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Introduction
Nanoparticles (NPs) are progressively being adopted as an 
alternative to antibiotics for managing bacterial infections. 
They have a multitude of applications, such as antimicrobial 
coatings on implantable devices and medical materials to 
prevent infection and promote wound healing, bacterial 
detection for diagnostic purposes, and antibiotic delivery 
systems. Even though the precise mechanisms behind their 
antimicrobial actions and real‑life toxicity are not fully 
comprehended, current theories revolve around oxidative 
stress induction, metal ion release, and nonoxidative 
mechanisms. The necessity for multiple simultaneous gene 
mutations in a single bacterial cell makes it difficult for 

bacteria to develop antimicrobial resistance to metal NPs 
effortlessly.[1,2]

Some NPs are employed as antimicrobial agents, exhibiting 
diverse physical and chemical characteristics.[3] NPs integrate 
organic‑based liposomes and capsules filled with conventional 
antibiotics or cutting‑edge RNAs, called nanocarriers. 
Furthermore, certain NPs exploit the release of cations 
from metal colloid surfaces, functioning as the primary 
antimicrobial mechanism.[4,5] These metal colloids can be 
fine‑tuned to incorporate various chemical elements, such as 
silver (Ag) or gold (Au), and surface functionalities, such as 
stabilizing agents or surface charges. Their primary particle 
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size can be engineered to be less than 15  nm in diameter, 
facilitating passive diffusion across bacterial cell walls and 
other intracellular membranes, or larger than 50 nm to prolong 
cation leaching in biological or environmental matrices. If the 
antimicrobial activity of each property is assessed, safe and 
effective antimicrobial NPs can be developed.[6]

The evolution of nanotechnology, specifically in NP 
engineering, together with accumulating knowledge 
about infectious diseases, has driven significant progress 
in antimicrobial drug delivery. Substantial efforts have 
been invested in designing numerous NP‑based platforms, 
encompassing liposomes, polymeric NPs, dendrimers, and 
inorganic NPs [Table 1]. These methods have showcased their 
effectiveness in addressing bacterial pathogens by supporting 
targeted, responsive, and combinatorial antibiotic delivery, 
successful antimicrobial vaccination, and rapid bacterial 
detection. It is anticipated that continuous improvements in 
nanotechnology will result in more sophisticated antimicrobial 
delivery systems, thereby cultivating more effective, 
patient‑friendly, and cost‑efficient therapeutics, as well 
as improved detection techniques for a broad spectrum of 
infectious diseases.[7]

The appearance of antibiotic‑resistant bacterial infections, 
originating from acquired resistance and/or biofilm formation, 
warrants the establishment of novel and innovative therapeutic 
strategies.[8,9] Nanomaterial‑based therapies hold potential in 
confronting difficult‑to‑treat infections due to their ability 
to evade existing drug resistance mechanisms. Moreover, 
nanomaterials’ unique size and physical attributes empower 
them to target biofilms and surmount chronic infections. 
Furthermore, hybrid NPs and metal nanohybrids are novel 
suggestions to improve the gap between antimicrobial features 
and NP resistance in bacteria. Here, we underscore the general 
mechanisms through which nanomaterials target bacteria, 
thereby controlling infections linked to acquired antibiotic 
resistance or biofilms. Furthermore, we investigate the design 
aspects of these nanomaterials, how their antimicrobial 
mechanisms contribute to augmenting their efficacy, and the 
types and factors involved in the success of this mission.

Antimicrobial Features and Mechanisms
Antimicrobial NPs are a promising alternative to conventional 
agents, such as antibiotics and antifungals, due to their unique 
characteristics; they can be divided into metal, metal oxide, 

carbon‑based, polymeric, and lipid‑based NPs. These NPs 
can kill various types of germs effectively and are highly 
effective even at low concentrations.[10,11] Importantly, most of 
them are minimally toxic to human cells and tissues, ensuring 
a safe profile. For example, investigations have shown that 
metal oxide NPs like zinc oxide  (ZnO) exhibit selective 
antibacterial activity with minimal effects on human cells.[12,13] 
Antimicrobial NPs also have an extended shelf life and 
stability as well as the potential to overcome drug resistance, 
making them valuable in antimicrobial therapy.[14] AgNPs 
are broadly studied and used in antimicrobial applications 
because of their broad‑spectrum activity against bacteria,[15,16] 
fungi,[17,18] viruses,[19,20] and parasites.[21,22] AgNPs damage 
microbial cells by affecting membranes, DNA, proteins, and 
enzymes by releasing Ag+ ions.[23] They also enhance antibiotic 
effectiveness and reduce biofilm formation.[24,25] Similarly, 
AuNPs exhibit antimicrobial potential through interactions 
with microbial cells, generating heat or reactive oxygen 
species (ROS) that destroy the microbes.[26,27] Additionally, 
AuNPs can serve as carriers for other antimicrobial agents 
like antibiotics or peptides.[28] Copper NPs (CuNPs) constitute 
another category of metal NPs exhibiting antimicrobial 
attributes. They discharge Cu+/2+  ions that compromise the 
stability of the microbial cell membrane and metabolic 
processes. CuNPs can also induce oxidative stress and DNA 
damage within the microorganisms. Their antibacterial 
activity is particularly potent against both Gram‑positive 
and Gram‑negative bacteria as well as some viruses and 
fungi.[29,30] Titanium NPs  (TiNPs) primarily consist of 
titanium dioxide (TiO2), which serves as a widely employed 
photocatalyst.[31,32] Under ultraviolet or visible light exposure, 
TiO2 can generate ROS capable of oxidizing and degrading 
microorganisms.[33,34] Its antibacterial effectiveness extends to 
bacteria[35] and additionally to certain fungi[36] and algae.[37] 
Practical uses of TiO2 include self‑cleaning surfaces.[38] The 
exact ways that NPs kill germs are not fully known, but there 
are several possible ways to explain them.[2]

