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Abstract: Graphene oxide (GO) was deposited on a cotton fabric and then thermally reduced to
reduced graphene oxide (rGO) with the assistance of L-ascorbic acid. The GO reduction imparted
electrical conductivity to the fabric and allowed for electrochemical deposition of Ag◦ particles
using cyclic voltammetry. Only the Ag◦/rGO composite coating imparted antibacterial properties
to the fabric against Escherichia coli and Staphylococcus aureus. Ag◦/rGO-modified fibers were free
of bacterial film, and bacterial growth inhibition zones around the material specimens were found.
Moreover, Ag◦/rGO-modified fabric became superhydrophobic with WCA of 161◦.

Keywords: electroconductive cotton; graphene oxide; electrochemical functionalization;
antibacterial activity

1. Introduction

Electroconductive textiles draw increasing attention because of their numerous poten-
tial applications including sensors, solar cells, and supercapacitors [1–4]. Electroconductiv-
ity can be achieved through coating of textiles with carbon nanoparticles, such as carbon
nanotubes or graphene materials (GM), including graphene or reduced graphene oxide
(rGO), which form conductive networks on fiber surfaces [3,5–8]. Despite the outstanding
properties of graphene [3], its use for modification of textiles is limited by difficulty of
obtaining stable aqueous dispersions applicable to hydrophilic natural fibers. In turn,
functional groups of graphene oxide (GO) facilitate its dispersion in water but adversely
influence its electrical conductivity, hence GO has to be reduced chemically or thermally
to rGO. Chemical reduction of GO often requires elevated temperature, 80–100 ◦C, and
a relatively long time, even several hours or days, whereas thermal reduction usually
demands even higher temperature and oxygen-free conditions [9–11].

In our previous studies, cotton fabric was made electroconductive by coating with
GO and its reduction at 220 ◦C, assisted with L-ascorbic acid or commercial antioxidants
used in the plastic industry, resulting in hydrophilicity or hydrophobicity of the fabric,
respectively [12,13]. It is worth mentioning that the decomposition of cotton occurs above
240–250 ◦C [14].

Presently, there is a growing demand for smart and intelligent garments, including
cotton cloth, that are electroconductive and able to store energy or communicate. In such
applications, antimicrobial activity can eliminate microbial colonization and reduce the
possibility of infection. GM particles exhibit antibacterial activity, dependent on their
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dispersibility, adsorption ability, number of corners and sharp edges [15], hence strongly
influenced by the lateral size, shape, number of layers, surface modification, agglomeration,
and dispersion. Three main mechanisms, recently postulated, include the action of sharp
edges, oxidative stress, and wrapping or trapping of bacteria due to the flexible thin-film
structure of GM. The action of the sharp edges, also called nanoknives, nanoblades, or
cutters, is believed to be crucial. The edges, acting as cutters, can mechanically disrupt
the cellular membranes and cause their integrity loss, e.g., [16–18], although it requires the
direct contact of the bacteria with GM sheets. Recently, to obtain an antibacterial material,
Han et al. [19] functionalized GO with hydrophilic polymers and used it as a vector for
silver (Ag) nanoparticles and sulfadiazine. Deposition of Ag particles on carbon nanotube-
coated fibrous materials, including cotton fabric, made them antibacterial [6,20,21], as
such particles act against bacteria and fungi, and are also antiviral [22,23]. Metal-based
nanoparticles are effective against a wide variety of microorganisms as their bonds to
biomolecules are non-specific [23–27].

However, only a few articles described modification of cotton fabric through chemical
reduction of GO and deposition of Ag [28–30]. It improved hydrophobicity and electrical
conductivity, but antibacterial activity was not reported. Recently, GO-coated linen and
cotton fabrics were made antibacterial through simultaneous chemical reduction of GO
and deposition of Ag [21]. The antibacterial properties of the fabric modified solely with
rGO were not examined.

In the present study, to make it electroconductive, cotton fabric was GO-coated and
then GO was reduced thermally to rGO. Ag◦ particles were deposited electrochemi-
cally on rGO-coated fabric with cyclic voltammetry, which allowed to monitor the re-
dox reactions. The composite Ag◦/rGO coating imparted antibacterial activity to the
fabric against the tested bacterial strains, Escherichia coli and Staphylococcus aureus, and
also superhydrophobicity.

