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Abstract: This paper includes a numerical investigation of a hybrid fluid containing 4% of Al2O3-Cu
nanoparticles in a lid-driven container. The upper wall of the container has a high temperature and is
movable. The lower wall is cool and wavy. An obstacle is set in the middle of the container for its
effect on thermal activity. The medium is permeable to the fluid, and the entire system is immersed in
a fixed-effect magnetic field. The digital simulation is achieved using the technique of Galerkin finite
element (GFEM) which solves the differential equations. This investigation aims to know the pattern
of heat transfer between the lateral walls and the lower wall of the container through the intervention
of a set of conditions and criteria, namely: the strength of the magnetic field changes in the range
of (Ha = 0 to 100); the chamber porosity varies in the range of (Da = 10−5 to 10−2); the strength
of buoyancy force is varied according to the Grashof number (Gr = 102 to 104); the cross-section
of the baffle includes the following shapes—elliptical, square, triangular and circular; the surface
of the lower wall contains waves; and the number changes (N = 2 to 8). Through this research, it
was concluded that the triangular shape of the baffle is the best in terms of thermal activity. Also,
increasing the number of lower-wall waves reduces thermal activity. For example, the change in the
shape of the obstacle from the elliptical to triangular raises the value of Nu number at a rate of 15.54%
for Ha = 0, N = 8, and Gr = 104.

Keywords: entropy generation; mixed convection; hybrid nanofluids; steady-state; heat transfer

1. Introduction

Thermal transfer in enclosed rooms remains one of the most important topics in recent
research due to its wide-ranging uses in many engineering applications. Among the most
important of these applications are the following: cooling systems in electronic devices,
building air conditioning and ventilation systems, heat exchangers, solar collators, nuclear
reactors, and so on. Studies on this research type are conducted through real experiments [1–3]
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or numerical simulations [4–6] using very advanced mathematical methods. Most recent
studies adopt the second type due to its speed in reaching a solution, as well as its low cost.
The results of these studies allow us to understand the thermal activity as well as to obtain
some coefficients needed in calculating the heat flux.

A lid-driven cavity is a technical term for a completely enclosed chamber containing a
fluid in which one of its walls undergoes horizontal motion [7–10]. Several studies have
been carried out on this subject for the purpose of presenting the elements that contribute to
raising the heat transfer between the internally retained fluid and the chamber walls [11–15].
In general, it is understood that thermal transfer is related to two main issues, namely, the
fluid’s thermal proprieties and the chamber’s geometrical shape.

In this part, we review the most important recent research and the results that have
been extracted to understand what was previously examined. Selimefendigil [16] studied
the lid-driven of the ordinary chamber. In the center of the room, there is an obstacle
of circular and elliptical cross-sections. The fluid used here is simple water to which
particulate elements of solid bodies have been added. It was discovered that microparticles
added to the water improve heat transfer by up to 120%. Ghasemi and Siavashi [17] used
the numerical method of lattice Boltzmann for the purpose of studying mixed convection
of nanofluid in a 3D room under the presence of the magnetohydrodynamic (MHD) effect.
The room walls are all straight, and there are no obstructions inside the container. The
study showed the possibility of a decrease in heat transfer by up to 30%. Alsabery et al. [18]
combined in their work a group of influences aimed at increasing the efficiency of the flow
in heat transfer. These elements are: fixing an obstacle in the center of the chamber, using
the small particles to strengthen the thermal proprieties of the fluid, and, finally, making
some geometrical changes on the walls of the container. It was found that the small particle
size strengthens the energy transfer of the fluid. Gibanov et al. [19] studied the thermal
activity in a lid-driven room of a square cross-section. In their work, the chamber’s lower
half is considered porous, while the upper half is simple. The results showed that the heat
transfer, in this case, is affected by a number of factors. Gangawane et al. [20] placed a
triangular obstacle in the middle of the lid-drive room. They then changed its place to
determine the effective location that allows for increasing thermal activity. Gangawane and
Manikandan [21] also tested working on the triangular shape of the obstacle, but this time
the walls of the obstacle are not thermally insulated but rather have a high temperature.
This work aimed to understand the process of cooling the obstacle by fluid movement
through the movable upper wall of the space. Alsabery et al. [22] conducted a study on
the effect of obstacle diameter on the dynamic comportment of the fluid and its retroactive
effect on thermal activity. Alsabery et al. [23] incorporated the effect of the cylinder’s
diameter and changed the shape of the chamber wall from regular to zigzag.