Mechanism of antimicrobial actions
NPs are receiving attention for their remarkable ability to 
destroy the cellular structure of pathogens through various 
mechanisms. To effectively act as agents, NPs need to 
reach the pathogens. NPs interact with pathogens through 
electrostatics receptor‑ligand binding, van der Waals forces, 
and hydrophobic/hydrophilic interactions.[39,40] Once NPs 
have gained access to the cell, they can enter through 
various types of endocytosis, such as clathrin‑mediated and 
caveolin‑mediated endocytosis, as well as phagocytosis 
and pinocytosis.[41,42] Metal and metal oxide NPs are able to 
inhibit pathogens by generating ROS  [Figure 1].[43] Certain 
metal NPs (e.g., Ag, Cu, and Zn) can release metal ions that 
disrupt essential cellular metabolic functions in microbes, 
including DNA, protein synthesis, and enzyme activity. These 
metal ions can also induce oxidative stress and generate 
ROS, damaging vital cellular components.[29,44] Other NPs, 
like Au, iron oxide  (Fe2O3), and TiO2, can generate heat or 

Table 1: Types of NPs

Organic NPs Inorganic NPs
Polymeric micelles AgNPs
Polymersome AuNPs
Dendrimer NPs FeNPs
Nanolipid carrier Calcium phosphate NPs
Liposome Mesoporous NPs
Nanoemulsion Quantum dots
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ROS when exposed to specific stimuli, leading to thermal 
or oxidative damage to microbes.[45] NPs such as carbon 
nanotubes, graphene oxide, metal NPs, metal oxide NPs, and 
chitosan can physically interact with the cell membranes of 
microbes, compromising their integrity and permeability. 
This can result in leakage of microbe cytoplasmic contents 
and loss of their cellular functions.[46,47] Additionally, NPs 
such as liposomes, polymeric micelles, and dendrimers can 
act as carriers for antimicrobial agents, enhancing solubility, 
stability, bioavailability, and specificity. They can also protect 
against degradation and resistance, enabling controlled 
release at the target site.[48,49] Therefore, NPs hold promise in 
combatting pathogens, with ongoing research and potential to 
address microbial threats and evolving challenges. Here, we 
will focus on metal and metal oxide NPs with antimicrobial 
applications: Ag, Au, Cu, and Ti. Varying mechanisms of 
action are described in Table 2. Microbes exhibit different 
infective mechanisms. Different virulence factors are presented 
and synthesized by pathogens to accomplish their infective 
survival and reproduction goals. Similarly, NPs have different 
mechanisms for inhibiting different pathogens such as bacteria, 
fungi, and viruses.

NPs express different mechanisms of action by DNA damaging 
for inhibiting bacterial virulence and bacterial growth, which are 
generally divided into two groups: oxidative and nonoxidative. 
Some of the NPs (e.g., Ag and Ti) are able to activate the oxygen 
and produce OH and RO ions. RO ions can destroy the cellular 
structure of bacteria by damaging the cell membrane and 
inhibiting bacteria proliferation.[51] Nonoxidative mechanisms 
contain a wide range of different cellular mechanisms. DNA 
damage by releasing heavy metal ions is one of the usual actions 
of NPs (e.g., Ag). Furthermore, heavy metal ions can destroy 
cellular membranes and leak the cell’s contents.[52,53] By damaging 
the membrane of bacteria, cellular organelles and membrane 
properties  (e.g., proton pump) will be dysfunctional.[54] As a 
result of these mechanisms, the function and reproduction of 
bacteria are inhibited.

Fungal infections in different organs of humans, in particular, 
the respiratory system, are dangerous and have great 
mortality.[55,56] The wonderful potency of NPs in the inhibition of 
fungi is demonstrated in different studies. For example, Panacek 
et  al.  demonstrated AgNPs’ effect on Candida spp.[57] They 
observed that AgNP is effective on the cell wall of the yeasts 
by inhibiting the synthesis of vital proteins in mitochondria or 
by depolymerization of ribosomes.[58] AuNP is also effective 
on intracellular pH by inhibiting the H+ ATPase and leads to 
cell death for low pH.[59] ZnO NPs are another effective NP 
on fungi and inhibit the permeability of the membrane by its 
activity.[60] ROS practically inhibit any live fungal cell from 
surviving. DNA‑related functions of other unicellular fungi‑like 
microorganisms are also weak against ROS.[61]

Most severe and highly contagious infections are related 
to viruses, with the main role in critical conditions of 
pandemics throughout history. In the first replication of the 
virus, NPs  (e.g.,  Fe2O3) can inhibit the RNA transcription 
and budding in viruses, particularly in H1N1 influenza.[62] 
AgNP is also one of the most efficient ways to inhibit the 
viral particles that are necessary for virus penetration. It 

Table 2: NPs’ different mechanisms of action on 
microbial cell structures, a quick view[50]