2. Experimental Section

For further modification, white plain weave cotton fabric with 205 threads/10 cm and
295 threads/10 cm in the warp and weft direction, respectively, was used. It was 0.36 mm
thick, with a surface density of 145 g/m2. The fabric was cleaned by extraction [5].

To coat the fabric, 0.6 wt.% aqueous dispersion of GO was used from Graphene
Laboratories, Inc. (Calverton, NY, USA) (single layer > 80%, flake size of 0.5–5 µm).

Thermal reduction of GO on the fabric was assisted with L-ascorbic acid (C6H8O6),
(POCH, Poland, 98%). Silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7) (Avantor,
Poland, ≥99%) were used for electrochemical deposition of Ag◦ particles.

The aqueous dispersion of GO was diluted with water to decrease GO concentration
to 0.1 wt.% and was homogenized for 20–30 min at room temperature (RT) using ultrasonic
homogenizer HielscherUP 200S (Teltow, Germany). The dispersion was deposited on the
fibers by the padding method using a laboratory double-roll padding machine (BENZ,
Switzerland) with horizontally set squeezing rollers. The details of the padding procedure
are described elsewhere [12].

Before the reduction, GO-coated fabric was four times dipped in 0.1 wt.% aqueous
solution of L-ascorbic acid and next dried at RT. The reduction was carried out in a Mettler
Toledo Hot Stage FP82 (Greifensee, Switzerland) equipped with an FP90 temperature
controller. As previously described [12], GO-coated specimens, placed between microscope
glasses, were heated from RT to 220 ◦C at 10 ◦C/min, annealed for 1 min, and cooled
down to RT at 10 ◦C/min. In this way, rGO-coated fabric was obtained. The influence
of such thermal treatment on mechanical properties of the fabric was examined by us
previously [12,13].

Silver particles (Ag◦) were deposited on rGO-coated fabric with cyclic voltamme-
try using BioLogic SP-150 (Bio-Logic Science Instruments SAS, Claix, France) potentio-
stat/galvanostat, during five cycles in a mixture of aqueous solutions of sodium citrate and
silver nitrate, with a platinum (Pt◦) electrode and a silver chloride electrode (Ag|AgCl), as
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the counter and reference electrodes, respectively. The process was controlled and moni-
tored with EC-Lab Electrochemistry v11.32 software. The reduction of Ag+ ions occurred
in the voltage range of ±1.0 V vs. Ag|AgCl [20]. To remove Ag+ ions and salts formed
during the reaction, after the process the Ag◦/rGO-coated fabric was rinsed in distilled
water three times and dried at RT.

The Ag content was determined by thermogravimetric analysis (TGA), using TA
Instruments TGA 5500 (New Castle, DE, USA) during heating at 20 ◦C/min in air.

Surface electrical resistivity (R) of the fabric was measured using the four-wire method
with Keithley 2400C SourceMeter (Tektronix, Beaverton, OR, USA). Copper electrodes were
attached to the surface with silver-containing paste Dotite D-550 (Fujikura Kasei, Tokyo,
Japan), 1 cm apart. The measurements were repeated at least three times to obtain average
values of R.

The fabric samples were vacuum sputtered with a 10 nm gold layer using Quorum
EMS150R ES (Quorum Technologies, Laughton, UK), and then analyzed using a scanning
electron microscope (SEM), and also SEM with energy dispersive spectroscopy (EDS), JEOL
6010LA (Tokyo, Japan), at an accelerating voltage of 10 kV.

To determine water wettability, 5 µL distilled water droplets were placed on the
examined surfaces and water contact angles (WCA) were measured at 25 ◦C by means of a
RameHart NRL Goniometer 100-00-230 (Succasunna, NJ, USA) coupled to a camera and
optical system, using Drop Analysis program. The measurements were repeated five times
to obtain average WCA values.

