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Abstract

Amplification and sequencing of conserved genetic barcodes such as the cpn60 gene is

a common approach to determining the taxonomic composition of microbiomes. Exact

sequence variant calling has been proposed as an alternative to previously established

methods for aggregation of sequence reads into operational taxonomic units (OTU). We

investigated the utility of variant calling for cpn60 barcode sequences and determined the

minimum sequence length required to provide species-level resolution. Sequence data from

the 5´ region of the cpn60 barcode amplified from the human vaginal microbiome (n = 45),

and a mock community were used to compare variant calling to de novo assembly of reads,

and mapping to a reference sequence database in terms of number of OTU formed, and

overall community composition. Variant calling resulted in microbiome profiles that were

consistent in apparent composition to those generated with the other methods but with sig-

nificant logistical advantages. Variant calling is rapid, achieves high resolution of taxa, and

does not require reference sequence data. Our results further demonstrate that 150 bp from

the 5´ end of the cpn60 barcode sequence is sufficient to provide species-level resolution of

microbiota.

Introduction

Microbiome profiling is the process of determining which organisms are present in an envi-

ronment, and their relative abundances. Profiling can be achieved by a “metabarcoding”

approach involving targeted PCR and sequencing a genetic barcode: a conserved gene that is

shared by many species and can be used to distinguish one from another [1]. Barcodes that

have been demonstrated to meet the criteria established by the International Barcode of Life

project [2] include the cpn60 gene in bacteria [3], ITS in fungi [4] and cytochrome c oxidase

subunit 1 (COI) in animals [2]. Barcodes are important tools for distinguishing species when

phenotypic differences are not conclusive; this is especially useful for prokaryotes. Barcode

sequences must be universally conserved, so that a wide range of species can be distinguished

by the sequence. The cpn60 gene encodes the 60 kDa chaperonin protein conserved in
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bacteria, eukaryotes and some archaea. A 549–567 bp region of this gene (the “universal tar-

get”, UT) has been shown to provide greater resolving power for bacterial species than the

widely used 16S rRNA gene sequences [3]. The cpn60 UT sequence can be amplified with uni-

versal PCR primers and the chaperonin database, cpnDB, provides a curated collection of cha-

peronin sequences that can be used for species identification [5,6]. Sequencing of cpn60 UT

amplicons from metagenomic samples has been used extensively in microbiome profiling

[7–20].

Metagenomic barcode amplicon sequence analysis relies on classifying sequence reads, usu-

ally involving formation of operational taxonomic units (OTU), where sequence reads with

similarity above a defined threshold are collapsed to a single unit, or other methods to ‘bin’ or

categorize reads. De novo assembly of OTU has been particularly useful for cpn60 barcode

sequences, allowing a high degree of taxonomic resolution of microbiota [12,13,21,22]. In de

novo assembly, sequence reads are assembled into contigs (OTU) without comparison to any

external reference. This approach has the advantages of preserving even minor sequence dif-

ferences among OTU that might otherwise be combined, and allowing for the discovery of

novel OTU that are not similar to previously documented sequences. Depending on the

assembly method, mapping the raw reads on to the assembled OTU sequences can be subse-

quently performed to determine OTU abundances [23]. More recently, reference mapping of

cpn60 barcode sequence reads was established to speed up processing large amounts of data

from microbial communities for which a comprehensive de novo OTU assembly is available

for use as a reference, as well as to allow comparison of OTU across studies given a common

reference set of OTU. In this procedure, sequence reads are mapped on to the reference

sequence database in order to ‘bin’ reads into OTU and calculate their abundances

[16,17,24,25].