Type of NP Mechanisms of action
Ag Inhibit the DNA ability to replicate and damage 

cells in the G2 phase 
Au Inhibit the ability to bind the tRNA to the ribosome 
CuO By damaging the cell membrane, critical enzymes 

of bacteria are inhibited
TiO2 Generate the ROS and cause oxidative stress
ZnO Membrane dysfunction
MgO Harms the cell membrane and causes the structures 

inside to leak out
Al2O3 Leakage of intracellular content by damage to the 

cell membrane 

Figure 1: Mechanisms of antimicrobial action by NPs. In general, microbes are divided into three categories: bacteria, viruses, and fungi. In this picture, 
the antimicrobial mechanisms of NPs are presented in cellular scale. ROSs are one of the most important components in inhibiting microorganisms
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can be effective on human immunodeficiency virus (HIV)‑1 
by stopping the post‑entry life cycle, so it can prevent and 
control the viral attack in cells.[63] AgNP is potent to inhibit 
other viruses (e.g. monkeypox, hepatitis A virus (HAV)‑10, 
herpes simplex virus (HSV)‑1, coxsackie virus type B) by the 
obscure mechanism.[64] AgNPs have an inhibitory role in H1N1 
influenza by deactivating the viral penetration to host cells.[64] 
CuNPs demonstrated a good effect on the calicivirus by ROS 
generation in the Shionoiri et al. project.[65]

Effective Factors in Antimicrobial 
Features
The structure, composition, and properties of different NPs 
affect their antimicrobial activity and determine which 
antimicrobial mechanism they employ. As discussed earlier, 
metal NPs such as Ag, Au, Cu, and Fe can release metal ions 
that disrupt bacterial function.[66] Metal oxide NPs such as 
zinc oxides, titanium oxides, and copper oxides can damage 
bacterial cellular components by producing ROS. Some other 
NP types can physically interact with bacterial cells and 
disturb the membrane or cause mechanical damage. Besides 
the types of NPs that induce different mechanisms of action 
for antimicrobial effects, as discussed in the previous section, 
other factors such as shape, size, surface properties (roughness, 
zeta potential, and doping modification), and environmental 
factors  (pH, temperature, salinity, and presence of organic 
matter) can modify the physical and chemical properties of NPs 
and lead to various outcomes of microbial agents [Figure 2].

Size
The antimicrobial effects of NPs can also depend on their size. 
The optimal size of NPs varies depending on their type, but in 
general, NPs with smaller sizes have more surface area compared 
to their volume, which implies more likely interaction with the 
environment or the bacterial membrane. Smaller NPs can also 
produce more ROS and dissolve faster as well as release more 
metal ions. Some types of NPs can penetrate or interact more 
easily with bacterial cells when their size is smaller.[67‑69]

For instance, many studies showed that the microbial activity 
of AgNPs has an inverse relation with their size. AgNPs’ 
antimicrobial properties increase significantly when their size 
is below 10 nm. AgNPs’ hydrodynamic diameter below 6 nm 

enables their elimination through the kidney and consequently 
reduces the long‑term risk of damage due to prolonged 
exposure to silver.[70,71] These NPs can easily enter because 
of their small size to the bacterial wall and accumulation 
of ROS results in more intense destruction. Moreover, 
functionalized AgNPs with small or medium sizes strongly 
affect phagocytosis, autophagy, and mitochondrial electron 
transport.[70,72] Smaller selenium oxide (SeO2) and tellurium 
oxide (TeO2) NPs have higher antimicrobial activity because 
of higher production of ROS and a strong link between their 
antimicrobial activity and their dimensions.[73]

Shape
NPs’ shape is effective in their antimicrobial properties. NPs can 
have various shapes such as spherical, rod, cube, star, cluster, cone, 
pyramid, disk, and flower.[74] Some articles suggest that there is no 
direct relation between the shape of an NP and the antimicrobial 
effect; however, other articles show such an effect.[75,76] Different 
shapes can have different surface area to volume ratios, surface 
energies, crystal facets, and surface charges, the properties that 
can influence the interaction between them and the environment 
or the bacteria’s surface. Different shapes can also generate 
different types and amounts of ROS, dissolve at different rates, and 
release different amounts of ions.[77] Moreover, different shapes 
can have different physical interactions with bacterial cells. It is 
also suggested that the similarity between NP shape and receptor 
morphology of bacteria may enhance contact and interaction.[75]

S Tang and J Zheng studied the relation between the shape of the 
bacteria and the relation of the affection action with the shape 
of AgNP. They suggested that among the rod‑shaped, spherical, 
and truncated triangular against Escherichia coli (E. coli), the 
effectiveness and biocidal activity were the highest in truncated 
triangular AgNP. The next places were taken by spheres and 
rods, respectively. This was related to the number of truncated 
triangular facets which helped them to have higher surface 
binding and eventually higher cell uptake and cell death.[71] 
ZnO, an economical substitute for antimicrobial NPs such as 
Ag, also shows a relation between ZnO NP activity and shape. 
It was revealed that the ZnO in the shape of cuboidal shows 
higher antimicrobial activity than spherical and hexagonal 
structures.[75] Rajat K. Saha et al.[78] found that ZnO NPs with a 
flower shape can kill E. coli better than ZnO NPs with a hexagon 
shape that has gaps. These researchers used the methods of 
making ROS with light and releasing Zn2+ ion.