In fact, there are still a large number of recent researches that are closely related to the
topic [24–40]. In a nutshell, all these researches aim to find the most useful way to improve
the heat transfer within the lid-driven room. To achieve this, some researchers resorted to
improving the proprieties of the ordinary fluid by adding some very fine solid particles.
Others changed the geometric shape of the room walls, i.e., from a simple wall to a wall
containing zigzags and ribs. Also, a team of researchers has included some obstacles inside
the room. Finally, a class applied some external forces to the system, such as the effect of
the magnetic field.

Through our observation of the previous research, we wanted to address a study that
combines all of the above because of, as noted, the absence of work that combines the effect
of all the porosity of the space and the presence of an obstacle inside the room in different
forms for a wavy wall of the chamber and under the influence of both thermal buoyancy
and Lorentz forces. In addition, there are works focused on using nanofluids to enhance
thermal proprieties [41–56]. These works witness the combination of nanofluids’ thermal
proprieties and a magnetic field’s effect (magnetohydrodynamics).

In this part, we review the most important recent research and the results that have
been extracted to understand what was previously examined. Selimefendigil [16] studied
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the lid-driven ordinary chamber. In the center of the room, there is an obstacle of circular
and elliptical cross-sections. Based on what we saw in the previous research, we wanted
to achieve a study that combined all of the above. This is because there has not been any
work that combines the effects of all the holes in the space and the presence of an obstacle
inside the room in different ways for a wavy wall of the chamber and under the influence
of both thermal buoyancy and Lorentz forces.

As a result, this work is about a lid-driven room with a square cross-section, with a
thermally insulated obstacle of various cross-sections (elliptical, square, triangular, and
circular) in the middle. The bottom wall of the container is wavy and has an elevated
temperature, and the lateral sides have a low temperature. The chamber contains water
with 4% of nanoparticles, and it has permeability while the system is under the magnetic
field’s influence. The work aims to show how the nanofluid transfers the thermal energy
from the hot wall towards the cold sides under the impact of the studied elements.

This work examines some points that were not touched upon before, which are:

• Studying the porosity of the medium by changing the value of the Darcy number (Da);
• Changing the shape of the cross-section of the obstacle of the lid-driven room;
• A change in the strength of the magnetic field, according to the value of the Hart-

mann number;
• A change in the value of the Grashof number and a change in the effect of thermal

buoyancy strength;
• The impact of the wave number of the lower wall;
• Knowing the conditions that allow the strengthening of heat transfer; and
• Identify areas where the flow is stopped (stagnated), in order to avoid.

The results of this research expand the understanding and support the results of
previous works. Also, some value of these results can be extracted for use in engineering
applications. Indeed, this type of research can be applied in many engineering fields,
including cooling systems in electronic devices, special thermal exchangers of limited use,
medical drug manufacturing, and others.

2. Physical Model and Appropriate Mathematical Models

A permeable medium is considered a defined mechanism. Consider the steady 2D,
forced convection flow of water-driven Al2O3-Cu nanoparticles enclosed in a wavy chamber.
The upper surface (Y = 1) of the cavity is divided into parts (0 ≤ X ≤ 1 and 0.5 ≤ X ≤ 1)
that are moving with a velocity of U0. The lower wavy wall of the cavity is heated with
temperature (T = TH), and the remaining two sides are kept cold (T = TC) with zero
velocities. A differently shaped (elliptic, cylindrical, square, or triangular) obstacle is placed
inside. The configuration of a physical model is presented in Figure 1.