Antibacterial properties of the fabric samples against Gram-positive Staphylococcus
aureus ATCC 6538 and Gram-negative Escherichia coli ATCC 8739 were tested using Antibac-
terial Activity Assessment of Textile Materials: Agar Diffusion Test (ISO20645:2004) [31].
15 mL of nutritive agar medium, Tripticase Soy Agar from Merck (Darmstadt, Germany),
were poured on Petri dishes. Inoculums of microbial cultures of 1–5 × 108 CFU/mL
(0.2 mL) were then poured on the agar media. Disk specimens, with 5 mm diameter, were
placed on the agar surface. After 48 h incubation at 37 ◦C, the contact zones under the
tested specimens were analyzed visually, and then the inhibition zones, if present, were
measured. The fibers were also analyzed by SEM, to evaluate the bacterial colonization.

3. Results and Discussion

The reduction of GO deposited on the fabric made the fabric electrically conductive.
When the temperature of the hot stage approached 220 ◦C, R diminished significantly but
at 220 ◦C it leveled off within 1 min at the value of 0.1 MΩ/sq. During cooling and further
storage at RT, R increased but finally stabilized after 24 h. Such behavior was observed
by us previously [12,13,32] due to partial reversibility of the reduction. Nevertheless, R
of 5.4 MΩ/sq was achieved, showing the presence of conducting 3D-network of rGO on
fiber surfaces.

SEM micrographs of GO and rGO-coated fibers are shown in Figure 1. Small thickness
and very good adhesion to fiber surfaces make the particles hardly visible on the fibers [13].
However, the areas without typical morphology of cotton fibers are discernible, shown in
the insets, which are suggestive of GO or rGO thin layers.

Reduction of Ag+ ions occurred on the rGO-coated surfaces, combined with nucleation
and growth of Ag◦ particles, which are visible in SEM micrographs in Figure 2a,b. EDS
analysis confirmed the presence of Ag◦ particles on rGO-coated surface, as shown in
Figure 2c. Reaction of silver nitrate with sodium citrate resulted in the formation of silver
citrate complex stabilized by carboxyl groups of citric acid, which prevented aggregation of
Ag◦ particles and enabled development of particles immobilized on the surface [33]. The
most effective complexing occurs when [citrate]/[Ag+] >> 1 [34]. Others [35] studied GO
electrochemistry and found that the reduction reactions occurred on edges of GO plates.
Thus, we postulate that the reduction of the complex and the formation of Ag◦ particles,
through nucleation and growth, could occur on edges or defects of rGO plates.
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Figure 1. SEM micrographs of cotton fabric: (a,b) neat, (c) GO-coated, (d) rGO-coated. 
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Figure 2. Ag◦/rGO-coated cotton fabric: (a,b) SEM micrographs, (c) EDS Ag mapping and spectrum,
(d) cyclic voltammetry profiles.

The voltammetry profile during the first and the second cycle, shown in Figure 2d,
exhibits one redox weak peak at −0.12 V attributed by others to reduction of hydroxyl
groups [36]. Most probably, it was related to residual hydroxyl groups of rGO, remaining
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due to its incomplete thermal reduction. Further reactions postulated in [36] were not
observed due to a small number of other functional groups on rGO surface and competitive
reactions involving Ag+ ions. During the next three cycles, a peak at −0.44 V evidenced
the reduction of Ag+ ions. The proposed mechanism of the formation of the Ag◦ particles
is shown in Scheme 1.
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Based on the results of TGA experiments, by taking into account the residue weight at
900 ◦C of Ag◦/rGO-modified fabric and rGO-modified fabric, the Ag content of 0.4 wt.%
was determined. The successful deposition of Ag◦ particles confirmed the formation of the
electroconductive rGO network on fiber surfaces and indicated that rGO-coated fabrics
can serve as electrodes in cyclic voltammetry. R of the fabric did not change after the
electrochemical modification and was equal to 5.35 MΩ/sq because Ag◦ was deposited
on the rGO as separate particles, which did not form any continuous network. However,
the Ag◦/rGO-modified fabric became superhydrophobic with WCA of 161◦, due to the
presence of hydrophobic Ag◦ particles on the surface, causing the lotus effect.