Formation of exact sequence variants (‘variant calling’) using a denoising algorithm,

such as DADA2 for Illumina sequence data, presents another alternative for formation of

OTU, by distinguishing sequence errors from true variant positions [26,27]. Potential

advantages to this approach include preservation of minor, but informative sequence

differences among closely related OTU. Given the resolving power of the cpn60 barcode

sequence, variant calling may offer OTU resolution similar to that achieved with de novo

assembly, but more rapidly and with lower demand on computational resources. Another

significant advantage to this approach is that since exact sequence variants are given a

unique identifier based on the actual sequence, it is trivial to recognize identical OTU (vari-

ants) across multiple studies.

The objectives of the current study were to determine the length of cpn60 barcode sequence

needed for species-level identification, and to compare variant calling to previously established

methods for cpn60 OTU generation in terms of logistics, and effects on apparent community

composition. Results of this investigation will be applied in ongoing and future studies of

microbiomes using the cpn60 barcode sequence.

Materials and methods

Mock community and vaginal microbiome sequencing

A synthetic microbial community (the mixed vaginal panel, MVP) was generated as previ-

ously described [28] by combining 20 cloned cpn60 barcode sequences from vaginal isolates

in an equimolar mixture (S1 File). Plasmid DNA was extracted from E. coli with the EZ-10

Spin Column Plasmid DNA Miniprep Kit (Bio Basic Inc., Markham ON, Canada). Purified

plasmid DNA was quantified and diluted to 1 x 109 plasmid copies/μL with 10 mM Tris pH

8.5. Five μL of each plasmid solution was pooled to form the synthetic community. cpn60
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UT PCR was performed in duplicate with a 1:3 mixture of Illumina adapted primers M729/

M280:M1612/M1613 (S1 Table) as previously described [29]. Sequence library preparation

was conducted according to the Illumina MiSeq 16S Metagenomic Sequencing Library Prep-

aration (Illumina Inc., San Diego, CA) protocol with some minor changes as optimized for

the cpn60 UT: in PCR clean-up steps, 32.5 μL of magnetic beads were utilized. Libraries were

sequenced on the Illumina MiSeq plaform using a 500 cycle kit with 400 cycles for Read 1 (5´

end of the cpn60 UT) and 100 cycles for Read 2. Only Read 1 sequences were used in down-

stream analysis. This asymmetric, directional sequencing approach simplifies subsequent

bioinformatics steps since the length of the UT sequence prevents complete coverage with a

paired end 2 x 250 strategy.

cpn60 UT amplicon sequence data from vaginal microbiome samples (n = 45) generated

using the method described above were selected for analysis. Samples were from pregnant

women and were selected based on the availability of 75,000–96,000 raw reads per sample,

providing even levels of input in the different analyses. The original collection of the human

microbiome samples was approved by the University of British Columbia Children’s & Wom-

en’s Research Ethics Board (certificate no. H17-02253). All sequence data used in comparison

of methods is deposited in the National Center for Biotechnology Information (NCBI)

Sequence Read Archive and is associated with BioProject accession PRJNA625735.

Cutadapt version 1.15 [30] and trimmomatic version 0.32 (quality score 30, sliding window

of 4) [31] were used for amplification primer sequence removal and quality/length trimming,

respectively.

Variant calling

Filtered sequence reads were imported to QIIME2 [32], and DADA2 [27] with a specified

truncation length was executed. OTU (variant) sequences were exported from QIIME2 and

aligned using watered-BLAST [33] to cpnDB_nr, a non-redundant version of the chaperonin

database cpnDB [5,6] to identify the nearest neighbour (NN) for each read. cpnDB_nr consists

of cpn60 UT sequences with a single record for each species, and a preference for the type

strain if available (downloaded from http://cpndb.ca). Formed OTU sequences that were over

55% identical to anything in cpnDB_nr were considered to be cpn60 sequences and retained

for further analysis. The 55% cutoff was established in a previous study showing that OTU

with<55% identity to anything in the reference database correspond to host DNA sequences,

or off-target (non-cpn60) amplicons [34]. The feature table was also exported, and sequence

read counts were summed for OTU with the same NN species.