Figure 1. Physical domain and mesh.
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3. The Governing Equations

The equations that govern the physical problem under consideration (Equations (2)–(4))
are the continuity, momentum, and energy equations [53]. These equations read:

∂u
∂ x

+
∂v
∂ y

= 0 (1)

ρn f

(
u

∂ u
∂ x

+ v
∂u
∂ y

)
= −∂ P

∂ x
+ µn f

(
∂2u
∂ x2 +

∂2u
∂ y2

)
−

vn f

K
u− CF√

K

∣∣∣→v ∣∣∣u (2)

ρn f

(
u

∂v
∂x

+ v
∂v
∂y

)
= −∂P

∂y
+ µn f

(
∂2v
∂x2 +

∂2v
∂y2

)
−

vn f

K
ν− CF√

K

∣∣∣→v ∣∣∣ν
+ρn f βn f g (T − Tc)− σn f B2v

(3)

(
ρCp

)
n f

(
u

∂ T
∂ x

+ v
∂T
∂ y

)
= kn f

(
∂2T
∂ x2 +

∂2T
∂ y2

)
(4)

where
→
V, ε, K, and CF are the velocity vector, the porosity, the permeability, and the Forch-

heimer coefficient, respectively. Also, g, ρn f , and βaf are the gravity, the density, and the
thermal expansion coefficient, respectively.

The following thermophysical characteristics were employed in the current work:

density ρn f = (1− ϕ)ρ f + ϕρP (5)

heat capacity
(
ρCp

)
n f = (1− ϕ)

(
ρCp

)
b f + ϕ

(
ρCp

)
P (6)

thermal expansion coefficient (ρβ)n f = (1− ϕ)(ρβ) f + ϕ(ρβ)P (7)

electrical conductivity (σ)n f = (1− ϕ)(σ) f + ϕ(σ)P (8)

thermal conductivity kn f = kb f

(
4.97 ϕ2 + 2.72 ϕ + 1

)
(9)

dynamic viscosity µn f = µb f

(
123 ϕ2 + 7.3 ϕ + 1

)
(10)

Equations (5)–(10) [51] make use of the constants given in Table 1.

Table 1. Thermophysical characteristics at 293 K [41] and [46].

Material ρ
(kg/m3)

Cp
(J/kg k)

µ×106

(Pa s)
β×105

(1/k)
k

(W/m k)
σ

(S/m)

Alumina (Al2O3) 3970 765 - 0.85 25 10−10

Water 997.1 4179 695 21 0.613 0.05

Dimensionless forms of the governing equations were obtained by using cavity length
L and lid-driven velocity U0:

X =
x
L

, Y =
y
L

, U =
u

U0
, V =

v
U0

θ =
T − TC
Th − TC

, θs =
Ts − TC
Th − TC

P =
p

ρn f U2
0

, Pr =
v f

a f
, Ri =

Gr
Re2 ,

(11)

The Richardson number is given by:

Ri = Gr/Re2
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Then, the non-dimensional governing equations can be written as:

∂U
∂X

+
∂V
∂Y

= 0 (12)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+
1

Re
µhnf
µ f

ρ f

ρhnf

(
∂2U
∂X2 +

∂2U
∂Y2

)
− Pr

Da
U − CF√

Da

∣∣∣∣→V∣∣∣∣U (13)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+
1

Re
µhnf
µ f

ρ f

ρhnf

(
∂2V
∂X2 +

∂2V
∂Y2

)
− Pr

Da
V − CF√

Da

∣∣∣∣→V∣∣∣∣V
+
(ρβ)hnf
ρhnfβ f

Riθ −
σn f Ha2V

ρn f

(14)

U
∂θ

∂X
+ V

∂θ

∂Y
=

αhnf
α f

1
PrRe

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
(15)

The non-dimensional form of boundary conditions associated with Equations (12)
and (15) read:

For the lower wavy hot wall:

U = V = 0, θ = 1, 0 ≤ X ≤ 1, Y = 0 (16)

For the cold upper wall:

U = 1, V = 0, θ = 0, 0 ≤ X ≤ 1, Y = 1 (17)

For the left and right walls:

U = V = 0,
∂θ

∂X
= 0 (18)

at the concentric surface,

U = V = 0,
∂θ

∂n
= 0 (19)

The local Nusselt number calculated at the lower wavy hot wall reads:

Nus = −
kn f

k f

(
∂θ

∂Y

)
Y=0

(20)

The average Nusselt reads:

Nun f =
∫ 1

0
NusdY (21)

The entropy production reads [29]:

S =
kn f

T2
0

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
]
+

µn f

T0

[
2

((
∂u
∂x

)2
+

(
∂v
∂y

)2
)
+

(
∂u
∂x

+
∂v
∂x

)2
]

(22)

Local entropy production non-dimensional form reads:

