC from 3NT formed from N258V variant of

3NTDO (41%) did not change with wild type of 3NTDO (39%)while in 2NTDO, N258V

Fig 3. Comparison of active site residues of 3NTDO-ODS2 and NBDO. The residues responsible for

regioselectivity of 3NTDO-ODS2 (A) and NBDO (B) are shown in green and orange stick model, respectively.

The mononuclear iron center (large magenta sphere) is coordinated with two histidine and one aspartic

residue.

https://doi.org/10.1371/journal.pone.0176398.g003
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Fig 4. Oxidation products ratiosb (%) formed by 3NTDO and its variants with mononitrotoluenes. bProduct ratios were

determined from by theintegration of Gas chromatography mass spectrometry (GC-MS) total ion current chromatogram.

Results reported are the average of at least three independent experiments, and standard deviations were less than 7%.

https://doi.org/10.1371/journal.pone.0176398.g004
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mutation produces 80% of 3NBA. This indicates that the presence of an aspargine at 258 posi-

tion is important only for the formation of 3MC from 2NT and 3NT and has no effect in the

formation of 4MC from 3NT and 4NT. The wild type DNTDO from Burkholderia sp. DNT has

Val at 258, produces4MC as a dominant product from 4NT [15]. It is clear from the above

observations, that N258 in 3NTDO is not the only responsible residue to remove nitrite from

all isomers of mononitrotoluene. In NBDO and 2NTDO, this variant is unable to detach nitrite

from 2NT and 3NT significantly[18]. In I204A/M251L variant of 3NTDO, 4MC was observed

as a dominant product (96%) over 3MC from 3NT. Here, it behaved like wild type NBDO in

which 4MC formation takes place from 3NT substrate. I204A/N258V mutation gave nitroben-

zyl alcohol as a major product from all isomers of mononitrotoluene. These results suggest

that, for nitrite release from mononitrotoluenes both Ile204 and Asn258 are equally important

and their role is the proper anchoring of the substrate in 3NTDO.

The V350F variant produced 2NBA and 3NBA as dominant products from 2NT and 3NT,

respectively. This substitution in 2NTDO produces trace amounts of methylcatechols from the

respective mononitrotoluenes whereas in our case only methylnitrophenol was identified from

all isomers of mononitrotoluene (Fig 4). Similarly in NBDO and 2NTDO, this mutation lost

its ability to release nitrite from the substrates while it retained the ability to oxidize naphtha-

lene to (1R, 2S)-cis-1,2-dihydro-1,2-dihydroxynaphthalene like the wild type 3NTDO. The

introduction of larger residue at this position most likely reduces the volume of the active site

pocket and interferes with the correct orientation of nitrotoluene that is necessary to yield the

corresponding catechols[18]. In order to understand the structural basis of the formation of

other nitrophenol products, the volume of the active site pocket (wild type) of 3NTDO, NBDO

and NDO were calculated from the respective crystal structures by using CASTp web server

[31]. The pocket size was found to be 445Å3(3NTDO), 295Å3(NBDO) and 693Å3 (NDO)

respectively. This suggests that 3NTDO has a bigger pocket size than NBDO and this could

explain the formation of other nitrophenol products–by facilitating binding of the larger sub-

strate. The V350T variant in NDO from Ralstonia U2, removes the nitrite from 2,3- and

2,6-dinitrotoluene, but not from 2,4-dinitrotoluene[21]. It is the pocket build by hydrophobic

residues in the active site that orient the substrate in the right direction for catalysis. The multi-

ple mutations carried out in NDO from Pseudomonas putida NCIB 9816–4 were also reported

to be inactive in nitrite release from mononitrotoluenes[22]. This could be because of large

pocket size of NDO which was unable to lock the substrate in the catalytically relevant orienta-

tion. The crystal structure of NDO with 3NT gave two orientations in which one orientation

could explain the formation of benzyl alcohol[40]. When we compared the residues which

were mutated for making hybrids of NBDO in NDO, we observed that some residues were less

hydrophobic and these could increase the pocket size which do not favour for proper anchor-

ing and orientation of the substrates like mononitrotoluene. The residues which were present

at the active site of DNTDO also seemed to give a smaller pocket than NDO. Thus it might be

possible to engineer the NDO and DNTDO for releasing nitrite from mononitrotoluene by

tuning the pocket size.

We also docked the substrates in the active sites using Accelrys Discovery studio 2.5 and

AutoDock Vina. The most stable conformation was observed for 3-methylcatechol (Fig 5A)

which agreed with the biotransformation results in which the major product was 3MC from

3NT (Fig 4).

Docking score was calculated as -2.74kcal/mol and binding affinity was -6.9kcal/mol. The

distance between mononuclear iron and carbon atoms (C2 and C3) adjacent to nitro group

were 4.2 Å and 4.4 Å, respectively. It was observed that on docking, the methyl group of the

substrate interacts with Val207 and Ile204 residues of the active site at the entrance of the

pocket. The least stable conformation was for 4-methyl-2-nitrophenol product orientation
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(-5.8Kcal/mol)(Fig 5B) which was the product for 3NTDO variants and not for the wild type

protein. The binding affinities for 4-methylcatechol and 3-nitrobenzylalcohol were -6.5kcal/

mol and -6.2kcal/mol, respectively.

Our results suggest that the substrate specificity of 3NTDO is quite different from NBDO

and 2NTDO. While the N258V mutation in other dioxygenases affects nitrite release promi-

nently from mononitrotoluene substrates, in 3NTDO; the double mutation Ile204Ala/Asn258-

Val changes the regioselectivity of all mononitrotoluene isomers. Ile204 residue is found to be

equally important for proper anchoring the substrates and for removing nitrite. The residue

Val350 is also important as it changes the regioselectivity. The proposed electron pathway

from Rieske center of the ferredoxin to that of the oxygenase active site can be further checked

to identify residues responsible for the electron transfer. Efforts to improve the regioselectivity

with the range of substrates through protein engineering and complex crystallization of ferre-

doxin and oxygenase are underway.

Fig 5. Docked conformations of 3-nitrotoluene in the active site of 3NTDO-ODS2. (A) 3-methylcatechol

product orientation (B) 4-methyl-2-nitrophenol orientation. The distance between mononuclear iron and

carbon atoms of benzene ring is shown in red dotted lines. The ligands His208, His211, Asp360 and

mononuclear iron (magenta) are shown in ball and stick model. The active site residues are shown in stick and

3-nitrotoluene is in orange color.

https://doi.org/10.1371/journal.pone.0176398.g005
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