To evaluate an optimal truncation length for the cpn60 UT in terms of the quality of the

sequence classification and data retention, truncation lengths of 50, 100, 150, 200, 250 and 300

were tested with DADA2. The OTU sequences formed at each truncation length were aligned

to cpnDB_nr with watered-BLAST returning all significant hits [33]. An OTU sequence was

considered unambiguously identified if there was only one resulting match to the database

that did not tie with any other results.

De novo assembly

Trinity version 2.4.0 [35] with kmer size of 31 was used to assemble quality filtered reads into

OTU. OTU sequence frequencies were determined by mapping quality filtered reads on to the

assembled OTU sequences using Bowtie2 version 2.3.3.1 [36]. A feature table including the

OTU frequency (read count) in each sample was created by processing the SAM file output

from Bowtie2 using components of mPUMA [23]. Assembled OTU sequences were aligned

to cpnDB_nr to determine nearest neighbours (NN, best sequence match). For community
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membership analyses, read counts for individual OTU with the same nearest neighbour spe-

cies were combined.

Reference mapping

Filtered reads were mapped to cpnDB_nr or the VOGUE Reference Assembly with Bowtie2

version 2.3.3.1 [36]. The VOGUE Reference Assembly is a curated set of OTU previously gen-

erated from a de novo assembly of sequence reads from 546 vaginal microbiomes [14] and

labeled according to nearest neighbour in cpnDB_nr. The mock community (MVP) was also

mapped on to the 20 cpn60 UT sequences comprising the MVP. Following Bowtie2 mapping

to the selected reference database, a feature table containing OTU names and read abundances

was created as previously described [17].

Microbial community composition analysis

Alpha diversity metrics Shannon diversity and Chao1 estimated species richness were calcu-

lated for each sample as mean values over 100 subsamples with a sequence depth of 25000,

using QIIME2 [32]. Alpha rarefaction plots were visualized to confirm that adequate sampling

depth was achieved. The Kruskal-Wallis test by ranks was used to compare diversity and rich-

ness metrics resulting from the three methods, and if significant differences were found, post
hoc pairwise comparisons were done using the Wilcoxon rank sum test.

For initial comparison and visualization of the relationships among microbiome profiles

resulting from each OTU generation method in terms of species presence and abundance, a

Jensen-Shannon distance matrix was calculated in R using a custom distance function that cal-

culates the square root of the Jensen-Shannon divergence [37]. Hierarchical clustering was

conducted using the hclust function in R with the Ward 2 linkage method. Vaginal Commu-

nity State Type (CST) classification for vaginal samples was based on an assessment of the

proportionally dominant species in each sample, and comparison to previously published defi-

nitions of vaginal CST (CST I (Lactobacillus crispatus dominant), CST II (Lactobacillus gasseri
dominant or co-dominant), CST III (Lactobacillus iners dominant or co-dominant), CST V

(Lactobacillus jensenii co-dominant), CST IVa (variable, heterogenous mix) and CST IVc (G.

swidsinskii and/or G. leopoldii) [14,38,39].

Relationships among microbiome profiles generated for the vaginal samples were also

examined by PERMANOVA analysis. Feature tables containing read counts were first subject

to centre log-ratio (CLR) transformation to estimate the likelihood of true zero values in the

dataset (recommended for sparse, compositional datasets like microbiome profiles) using the

aldex.clr function of ALDEx2 [40]. Only OTU present in at least 10% of samples were retained

for downstream analysis. CLR-transformed data were converted to a propr object using the

aldex2propr function of ALDEx2 and principle component analysis (PCA) was performed on

the resulting propr object. PCA data were plotted as compositional biplots (ggbiplot) to visual-

ise similarity of microbiome profiles. To test for significant differences in microbiome profiles

by OTU generation method and between samples, the adonis function of vegan R package was

used to construct a Euclidean distance matrix from the CLR-transformed data and perform a