SGEN =
kn f

k f

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
]
+

µn f

µ f
Nµ

[
2

((
∂U
∂X

)2
+

(
∂V
∂Y

)2
)
+

(
∂2U
∂Y2 +

∂2V
∂X2

)2]
+ Nµ

σn f

σf
Ha2V2 (23)
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where

Nµ =
µ f T0

k f

(
α f

L(∆T)

)2

Denotes the irreversibility distribution ratio and SGEN = Sgen
T2

0 L2

k f (∆T)2 . The terms of

Equation (27) can be separated into the following form:

SGEN = Sθ + Sψ + SB (24)

where Sθ denotes the entropy production resulting from heat transfer irreversibility (HTI),
Sψ, denotes the entropy production resulting from fluid friction irreversibility (FFI), and
SB denotes the entropy production resulting from magnetic field impacts:

Sθ =
kn f

k f

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
]

(25)

Sψ =
µn f

µ f
Nµ

[
2

((
∂U
∂X

)2
+

(
∂V
∂Y

)2
)
+

(
∂2U
∂Y2 +

∂2V
∂X2

)2]
(26)

SB = Nµ
σn f

σf
Ha2V2 (27)

The Bejan number reads as:

Be =

∫
SθdXdY∫

SGENdXdY
(28)

In fact, the equations for the thermal proprieties were adopted based on the foregoing
works, such as [42] and [46].

4. Method of Solution

The dimensionless governing equations of Equations (12)–(15) regulated by the as-
sumed boundary conditions of Equations (16)–(20) are solved by the Galerkin weighted
and finite element resolution techniques. The adopted Galerkin weighted residual method
is employed to handle the governing equations into a constitution of integral mathematical
equations. The first step is the discretization process of the computational domain into
small triangular elements, as illustrated in Figure 1. Lagrange triangular finite elements of
multiple shapes are applied to each concerning flow parameters inside the computational
region. The residuals for any conservation equation are reached by replacing the approxi-
mations of the dimensionless governing equations. To explain the nonlinear expressions
in momentum equations, the Newton–Raphson iteration algorithm is employed. Conver-
gence concerning the solution is only adequate if the following convergence criteria for the
relative error of each variable are achieved:∣∣∣∣∣Γi+1 − Γi

Γi+1

∣∣∣∣∣ ≤ η

where i indicates the iteration value and η represents the convergence criterion. In this
numerical study, the convergence criterion was defined as η; = 10−6.

Validation and Grid Independence

Grid independency is checked by testing the effect of the mesh size on the average
Nusselt number for several mesh configurations (Table 2), and a grid size of 40,600 is
selected. To assure the accuracy of the numerical method of the adopted code, the flow
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behavior is represented by streamline, the thermal behavior is represented by an isotherm
that is compared with the former numerical research published by Khanafer et al. [57].
Figure 2 shows the comparison between the results for the profile dimensionless temper-
ature. Comparing the results, it is noted that there is a great agreement between them.
Accordingly, it can be said that the method adopted in this work is very accurate.

Table 2. Grid sensitivity check for the case 5 (Ha = 0, ϕ = 0.04, Da = 10−2, and Ra = 105).

Number of
Elements 940 1534 2442 10,920 40,600 43,900

CPU Time (s) 30 45 50 66 72 120

Nuavg 8.8197 9.1230 9.3964 10.299 11.207 11.200

ψmax 2.4309 2.4309 2.4437 2.4504 2.451 2.4520

1.0 

0.8 

(l) 

.3 0.6 

(l) 
0.. 

ffi 0.4 

0.2 

0.0 

0.0 0.2 

T 

-- Present model 

T Khanafer et al 

0.4 0.6 

X/H 

0.8 1.0 

Figure 2. Dimensionless Temperature Distribution for (Ra = 105 and Pr = 0.7) [57]. Reprinted with
permission from Elsevier (2003). Copyright 2003.

5. Results and Discussion

We mention here that the studied physical field consists of a tightly closed room filled
with water and a small percentage of particles of Al2O3-Cu (nanoparticles) of 4%. The
upper wall moves at a constant speed and has a low temperature, while the lower wall has
a high temperature and wavy form. An obstacle is inserted in the middle of the room. This
investigation aims to determine the effect of some pertinent factors on the heat transfer
between the hot wall and the cold one.