Surface properties
Some of the surface properties, such as roughness, zeta 
potential, and doping modification, can affect the antimicrobial 
properties of NPs. NPs with higher roughness can influence 
bacterial cells and their environment by having a higher surface 
area, surface energy, and surface charge. Moreover, rougher 
NPs can generate more ROSs, dissolve faster, and release 
more metal ions. They can also interact more physically with 
bacterial cells, depending on the NP type.[3,69] Roberta C. 
Souza et al.[79] used different methods to synthesize ZnO NPs 
and observed that these changes in synthesis modifications 

Figure  2: The antimicrobial activity of NPs is influenced by various 
factors, such as environmental conditions  (pH, temperature, salinity, 
and organic matter), surface properties (roughness, zeta potential, and 
doping modification), and morphological characteristics (shape and size)
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led to the NP’s geometrical alterations and therefore 
variety in inhibition of bacterial growth. For instance, the 
sonochemical method versus the classical physicochemical 
method was used to synthesize ZnO NPs, and the first 
method showed higher inhibitory properties against Bacillus 
cereus, Staphylococcus  aureus  (S.  aureus), Salmonella 
Typhimurium, and Pseudomonas aeruginosa (P. aeruginosa). 
The physicochemical modification can also affect the 
antimicrobial activity as it was shown that argon annealing 
reduced the ZnO NP’s antimicrobial activity against E. coli 
and S. aureus compared to plasma oxidation.[80]

The zeta potential of an NP is the measurement of electrical 
charge on the surface. This factor can influence antimicrobial 
activity by affecting the stability, aggregation, and interaction 
with bacterial cells or the environment. Based on the negative 
or positive charge of the bacteria, they can interact more 
with positive or negative NPs, respectively, and a higher zeta 
potential charge enhances the electrostatic attraction between 
NPs and bacteria in addition to producing more ROSs and 
dissolving faster and releasing more metal ions. This all again 
depends on the type of NP.[69,81] S Tang and J Zheng used a 
variety of coated AgNPs in a way that their zeta potential was 
increased from ‑38 mV to +40 mV against Bacillus spp.[71]

The process of introducing impurity or defects into the 
crystal structure of NPs is called doping modification. This 
phenomenon depending on the NP type and dopants has 
an impact on the band gap, surface charge, surface energy, 
and catalytic activity of NPs, thus increasing or decreasing 
generating ROS, dissolving and releasing metal ions, or 
interacting with the bacterial cells.[82,83]

Environmental factors
Environmental factors and conditions such as pH, temperature, 
salinity, and the presence of organic matter can also affect the 
antimicrobial properties of NPs. The acidity or alkalinity of a 
solution, called pH, can modify the surface charge, solubility, 
and metal ion release of NPs.[84] For instance, ZnO NPs have 
higher bacteriostatic action against S. aureus and E. coli in 
acidic pH environments than in neutral pH.[69]

Temperature can also influence antimicrobial activity by altering 
the aggregation and catalytic activity of NPs besides dissolution. 
It was demonstrated that CuNPs produce more Cu+/2+ ions and 
dissolve faster at higher temperatures, which enhances their 
antimicrobial activity, while at lower temperatures, they tend 
to aggregate more and release fewer ions, which reduces their 
antimicrobial activity. Furthermore, the generation of ROS is 
higher at higher temperatures, as shown by a study on TiO2 NPs 

for antimicrobial activity. However, the catalytic activity and 
ROS generation are lower at lower temperatures.[84,85]

The amount of dissolved salt or salinity can affect the 
antimicrobial effect of NPs by changing their stability, 
aggregation, and interaction with bacterial cells. It was reported 
that in a highly saline environment, AgNPs aggregate more 
and their surface charge is neutralized by the salt ions, which 
lowers their antimicrobial activity, while in a low‑salinity 
environment, they remain stable. Similar results were obtained 
in Fe oxide NPs.[84] Organic matter also has a similar effect as 
salinity and can cause changes in NPs’ stability, aggregation, 
solubility, surface charge, and interaction with bacterial cells. 
For example, ZnO NPs have higher antimicrobial effects in 
the absence of organic matter.[86]

Green synthesis of NPs
Plant‑based NPs (PBNPs) are a class of NPs derived from plant 
extracts, which act as both reductants and stabilizers. This 
method presents a more environmentally friendly and safer 
alternative to conventional techniques involving hazardous 
chemicals, excessive energy usage, and potential ecological 
risks. Plant extracts contain an array of phytochemicals, 
including polyphenols, terpenoids, alkaloids, and flavonoids, 
capable of reducing metal ions to their elemental state 
and stabilizing them in aqueous solutions. Under mild 
conditions, PBNPs can be synthesized by combining plant 
extracts with metal salt solutions. “Green synthesis” is a 
method for the preparation of plant extraction with the help 
of green chemistry that aims to eliminate the use of harmful 
substances in manufacturing [Figure 3]. The green synthesis 
process is characterized by simplicity, cost‑effectiveness, 
environmental compatibility, and scalability.[87‑89] In the 
realm of antimicrobial research, PBNPs exhibit diverse 
applications. They demonstrate exceptional antibacterial,[90,91] 
antifungal,[91,92] antiviral,[93,94] and antiparasitic properties 
against a wide range of pathogens.[87,95] Furthermore, PBNPs 
offer the potential to enhance the effectiveness of antibiotics and 
address the challenge of drug resistance.[96,97] Additionally, they 
can function as targeted drug delivery systems, enabling the 
controlled release of medications at specific infection sites.[98,99] 
Extensive investigations have demonstrated the antimicrobial 
capabilities of PBNPs against bacteria  (e.g.  E.  coli,[100,101] 
S.  aureus, and P.  aeruginosa),[101] yeasts such as Candida 
albicans[102] and molds such as Aspergillus flavus,[103] viruses 
including HSV and HIV,[93] and parasites  (e.g.  Leishmania 
donovani[104] and Plasmodium falciparum).[105] Noteworthy 
examples of PBNPs synthesized and assessed for their 
antimicrobial attributes include AgNPs,[106,107] AuNPs,[91,108] 