PERMANOVA on the resultant matrix. As PERMANOVA is sensitive to differences in disper-

sion of data within groups, it assumes a homogenous within-group dispersion; therefore, we

checked this assumption with the betadisper and permutest functions of vegan. The former

determines dispersion of data within each group while the latter permutes the dispersion data

to test for significant variability of within-group dispersion. Finally, post-hoc testing of permu-

tation data from permutest was performed using the TukeyHSD function to determine where

differences in dispersion lay.
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Results and discussion

Optimal length for variant calling

Variant calling using the DADA2 denoising algorithm in QIIME2 employs a truncation length

parameter to which all input sequence reads are trimmed uniformly. If a read is under that

length then it is not included in the process [27]. It was therefore desirable to first determine

an optimal truncation length to use with the cpn60 UT sequences, given input reads of up to

400 bp and the trade-off between minimum length requirement, and proportion of reads

retained in variant calling. This parameter would then be used for the analysis of the variant

calling approach when comparing other OTU generation methods.

To investigate the optimal truncation length for cpn60 variant calling with DADA2 without

the confounding effect of diminishing read numbers retained as the truncation length require-

ment increases, we generated a single set of input reads from the vaginal microbiome sequence

data that were all at least 300 bp in length after quality filtering. The Trimmomatic quality fil-

tering step was performed so that only reads above 300 bp with a quality threshold of 30 over a

4 bp sliding window would be used as a consistent input for DADA2 (n = 346526 reads). As

expected, there were more variants (OTU) produced with the greater sequence truncation

lengths (Table 1). This was expected given the way in which DADA2 determines variants; lon-

ger lengths mean the algorithm has more chances to detect differences. The OTU identified at

each truncation length corresponded to a decreasing number of nearest neighbours as more,

lower-quality matches were replaced with fewer, higher quality matches. This observation was

also reflected in the increasing proportion of OTU with a single best match. The proportion of

OTU unambiguously identified reached a plateau at ~90% starting at a truncation length of

150 bp (Table 1). Given the protocol with which the samples were sequenced, all reads start

from the 5´ end of the cpn60 UT. Any OTU aligned in the reverse direction are therefore con-

sidered nonsense and cannot be interpreted for species identification. By 150 bp, 100% of the

OTU were aligned in the correct direction (Table 1). Taken together, these results indicate that

150 bp from the 5´ end of the cpn60 barcode sequence is sufficient for microbiome profiling

with species-level resolution, consistent with the known features of the cpn60 barcode

sequence [3]. Using truncation lengths >150 bp could be desirable depending on the amount

of data available, but the obvious trade-off between minimum length and number of reads

retained for analysis should be carefully considered. The effect of loss of shorter reads is that

the overall sequencing depth of the samples is reduced, and thus the chance of detecting rare

organisms, which likely outweighs the benefit of the small increase in resolution that would be

achieved using greater lengths. Shorter read lengths could also decrease the cost of sequencing.

Additional support for the 150 bp length was obtained when we examined the pairwise

percent identities calculated from multiple sequence alignments of bacterial sequences from

cpnDB_nr (n = 5974), trimmed to lengths ranging from 50 bp to>500 (full length) from the

5´ end (S1 Fig). The mean and median percent identities of the pairwise comparisons for

Table 1. Variant calling results for vaginal microbiome samples processed at different truncation lengths with a consistent input of 346526 quality filtered reads.

Truncation length Number of OTU Number of NN % OTU single hit to cpnDB_nr % NN alignments in the correct direction

50 bp 189 150 71.4 83.6

100 bp 186 121 83.9 95.7

150 bp 189 107 90.5 100

200 bp 197 105 92.9 100

250 bp 206 105 91.3 100

300 bp 208 99 93.8 100

https://doi.org/10.1371/journal.pone.0235682.t001
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alignments of 150 and 200 bp were significantly lower than for any other lengths of the cpn60

barcode. This finding is consistent with that of a previous investigation demonstrating rela-

tively higher inter-species sequence differences in the 5´ end of the cpn60 barcode sequence

relative to the 3´ end [3].