Remember also that the fluid inside the container moves due to the following effects:
the horizontal movements of the wall move with it the neighboring fluid layers, and then
the movement gradually moves between the neighboring fluid layers due to the adhesion
resulting from the viscosity of the fluid; the second factor is that cold fluid spots become
heavy due to their condensation and this causes them to migrate downwards, while hot
spots are lighter and this allows them to move upwards. This successive transition of hot
and cold spots produces a free flow. When the fluid motion due to the first factor combines
with the second, they form a mixed motion. Applying this mixed motion, the heat transfer
is called mixed convection.
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Figure 3 reflects the nanofluid’s thermal, dynamic and energetic behaviors in terms
of the change in the lower wall wave number for Gr = 103, Ha = 0, and Da = 10−2. The
cross-section in this case of the obstacle is circular in shape. Through the fluid motion
contours (streamlines), it is shown that there is a circular flow arising inside the chamber.
The center of this circular motion is just above the baffle. It can be seen that the high wall
wave number leads to the obstruction of the flow on the lower side, and this reduces its
velocity. This effect causes a decline in a thermal distribution near the bottom wall, i.e., we
find a decrease in the temperature gradient in terms of the increase in the wave number,
and, i.e., we can conclude here that an augmentation in the wave number reduces thermal
activity. This analysis can also be verified by the entropy generation values that appear
on the upper side of the container on the right and on the lower side on the left. That
is, in these areas, the movement of the fluid elements is very important; this makes the
energy distribution here important. Through Figure 3, it is clear that the wave shape of
the bottom of the chamber makes the movement of the nanofluid particles more difficult.
Therefore, a decrease in flow velocity is observed, which decreases both heat transfer and
entropy generation.

Figure 4 explains the effect of thermal buoyancy strength on flow movement and
its retroactive influence on thermal transfer. Therefore, the streamlines, isotherms, and
isentropics are represented in terms of Gr (102, 103, and 104) for Ha = 0, Da = 10−2, and
N = 8. The circular form is selected for the insulated obstacle. Figure 4 enables us to
conclude that the greater the value of Gr, the greater the intensity of buoyancy impact,
and this is what makes the velocity of the flow important in the space. Also, the velocity
of the flow leads to the deviation of the center of the rotation of the flow downwards.
As for the thermal pattern (isotherms), an increase in Gr value increases the temperature
gradient near the bottom side of the container, reflecting positivity on the thermal transfer
process between the wavy wall and the fluid elements. As for the contours of isentropic,
the expansion of the total entropy diffusion in terms of Gr values is observed, and this
is, of course, a result of the increase in the fluid velocity due to the force of buoyancy. It
can be summarized that increasing the value of Gr increases the density of the cold spots
and increases the dilation of the hot spots of the fluid, which makes them move rapidly.
It can be concluded that simply raising the value of the Gr number increases the effect of
buoyancy force and, therefore, an increase in the speed of the nanofluid particles’ transfer,
and this is what makes the thermal transfer and entropy generation more effective.

Figure 5 depicts the effect of the increase in the intensity of the magnetic field on the
movement of the nanofluid particles, thermal diffusion, and the distribution of entropy
generation. The presence of a magnetic field produces a Lorentz force that acts opposite to
the buoyant force. Therefore, the appropriate contours are, respectively, shown in terms of
Ha number for N = 8, Gr = 103, and Da = 10−2; the cross-section always remains circular.
Therefore, we note that the flow movement is concentrated only in the upper face near the
moving wall. Also, the greater the value of Ha, the greater the contraction in the size of the
circular region of the flow. This decrease in the flow speed, especially near the hot wall,
resulted in a decrease in the resulting temperature gradient and total entropy generation,
as shown in the appropriate elements of Figure 5.

Figure 6 describes the effect of the medium permeability on thermal activity and the
dynamic model of the motion of the fluid particles. It is known that raising the Da number
increases the permeability of the space and accordingly decreases the resistance of the
medium to the flow of the fluid, which makes the fluid velocity better. So the streamlines
are depicted in terms of Darcy number for N = 8, Gr = 103, and Ha = 0, and for a circular
form. Based on this, an increase in temperature gradient is observed near the hot wall,
which reflects positively on the relationship between Darcy numbers (permeability of the
space) and thermal activity.
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Figure 3. Distribution of streamlines, isotherms, and isentropic contours for various undulation
numbers N at Gr = 103, Ha = 0, and Da = 10−2.
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Figure 4. Distribution of streamlines, isotherms, and isentropic contours for various Gr numbers at
N = 8, Ha = 0, and Da = 10−2.