As seen in Figure 3, no bacterial growth inhibition zone was found around GO-coated
or rGO-coated fabric specimens. The growth inhibition zones of about 9 mm and 12 mm
for Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively,
were only observed around the specimens of Ag◦/rGO-coated fabric.

Ag◦ particles exhibit non-specific bacterial toxicity that impedes the bacteria resistance
development and also broadens the spectrum of antibacterial activity [37]. The main
activity mechanisms of metal nanoparticles or ions include attraction to bacterial cell
walls, disruption of the cell walls increasing their permeability, and disruption of cell
functions [23–25,37,38].

The absence of bacterial growth inhibition zones around specimens does not exclude
their antibacterial activity in direct contact with microorganisms. Therefore, SEM was
used to analyze the bottom surfaces of the tested fabric specimens. SEM micrographs of
bottom surfaces of cotton fabric specimens in Figure 4, modified and unmodified, show
that not only the neat fibers but also GO and rGO-coated fibers were inhabited by both
tested bacterial strains.
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Figure 4. SEM micrographs of bottom surfaces of cotton fabric specimens removed from agar after
48 h incubation: E. coli (a) neat fabric, (b) GO-coated, (c) rGO-coated, (d) Ag◦/rGO-coated, S.aureus
(e) neat fabric, (f) GO-coated, (g) rGO-coated, (h) Ag◦/rGO-coated.

According to the literature, there are three basic mechanisms of antibacterial activity
of GO. The first one, the most commonly observed, is the effect of sharp edges, known
as nanoblade effect. The nanoblades cut cell membranes causing their damage leading
to the death of bacteria [16–18]. The second one is oxidative stress caused by reactive
oxygen species, leading to bacteria DNA damage and mitochondrial dysfunction [39]. The
third mechanism reported, observed rather in solutions than in coatings, is wrapping or
trapping of bacteria by GO flakes, which causes their isolation from the environment [40].
The main mechanisms of antibacterial activity of rGO are related to the nanoblade effect
and oxidative stress [15]. In the current study, GO or rGO flakes adhering to cotton fibers
and lying flat on them did not expose sharp edges, and no wrapping or trapping of
bacteria was observed by SEM. Therefore, their antibacterial activity was greatly limited.
To achieve electroconductivity, a sufficient amount of GO particles had to be deposited on
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the fiber surfaces to form a 3D-newtork, which was then made electroconductive by GO
reduction. However, the formation of 3D-network did not require full coverage of fibers
with GO or rGO platelets. The uncovered areas, without coating, were prone to bacteria
colonization. In turn, the activity of Ag◦ particles is well known and includes the release
of Ag+ through oxidative dissolution, in which atmospheric O2 dissolved in water plays
a role of oxidizer [38]. Due to the diffusion of thus formed ions, the antibacterial activity
of Ag◦ modified surface does not require a close contact with microorganisms, which is
reflected in the bacterial growth inhibition zones around the specimens in Figure 3.

4. Conclusions

The cotton fabric was coated with GO dispersion using the padding method, and
then GO was reduced thermally to rGO with the assistance of L-ascorbic acid. Then, on
the electroconductive rGO network, Ag◦ particles were electrochemically deposited with
cyclic voltammetry, which enabled monitoring the redox reactions. Antibacterial activity of
the modified cotton fabric against Gram-positive Staphylococcus aureus and Gram-negative
Escherichia coli bacteria was tested using a disk diffusion method. Neither before nor after
the GO reduction the coated fabric exhibited antibacterial activity. This was reflected in
the colonization of the fibers by the bacteria, as shown by SEM, and the absence of the
bacterial growth inhibition zones around the fabric specimens. Only the Ago/rGO coating
imparted antibacterial properties to the fabric reflected in bacterial inhibition growth zones
around the tested specimens and the absence of bacterial films on the fibers. Moreover,
Ag◦/rGO-modified fabric became superhydrophobic with WCA of 161◦. The obtained
results on composite Ag◦/rGO coating of the fabric seem to be promising for obtaining
novel antibacterial materials.
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