Considering all the trade-offs of data retention, cost of sequencing, and species resolution, a

DADA2 truncation length of 150 bp was used for the subsequent comparison of methods of

OTU generation.

Accuracy of OTU generation methods for a mock community

The MVP synthetic community was used to determine accuracy of the three methods of

OTU generation, since unlike biological specimens the composition of the MVP is known.

Following amplification primer removal and quality trimming, 54702 and 40128 reads were

available for analysis from the duplicate sequencing runs, respectively. The number of OTU

produced from de novo assembly, variant calling (truncation length 150), and reference

mapping to either the VOGUE reference assembly or MVP sequences was determined (Fig

1). Reference mapping directly to the MVP gave the expected result of 20 OTU in both

library duplicates, confirming that all constituents of the mock community were amplified

and sequenced. When the MVP OTU were aligned to the MVP dataset using watered-

BLAST to identify nearest neighbours, they aligned to only 19 different species. This differ-

ence was not unexpected since two of the cloned cpn60 barcode sequences in the MVP (cor-

responding to Lactobacillus gasseri and L. johnsonii) are 97% identical. Reference mapping to

the VOGUE reference assembly was included in the comparison to determine the effect that

a larger and more diverse mapping database could have on the results, and we found that far

more OTU and NN were generated from the MVP sequence libraries using this approach

(Fig 1). Further analysis of the profiles showed that many of the ‘extra’ OTU that were pro-

duced were the result of reads mapping to highly similar sequences in the reference database.

This result illustrates a limitation of the reference mapping approach, which is dependent

Fig 1. Number of operational taxonomic units (OTU) and nearest neighbour species (NN) from each method applied to

the MVP mock community of 20 vaginal bacteria. The synthetic community was sequenced in duplicate in separate runs. For

each pair of duplicates, the lighter bar represents the first run and the darker bar the replicate. Methods: 1 = de novo assembly,

2 = reference mapping to MVP, 3 = reference mapping to VOGUE reference assembly, 4 = variant calling.

https://doi.org/10.1371/journal.pone.0235682.g001
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on the Bowtie2 algorithm to determine the best match for each read. Bowtie2 alignments

close in score may be chosen over one anther unpredictably, or if the program’s search limit

has been reached it may not determine a better alignment if one exists, which may lead to

changes in resulting profiles [36].

Variant calling and de novo assembly of MVP derived sequence reads both produced more

OTU than the 20 expected, up to 29 in the first replicate analysed by variant calling (Fig 1).

Additional OTU were most likely formed as a result of minor sequence difference due to PCR

errors in the barcode sequence amplification, which was not done with a proof-reading poly-

merase. Support for this explanation is also found in the observation that the ‘extra’ OTU

corresponded to the expected number of nearest neighbours in the second replicate. These

observations are typical for descriptions of microbial communities based on barcode amplicon

sequencing. OTU formed, especially rare ones, may be either real biological entities or artefacts

due to PCR and sequencing errors or the bioinformatic processes used to designate and iden-

tify them [41]. We reported all OTU in this analysis regardless of abundance, but a variety of

approaches have been applied to curation of OTU, including establishment of cut-offs based

on abundance or degree of co-occurrence among samples [42].

Taken together, the results of analysis of the MVP synthetic community sequence data

demonstrates that while variant calling and de novo assembly produced the expected commu-

nity composition, results of reference mapping were heavily influenced by the qualities of the

database used and could lead to a significant over-estimation of the number of species in the

community.