The baffles’ form is very important in directing the flow, which hinders its progress or
helps it. Figure 7 shows the effect of the baffle’s cross-sectional shape (circular, elliptical,
triangular, or square) on the thermal and dynamic comportments of the hybrid nanofluid.
The effect of this change is made for the following values Da at Gr = 103, N = 8, and Ha = 0.
From Figure 7, we note that the path of the fluid is affected by the shape of the cross-section
of the baffle. The flow velocity is considered for the triangular and the square shapes. Also,
the temperature gradient near the hot wall is considered for the triangular shape and, then,
the square shape. The triangular shape allows for more quantity generation of entropy,
followed by the square shape. The same goes for the entropy generation.
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Figure 5. Distribution of streamlines, isotherms, and isentropic contours for various Hartmann
numbers Ha at Gr = 103, N = 8, and Da = 10−2.
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Figure 6. Distribution of streamlines, isotherms, and isentropic contours for various Darcy numbers
Da at Gr = 103, N = 8, and Ha = 0.
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Figure 7. Distribution of streamlines, isotherms, and isentropic contours for various cases Gr = 103,
N = 8, and Ha = 0.

Figure 8 represents the developments in the mean values of Nu number of the hot wall
in terms of the previously studied and mentioned elements. In fact, the Nusselt number
defines the ratio between the heat transfer caused by the movement of the fluid’s particles
(convection) and the heat transfer that the medium allows to pass through (conduction).
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Figure 8a describes the development of the Nu number in terms of Gr and Da for Ha = 0
and N = 8, and the circular form of the obstacle. It is clearly noticed that the higher value
of Da and/or Gr leads to an increase in the value of Nu, and this is, of course, a normal
thing; the increase in the permeability of the medium reduces the obstruction of the flow
movement, which keeps the velocity better, and this makes the heat transfer better. On the
other hand, raising the value of Gr makes the flow move faster, and this enhances the heat
activity. The effect of the wave number on Nu of the heated wall is depicted in Figure 8b
for Ha = 0 and Da = 10−2, and the cross-section is circular. It becomes clear that the more
wavy the wall is, the lower the value of the Nu number, because this shape of the wall
does not allow good friction between the flow and the surface of the wall, which reduces
the thermal transfer, and, therefore, we find a decrease in the Nu number. The effect of
magnetic field strength on Nu is represented in Figure 8c for Da = 10−2 and N = 8, and
the obstacle is also circular. As expected, increasing the value of Ha negatively affects Nu.
This is because of Lorentz’s force that hinders the nanofluid flow, which slows down heat
activity and, therefore, leads to a decrease in the value of Nu. Figure 8d reflects the impacts
of the obstacle cross-section on Nu values for Ha = 0, Da = 10−2, and N = 8. It is noted in
Figure 8d that there is a clear change in the values of the Nu in terms of the shape of the
cross-section. It is noted that the triangular and the square shapes are the best in terms of
thermal activity.

1 

 

 

Figure 8. Average Nusselt number versus Grashof numbers for different (a) Darcy numbers, (b)
undulation numbers, (c) Hartmann numbers, and (d) obstacles shapes for Da = 10−2, Ha = 0, and N = 8.

Figure 9 shows the influences of the studied elements on the values of the Bejan
number. This number expresses the ratio of entropy formed due to thermal source over
the entropy resulting from the friction of the fluid layers. From all the charts in Figure 9,
it is clear that the entropy generated due to thermal activity is dominant in this work.
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Figure 9a shows the influence of Da for Ha = 0 and N = 8. Since the permeability of the
space increases in terms of Da, the value of Be decreases because the movement of the
flow increases the friction. Figure 9b represents the variation of Be in terms of the wave
number for Ha = 0 and Da = 10−2. Of course, the greater the wave number, the less the
flow’s movement, which causes the values of Be to increase. Figure 9c is intended to show
the effect of Ha on Nu for Da = 10−2 and N = 8. It was found previously that the increase in
the value of Ha negatively affects the speed of the flow, and this is what makes the thermal
effect on entropy generation. Therefore, we note that the higher the Ha peak, the more
important is the Be value. Figure 9d shows the effect of the cross-sectional shape of the
baffle on Be for Ha = 0, N = 8, and Da = 10−2. The effect of the cross-section of the baffle on
the Be value is actually observed due to the shape of the obstacle that changes the kinetic
path of the flow.