Figure 3: The green synthesis of NPs for antimicrobial applications. This figure illustrates the three steps involved in the green synthesis of NPs from 
plant extracts: extraction, synthesis, and delivery. The NPs can be used to fight against various microbial infections by targeting them specifically
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CuNPs,[109] and TiO2 NPs.[110,111] These PBNPs have different 
ways of killing microbes, such as disrupting the cell membrane, 
blocking the metabolic processes, producing ROS, triggering 
oxidative stress, and harming the DNA.[112]

Applications
By altering substances’ physical, chemical, and biological 
characteristics, nanotechnology opens up new possibilities for 
biological applications. Regarding this, several NPs have been 
found in recent years to be effective against a variety of diseases, 
including germs that are resistant to antibiotics. NPs can be 
employed in a number of applications, from antimicrobial 
synthetic fabrics to biomedical and surgical equipment, when 
they are implanted, loaded, coated, or applied to various 
materials.[113] NPs are utilized as nanocarriers for antibiotic 
administration, antibacterial coatings for implanted devices, 
medicinal preparations to prevent infections and enhance 
wound healing, and more.[114,115] Nano‑engineering materials 
are created by altering the surfaces of implants and medical 
devices to inhibit bacterial adherence and biofilm development. 
Next‑generation NPs for medical implants and devices are 
affordable and biocompatible antibacterial film‑based composite 
materials that offer a variety of applications, including implant 
or catheter coatings and wound dressings [Figure 4].[113]

Antibiotic design
Natural and synthetic antibiotics can be resisted by bacteria 
through various methods;[113,116] due to the difficulty and 
expense of creating an innovative antibiotic, there is a meager 
of original antibiotics in the market lately.[117] By leveraging 
common resistance mechanisms, including inactivating 
enzymes, lowering cell permeability, changing target sites 
or enzymes, and boosting efflux through additional efflux 
pumps, NPs can kill resistant bacteria.[118] NPs can be altered 
and combined with other antibacterial substances to increase 
their potency against resistant microbes.[117] NPs’ chemical 
characteristics allow for long‑lasting antibiotic adhesion to 
the target location and protection against enzymes.[119,120] 

Additionally, NPs and antibiotics work better together to 
combat bacteria, limit the growth of biofilms, and eliminate 
multidrug‑resistant microorganisms (MDRMs).[118,121] Making 
antibiotic NP conjugates is important to stop multidrug‑resistant 
harmful microbial infections.

NPs can eradicate bacteria by themselves or can carry 
conventional antibiotics to the target; in both cases, they are 
called “nanoantibiotics”.[1,114] As a result, they are known as 
“nanobactericides,” while “nanocarriers” are NP‑based systems 
that transport older antibiotics, such as dendrimers, polymeric 
NPs, metallic NPs, and liposomes, which were the first 
nanotechnology used for this.[45,122] Nanocarriers are NP‑based 
systems that can carry conventional antibiotics and enhance 
their properties of absorption and action. NPs are better than 
conventional antibiotics in many ways, such as killing more 
types of bacteria, having enhanced effects, resisting resistance 
mechanisms, and causing a reduction in side effects. To enhance 
their qualities of absorption/action, antibiotics can be connected, 
dissolved, wrapped, or confined into nanocarriers.[123]

Hybrid nanosystems of antibiotics
The discovery and availability of nanostructures increased the 
antibacterial activity of several mineral compounds. Cu, Ag, 
Au, Zr, and Ti oxides NPs are new antibacterial agents that 
have been able to solve the problem of MDRMs.[124] Studies 
suggest that combining metal NPs with antibiotics can improve 
their bactericidal efficacy.[125] The revealed bacterial effect 
will lead to a reduction in the required doses and a reduction 
in the toxicity of both agents for human cells.[126] In addition, 
the combination of metal NPs with antibiotic drugs preserves 
their ability to destroy bacteria resistant to them. However, 
the mechanism of antibiotic activation by metal NPs in hybrid 
nanosystems is not completely clear. These effects may be 
due to the high local concentration of antibiotic molecules on 
the surface of NPs due to their high surface‑to‑volume ratio, 
which causes multi‑capacitance effects. NPs act in three stages: 
membrane destabilization, pore formation, and intracellular 
fluid leakage.[124,127]