Effects of OTU generation method on vaginal microbiome profiles

Microbial community profiles derived from barcode amplification and sequencing include

both an inventory of the distinct OTU present as well as their relative abundance based on

sequence read numbers. Various statistical approaches and clustering methods can then be

applied to investigate beta-diversity within collections of samples with the goal of identifying

similarities and differences among samples that may be associated with defined groups in a

study, for example pre- and post-treatment groups, or subjects with different clinical outcomes

or phenotypes. To determine the effects of the different OTU formation, identification, and

frequency calculation methods on overall microbiome profiles, we exploited previously gener-

ated data sets derived from the vaginal microbiome (n = 45, 3.8 million raw reads). After qual-

ity filtering (q30, minimum length 150), 2 million reads were available for analysis with an

average of 44600 reads per sample. For de novo assembly and variant calling, sequence read

counts for OTU with identical nearest neighbours in cpnDB_nr were combined to facilitate

merging of the resulting read count tables with the output from reference mapping. Results of

de novo assembly, reference mapping, and variant calling (using a 150 bp truncation length)

were then compared to determine if the methods produce different results in terms of commu-

nity composition or different conclusions regarding the relationships among samples (alpha

and beta diversity).

There was no difference in diversity (Shannon) of the vaginal microbiome profiles deter-

mined with the three OTU generation methods (Kruskal-Wallis, P> 0.05), but there was a sig-

nificant difference in richness (Chao1) (Wilcoxon rank sum test, all pairwise comparisons

P< 0.02) (Fig 2), which was not unexpected given the characteristics of the methods. The rela-

tive overestimation of community richness resulting from the reference mapping approach

that we observed in the synthetic community sequencing experiment was also observed here.

Richness of communities based on OTU generated with variant calling was lower overall than

PLOS ONE Variant calling for cpn60 barcode sequence-based microbiome profiling

PLOS ONE | https://doi.org/10.1371/journal.pone.0235682 July 9, 2020 7 / 14

https://doi.org/10.1371/journal.pone.0235682


when OTU were generated by de novo assembly, which may reflect the removal of variants

determined by the DADA2 denoising algorithm to be the result of sequencing error [26].

The microbiome profiles of each sample determined with each method were subjected to

cluster analysis to determine if the OTU formation method affected the overall microbiome

profile and interpretation of the relationships among samples. In most cases, the three profiles

for each sample clustered together regardless of OTU generation method (Fig 3). Clusters of

samples corresponding to previously defined vaginal microbiome “community state types”

(CST) were identified based on visual inspection of proportional abundance of key taxa (S2

File). CST identified were similar to those reported in previous cpn60-based studies of vaginal

microbiota of Canadian women: CST I (Lactobacillus crispatus dominant), CST II (Lactobacil-
lus gasseri dominant or co-dominant), CST III (Lactobacillus iners dominant or co-dominant),

CST V (Lactobacillus jensenii co-dominant), CST IVa (variable, heterogenous mix) and CST

IVc (G. swidsinskii and/or G. leopoldii) [14]. Most (43/45) samples received the same CST clas-

sification regardless of the OTU generation method used, demonstrating that one would not

make a different conclusion regarding CST affiliation using any of the three methods tested in

this study (Fig 3, S2 File). The exceptions were sample numbers 19 and 29. In the results of ref-

erence mapping and variant calling for these samples, the most abundant OTU (accounting

for 35% and 37% of these samples, respectively) was identified as Gardnerella leopoldii, and the

second most abundant OTU (29% or 27%) was identified as Lactobacillus jensenii, consistent

with CST V. Although the proportional abundance of L. jensenii was the same in the de novo

assembly results for either sample, the most abundant OTU that accounted for 34% and 36%

of the microbiome profiles was identified as G. swidsinskii (S2 File). The cpn60 sequences of G.

leopoldii and G. swidsinskii are 97% identical to each other. It is surprising that this difference

alone would result in a change in the CST identification for these samples and so it is likely

that differences in detection of other lower abundance species also contributed.