Figure 9. Bejan number versus Grashof numbers for different (a) Darcy numbers, (b) undulation
numbers, (c) Hartmann numbers, and (d) obstacle shapes for Da = 10−2, Ha = 0, and N = 8.

6. Conclusions

This research deals with a numerical study of nanofluid inside the lid-driven chamber.
The nanofluid is a hybrid type that contains 4% of Al2O3-Cu nanoparticles. The container
also includes a thermally insulated baffle. The upper wall is adiabatic and horizontally
movable, and the lateral sides have low temperatures, while the lower wall is hot and
contains waves. This research aims to assess the thermal transfer between the hot and
cold walls by the intervention of a group of influential elements, namely: the Darcy
number, the Hartmann number, the Grashof number, the wave number, and, finally, the
form of the cross-section of the obstacle. The results of this work enable us to derive the
following points:

• An increase in wall wave number reduces the thermal activity of the hot wall;
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• Increasing the permeability of the medium allows fluid to flow, making heat transfer
more efficient;

• The presence of the magnetic field induces the Lorentz force, which impedes the
movement of the fluid, resulting in a decrease in thermal activity;

• The velocity of the fluid movement inside the chamber increases as the thermal
buoyancy increases, i.e., an increase in the heat-transfer coefficient;

• Triangular and square shapes of the baffle are the best for improving heat transfer;
• At the highest Gr number, increasing the wall wave number and the Ha number

reduced Nu by 28% and 73%, respectively—while increasing the Da number increased
Nu by 260%;

• The use of the elliptical shape of the inner cylinder is very effective in the case of
thermal insulation; and

• The change in the shape of the obstacle from elliptical to triangular raises the value of
the Nu number at a rate of 15.54% for Ha = 0, N = 8, and Gr = 104.

• Regarding future works, the following can be suggested:
• Raising the value of the Reynolds number and studying phenomena in terms of time;
• Using a complex fluid as the base fluid instead of water; and
• Suggest other forms of the obstacles.

The new findings in this work compared to previous works that this work shows the
best forms of the obstacle that will enhance the heat transfer.

Author Contributions: Conceptualization, A.A., W.W. and H.L.; methodology, A.A. and W.W.;
software, A.A.; validation, O.Y., K.G. and B.B.; formal analysis, A.M. and O.Y.; investigation, A.A.
resources, G.R.; data curation, A.M.; writing—original draft preparation, H.L.; writing—review and
editing, H.L. and O.Y.; visualization, W.W.; supervision, A.A.; project administration, K.G.; and fund-
ing acquisition, W.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at the King
Khalid University for funding this work through Larg Groups (grant number RGP.2/208/43). The
authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for
supporting this work by Grant Code: (22UQU4331317DSR23).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
the King Khalid University for funding this work through Larg Groups. The authors would like to
thank the Deanship of Scientific Research at Umm Al-Qura Univer-sity for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
B0 magnetic induction (Wb/m2)
Be Bejan number
Cp specific heat at constant pressure (J/kg K)
g gravity (m2/s)
Gr Grashof number
Ha Hartman number
k thermal conductivity of air (W/m K)
L dimension of the cavity (m)
N undulation
Nu average Nusselt number
p pressure (Pa)
P non-dimensional pressure
Pr Prandtl number
Re Reynolds number
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Ri Richardson number
S entropy (J/K)
T temperature (K)
Uo moving lid velocity (m/s)
u, v velocity components (m/s)
U, V non-dimensional velocity components
x, y coordinates (m)
X, Y non-dimensional coordinate
Greek Symbols
α thermal diffusivity (m2/s)
β thermal expansion coefficient (1/K)
γ rotation angle (deg)
ϕ nanoparticles volume fraction
µ dynamic viscosity (kg m/s)
θ dimensionless temperature
ρ density of fluid (kg/m3)
σ fluid electrical conductivity (S/m)
ψ irreversibly
Subscripts
Gen generation
nb base fluid
nf nanofluid
avg average
c cold
h hot
s surface
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