Figure 4: NP applications are divided into two categories: coating implants and medical applications. Drug delivery and antibiotic design are significant 
in the pharmaceutical sector, while the use of NPs in BC, wound dressings, and maxillofacial prostheses is significant in the coating implants sector
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Active antibacterial complexes of metal ions and antibacterial 
drugs are another possible mechanism of action of hybrid 
nanosystems based on the formation of antibiotics and metal 
NPs.[128] The presence of nitrogen and oxygen atoms in the 
chemical structure of the drug causes electron‑donating 
interactions and ultimately complex formation.[27] Both 
surface atoms  (ions) of NPs and metal ions released from 
the surface of NPs into the solution can participate in the 
formation of complexes.[129] Reducing the size and increasing 
the ratio of surface atoms in NPs may play a role in increasing 
bacterial activity.[130,131] Hybrid combinations of metal NPs 
and antibacterial drug molecules can cause an expansion of 
the bactericidal effectiveness range and restore the activity 
of antibacterial drugs. In addition to increasing synergy in 
antimicrobial activity, nanosystems can reduce dose‑dependent 
toxicity, the development of resistance, treatment doses, and 
the duration of treatment.[126,132]

Drug delivery
NPs have great potential for drug delivery applications. 
They can be utilized as carriers to deliver pharmaceuticals 
to particular human tissues or cells.[133,134] By adding reactive 
groups or molecules, such as antigens to the surface of NPs, 
the surface chemistry may be changed to target certain cell 
receptors.[135] Systemically administered cytotoxic drugs can 
damage the target tissue before reaching it. Low solubility in 
water and poor pharmacokinetics in the body are weaknesses 
of synthesized drugs at the global level.[136] To address this 
issue, NP‑based drug delivery systems (NDDSs) have been 
expanded to deliver therapeutic drugs further efficiently and 
selectively while avoiding damage to other organs caused by 
free forms of drugs.[137]

One of the most advanced technologies in the field of NP 
application is nanoscale drug design, which has many benefits, 
including the potential for modifying features including 
immunogenicity, bioavailability, diffusion, drug release 
patterns, and solubility.[138] Passive and self‑delivery are two 
ways of delivering drugs through nanostructures. Through 
the hydrophobic effect, drugs are passively integrated into the 
interior cavity of the structure. In targeting nanostructures to 
a specific location, desired due to the low concentration of 
pharmaceuticals contained in a hydrophobic environment, 
a small quantity of drug is released.[139] In the self‑delivery 
method, the desired drug release is directly conjugated to 
carrier nanostructured materials for easy delivery. In this 
method, the time of diffusion is very important because the drug 
does not reach the desired place or is removed swiftly from the 
carrier, and vice versa. If it is released from the nanocarrier 
system at the proper moment, its bioactivity and effectiveness 
will diminish.[140] In order to increase the pharmacokinetics, 
stability, and bioavailability of conventional antibiotics as well 
as their capacity to eradicate bacteria, certain nanomaterials 
are used as “antibiotic nanocarriers”.[141] Nanocarriers enhance 
antibiotic efficacy and minimize harm by reducing volume 
distribution, allowing maximum dosage, and causing bacterial 
cell death at lower concentrations.[134] NPs can be passively 

or actively targeted at sites of infection. Ligands that bind 
to diseased tissues or microorganisms as receptors can also 
be activated on nanocarrier surfaces. This latter approach is 
known as active targeting or ligand‑mediated targeting. These 
nanocarriers can improve cellular uptake, aiding in intracellular 
infection treatment.[142,143] Targeted therapy targets intracellular 
bacteria that would otherwise remain hidden from antibiotics, 
causing recurrent disease. Passive targeting uses nonspecific 
ligands, while inactive targeted NPs are selectively released 
at infection sites with increased blood vessel permeability.[144] 
Factors such as hydrophobicity, van der Waals forces, and 
static electrostatic attraction affect delivery efficiency, with 
electrostatic interactions improving effectiveness.

Another crucial component that makes use of nanomaterials or 
nanoformulations as drug delivery systems is active or passive 
drug targeting. In active targeting, drug delivery systems are 
combined with moieties, like antibodies and peptides. In active 
targeting, drug delivery systems are combined with moieties, 
like antibodies and peptides, to attach them to the receptors 
present in the target area. In passive targeting, the produced 
complicated drug carrier is carried to the target site through 
binding or affinity, which depends on variables like pH, 
temperature, molecular size, and shape as it circulates through 
the circulation. Membrane‑bound receptors on cells, lipids, or 
proteins on cell surfaces, as well as the cell membrane, make 
up the majority of the body’s targets.[139]

Coating of implants
NPs can be combined with different materials to form 
bionanocomposites with improved antibacterial capabilities, 
in addition to solo applications.[145] In this context, experts 
advise using wound dressings, prostheses, and bone cement 
as substitutes for conventional treatments and preventative 
measures for microbial infections.[146,147] Making coatings to 
create surfaces with antimicrobial and antibiofilm qualities 
is one of the uses of NPs.[148,149] When it comes to wound 
care, biomedical problems, and nanomedicine, NPs have the 
potential to be bactericidal and fungicidal.[150] Wound dressings 
developed using biocompatible, biodegradable polymers 
promote healing and protection against infection.[151]

Wound dressing
Polymer‑supported NPs for antimicrobial consumer goods, 
such as hydrogels for wound healing, have been developed.[152] 
TiO2 NPs interact with polymers, influencing nanocomposites’ 
chemical and physical characteristics.[153] Zhang  et al. used 
in situ‑produced TiO2 NPs in methacrylated gelatin hydrogel 
films.[154] Implants, wound dressings, and other things benefit 
from the cleanliness and antibacterial properties of AuNPs.[155] 
As materials for disinfection, AgNP dressings and solutions 
are created for cleansing wounds and scrapes.[156]

Bone cement
Bone cement  (BC) is a biomaterial commonly used in 
orthopedic operations to stabilize vertebrae, cure infections, 
fix prostheses, fill abnormalities, and replace dead spots.[157] 
Antibiotic‑loaded BC has not been found to reduce infection, 
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according to certain research.[158] When making antibacterial 
BC, AgNPs are employed in place of antibiotics.[159] The 
use of metals, particularly Ag, as an antibacterial strategy 
has demonstrated tremendous potential.[160] BC has been 
given an Ag+ ion, which displays antibacterial action without 
compromising the biomaterial’s cytotoxicity.