Additional support for the lack of effect of OTU generation method on beta diversity was

observed when PERMANOVA analysis was performed. Given that this method is sensitive to

group dispersion effects in unbalanced study designs, we also tested for homogeneity of vari-

ance. PERMANOVA reported no significant clustering of the vaginal samples by OTU genera-

tion method (P = 0.986) (Fig 4A); however vaginal microbiome profiles significantly clustered

based on sample number (P< 0.001) (Fig 4B), meaning that for each sample, the assembly

method used to generate the profile did not significantly affect the community composition.

Fig 2. Comparison of alpha diversity metrics. Shannon diversity (A) and Chao1 (B) values were calculated for each

vaginal microbiome sample (n = 45) and each method of OTU formation. P values are indicated above the bars, � =

P< 0.02, �� = P< 0.001, ns = not significant.

https://doi.org/10.1371/journal.pone.0235682.g002
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Fig 3. Comparison of microbiome profiles resulting from three methods of OTU generation. Clustering of profiles

from vaginal samples based on nearest neighbour species abundance with Jensen-Shannon distance calculation and

hclust in R. In cases where the sample profiles from all methods cluster together, only the sample number is shown.

RM = reference mapping, DN = de novo assembly, VC = variant calling. Clusters corresponding to CST I-IV are

indicated, and are described in the text.

https://doi.org/10.1371/journal.pone.0235682.g003
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Fig 4. Assembly method does not affect apparent microbiome composition: Centre log-ratio transformation (CLR)

was performed on read count data from all 45 vaginal microbiome profiles generated using three different methods

(n = 135). PCA plots grouped by assembly method (A) or sample number (B) were generated and Euclidean distance

matrices of CLR-transformed data were analysed by PERMANOVA. Significant clustering of vaginal microbiomes by

sample, but not assembly method was evident from PCA plots and supported by PERMANOVA results (P< 0.001 and

P = 0.986, respectively).

https://doi.org/10.1371/journal.pone.0235682.g004
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No differences in dispersion between groups were seen for either assembly method or sample

number (P = 0.738 and 0.930, respectively).

Practical considerations and recommendations

All three approaches to OTU generation use open source software so there is no cost factor to

consider. When the real time for all processes in each OTU formation method applied to the

45 vaginal samples (conducted on a Dell PowerEdge R910 with 250 GB RAM running CentOS

Linux 7) were summed, reference mapping was the most time-consuming method (58.7 min),

followed by de novo assembly (23.7 min) and variant calling (16.1 min). Times for reference-

mapping are dramatically increased relative to the other approaches as the size of the reference

database increases.

The reference mapping approach can be efficient if a reference database customized for the

environment under study, but such reference sequence databases are not available for all bacte-

rial communities. The de novo assembly method has been used extensively for cpn60-based

microbiome profiling, but is slower, and requires more software dependencies than variant

calling. Taken together, the results of the current study suggest that both of these approaches,

especially reference mapping, may overestimate microbial community richness. Variant call-

ing was the fastest method we tested, and truncation lengths of at least 150 bp resulted in

species level identification of OTU. The use of denoising methods for variant calling has also

been suggested for detection of otherwise unobserved 16S rRNA sequence variants [26]. This

approach is particularly attractive for users with limited experience with data analysis, since it

can be easily installed and accessed within the QIIME2 package [32]. Another significant bene-

fit of variant calling is that unique identifiers are assigned to each variant making it simple to

compare detection of variants across studies.

The choice of method for sequence classification from barcode sequence-based studies of

microbial communities is influenced by a number of factors including pre-existing knowledge

of the environment under study, numbers of samples, sequencing depth, desired level of taxo-

nomic resolution, computational resources, and the need to pool results from independent

studies. Exact sequence variant calling with DADA2 using 150 bp from the 5´ end of the cpn60

barcode sequencing is a recommended strategy for rapid, relatively simple to execute, high-

resolution profiling of microbiomes that facilitates the comparison of microbiome profiles

across studies.
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