Maxillofacial prostheses
NPs are an effective therapy for bone infections due to their 
bactericidal and osteogenic qualities.[161] They can enhance 
the mechanical properties and antimicrobial effects of 
maxillofacial prostheses. Metal and metal oxide NPs are 
effective in treating MDRM infections.[162] NPs such as silicon 
oxide (SiO2), TiO2, Ag, and ZrO2 enhance dental materials like 
denture bases, composites, impressions, implants, ceramics, 
and maxillofacial prostheses.[158] Furthermore, they can modify 
bacterial metabolism and eradicate resistant microorganisms, 
such as AgNPs, which can enter biofilms by preventing gene 
expression.[163] To address microbial colonization that results 
in biofilms, metal NPs have been directly deposited on the 
metal implants by electrodeposition.[164]

Present Limitations
Efforts to harness the potential of NPs in fighting drug‑resistant 
bacteria and infections associated with biofilms have garnered 
significant attention. The need for new therapeutic approaches 
has accelerated the exploration of NPs’ antimicrobial properties. 
However, despite promising advancements, several challenges 
and limitations continue to hinder their widespread use in 
clinical settings. One crucial concern from a regulatory 
perspective is the safety and potential toxicity of NPs. These 
tiny particles possess complex physicochemical properties that 
can lead to unpredictable interactions with biological systems. 
As a result, a thorough assessment of their potential adverse 
effects is essential. To assess the possible negative effects of NP 
exposure on human health and the environment, comprehensive 
investigations are indispensable.[165] Furthermore, designing 
and formulating NPs for targeted delivery of antimicrobial 
drugs remains an ongoing challenge. Achieving controlled 
release, enhanced stability, and selective targeting while 
minimizing off‑target effects demands sophisticated engineering 
techniques and a deep understanding of the intricate dynamics 
between hosts and pathogens.[145,166,167] Another obstacle is the 
cost‑effective large‑scale synthesis of NPs with consistent 
quality and reproducibility. Overcoming these limitations 
necessitates the standardization of production protocols and the 
development of efficient fabrication techniques. By doing so, 
we can address the current challenges related to cost, scalability, 
and product uniformity.[168,169]

Despite these existing limitations, the future holds promising 
possibilities for the application of antimicrobial NPs. Innovative 
strategies, such as combination therapies, synergistic interactions 
with conventional antibiotics, and surface modifications to enhance 
stability and targeting, open up exciting avenues for further 
research. Additionally, advancements in nanotechnology‑based 

delivery systems, including nanocarriers and nanogels, offer 
prospects for the regulated and prolonged delivery of antimicrobial 
agents (324‑327).[170,171]

NPs resistance
NPs have demonstrated significant potential as antimicrobial 
agents that can enter the cytoplasmic membranes of pathogenic 
microorganisms and disrupt crucial molecular pathways.[113] 
However, the extensive use of NPs may also pose a risk of 
bacteria developing tolerance to them. This tolerance could 
undermine their efficacy and further exacerbate the global 
antibiotic resistance crisis. When referring to NP tolerance, we 
are indicating the bacteria’s capacity to survive or proliferate 
even when exposed to NPs that would ordinarily inhibit their 
growth. Various mechanisms enable bacteria to develop tolerance 
to NPs, such as altering their cell membrane permeability and 
alternations, efflux pumps, producing antioxidant enzymes, 
forming biofilms, phage conversion, and horizontally transferring 
genes. In some instances, NP tolerance can also lead to resistance 
against antibiotics as the same genes or mechanisms conferring 
tolerance to NPs can provide resistance against antibiotics as 
well. For example, the production of multidrug efflux pumps in 
bacteria induced by AgNPs can reduce the accumulation of both 
Ag ions and antibiotics within cells.[172‑174]

Different mechanisms for resistance in bacteria with different 
NP treatments have been introduced. For each mechanism, 
related gene(s) must be expressed. For example, efflux pump 
genes are marA, cusFCBA, and acrAB‑tolC.[175] Mutation in 
purR and tcyA genes leads to resistance in two generations of 
bacteria.[172] Making changes in structural and non‑structural 
proteins is a way to escape from NP toxicity for bacteria. 
Changes in YpsA, UgtP, OmpC, OmpF, RodZ, TolC, and SoxS 
proteins may affect the cell structure and shape of membrane 
proteins and finally appear in the resistance of bacteria to 
NPs.[176] A bacterium with one or more applications of the 
mentioned mechanisms is able to fight NPs and guarantee its 
life. Changes in DNA for generations and divides, and cell 
membrane proteins in one generation are employed by bacteria 
such as E. coli for an excellent escape from NPs.

Hence, it is crucial to monitor and inhibit the emergence of 
bacterial resilience in NPs, particularly in clinical settings 
where NPs are employed for infection control or treatment. 
Several strategies can help mitigate the risk of resistance 
to NPs, such as adjusting the dosage and frequency of NP 
exposure, combining NPs with other antimicrobial agents 
such as antibiotics or phytochemicals, and designing NPs 
that possess multiple modes of action or specifically target 
bacterial receptors.[176‑179] Moreover, further research is 
necessary to comprehensively comprehend the molecular 
mechanisms and epidemiology of bacterial resistance to 
NPs and to develop reliable methods for detecting and 
characterizing bacteria strains that are resistant to NPs. By 
doing so, we can guarantee the safe and effective application 
of NPs as antimicrobial agents, thereby preserving their value 
for future applications.
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Toxicity of NPs for human health
NPs, although effective in their ability to fight germs, deliver 
drugs, and create diagnostic or therapeutic images, can 
also pose risks to human health if one is not careful. These 
tiny particles can enter the body by various routes, such as 
inhalation, ingestion, dermal contact, or even injection.[180,181] 
Once inside, they can have a detrimental impact on the cells 
and organs. In the following section, we will examine the 
potential toxicity of certain NPs used in medicine.

The level of toxicity of NPs can vary significantly depending on 
their type and quantity. For instance, AgNPs, while effective at 
killing bacteria, can also damage cells and genes by releasing 
destructive agents. AuNPs are generally considered safe, but 
there are instances where they can trigger immune responses 
or provoke inflammation.[182,183] SiNPs can transport drugs 
effectively, but they can also lead to stress and respiratory 
issues.[184,185] ZnO and TiO2 NPs offer sun protection, yet if 
they penetrate the skin, they can cause damage due to the 
creation of ROS.[186]

Carcinogenesis of NPs has been proven by different studies. 
Although natural NPs such as extracellular vesicles (EVs) and 
some synthetic NPs such as SeNP are used for the treatment 
of cancer and demonstrated antitumor effects,[187] synthetic 
NPs such as metal‑ion‑based NPs (CuNP, nickel, and cobalt 
NPs)[188] are destructive for eucaryotic cells and can cause 
different cancers in high‑dose and long‑term exposure. 
Oxidative stress and ROS in eucaryotic cells are significant 
threats to their ability to change the signaling peptides, DNA, 
histones, proteins, and lipids.[189] Enhanced expression of 
phosphorylated Rad‑51, histone H2AX, and p53[190] shows 
DNA damage and uncontrolled replication of cells after 
exposure to NPs.

To ensure the safe utilization of NPs in medicine, it is crucial 
to conduct toxicity tests. This involves examining their 
properties, understanding the extent and method of exposure, 
tracking their distribution within the body, and studying 
how they interact with the molecules. Various models and 
approaches, such as human cells, animal studies, or computer 
simulations, allow us to comprehend the potential toxicity of 
NPs and develop measures to minimize their adverse effects 
on human health.

Future Perspectives and Growth of 
Application
NPs are revolutionizing medicine with applications in diagnosis, 
therapy, drug delivery, and tissue engineering with amazing 
antimicrobial effects. Antimicrobial feature of NPs in different 
applications of NPs will be effective and improve the function of 
NPs. Furthermore, NPs will be the best option for antibiotic design 
and delivery of antibiotics with enhancing the effect of antibiotics. 
Their large surface area, small size, and ability to interact with 
biological molecules overcome the limitations of conventional 
approaches. NPs also improve drug delivery efficiency and safety 
by protecting drugs from degradation, enhancing solubility and 
stability, and facilitating transport across biological barriers. 
They improve therapeutic effects by increasing drug enrichment 
at the target site, reducing toxicity and side effects [Figure 5]. 
NPs enable controlled release and exhibit stimuli‑responsive 
behavior.[166,191] Researchers are exploring ways to design and 
optimize NPs for various purposes, including green synthesis 
methods to create eco‑friendly NPs from plant extracts[192] and 
developing multifunctional NPs for simultaneous diagnosis and 
therapy.[193,194] Integration with technologies like microfluidics,[195] 
biosensors,[196,197] and artificial intelligence (AI)[198,199] expands 
their potential. However, challenges like biocompatibility, 
toxicity, immunogenicity, biodistribution, pharmacokinetics, and 
pharmacodynamics must be addressed before widespread clinical 
implementation. Extensive research is essential to establish the 
safety and efficacy of NP‑based medicine. The potential of NPs 
for medical applications is vast and offers immense potential 
for the advancement of healthcare. In the near future, we will 
achieve more success with NPs in medicine due to their incredible 
activities such as antimicrobial features.

Conclusion
We can find NPs to be beneficial materials that can assist 
us in dealing with microorganisms in different ways. 
Elements of NPs, such as size, shape, and other physical and 
physicochemical properties, are under attention due to their 
role in antimicrobial features and applications. The potential 
of NPs in antimicrobial applications in drugs from antibiotics 
to conjugated compounds for delivery and coating different 

Figure 5: Role of NPs in the future of medicine. NPs can be used for various purposes, such as enhancing the efficacy of antibiotics, delivering drugs 
to specific targets, providing thermal therapy, and improving the diagnosis and imaging of diseases. This figure shows some examples of how NPs 
can interact with different biological systems and technologies
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implants gives us a better world and life with less microbial role 
in health and diseases. In the 21st century, our ancient heritages, 
metals such as Cu, Fe, and Ag, with today’s technology and 
knowledge in nanoscience have shown good results in having 
a safe world and painless life for humans, especially those who 
are under surgery or afflicted with infections.
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