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Abstract

Background—Congenital central hypoventilation syndrome (CCHS) patients show brain injury 

in areas that control chemosensory, autonomic, motor, cognitive, and emotion functions, which are 

deficient in the condition. Many of these abnormal characteristics are present from the neonatal 

period; however, it is unclear if tissue injury underlying the characteristics progressively worsens 

with time. We hypothesized that several brain areas in CCHS subjects would show increased gray 

matter volume loss over time.

Methods—We collected high-resolution T1-weighted images twice (four years apart) from 7 

CCHS (age at first study, 16.1±2.7 years; 4 males) and 3 control subjects (15.9±2.1 years; 3 

males) using a 3.0-Tesla MRI scanner, and evaluated regional gray matter volume changes with 

voxel-based-morphometry procedures.

Results—Multiple brain sites in CCHS, including frontal, prefrontal, insular and cingulate 

cortices, caudate nuclei and putamen, ventral temporal and parietal cortices, and cerebellar 

cortices showed significantly reduced gray matter volume over time. Only limited brain areas, 

including sensory, temporal, and medullary regions emerged with increased gray matter at the 

later age.

Conclusions—CCHS patients show reduced gray matter volume with age progression in 

autonomic, respiratory, and cognitive regulatory areas, an outcome that may contribute to 

deterioration of functions found in the syndrome with increasing age.

INTRODUCTION

Congenital central hypoventilation syndrome (CCHS), a genetic condition associated with 

PHOX2B mutations,1 is characterized by reduced sensitivity to CO2 and O2, diminished 

drive to breath during sleep, and multiple abnormal physiological, motor, and 
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neuropsychological characteristics.2–4 The syndrome is accompanied by neural injury in 

both gray and white matter regions, as assessed by MRI-based T2-relaxometery, manual 

volumetric, 3D surface morphometry, and diffusion tensor imaging (DTI) procedures,5–8 in 

regions that are implicated in autonomic, physiological, motor, and neuropsychological 

regulation. The injuries may have arisen from developmental consequences of the PHOX2B 

gene, mutations of which appear to underlie the syndrome.1 However, affected children are 

also exposed to intermittent hypoxia, an outcome developing from inadequate ventilatory 

support, especially during sleep, but occasionally during the day in periods of elevated 

temperature or inactivity. Such hypoxic exposure has the potential to induce or aggravate 

neural injury.9–12 In addition, impaired perfusion resulting from PHOX2B influences on 

autonomic development may also contribute to injury progression. It is unclear whether such 

brain injury increases with time in patients with CCHS.

Several quantitative MRI procedures, including T2-relaxometry and DTI methods, can be 

used to assess tissue changes over time.13 Both procedures require consistent MRI data 

acquisition parameters to allow comparison of pathological changes, and for longitudinal 

studies, because of scanner upgrades and other issues, scanning parameters may change with 

time. However, high-resolution T1-weighted images, together with voxel-based-

morphometry (VBM) analytical procedures can be used to assess gray matter changes across 

the brain over time. Since VBM procedures involve partitioning gray from white matter and 

cerebrospinal fluid tissue types, and comparing regional gray matter voxel-by-voxel across 

the brain, slightly-altered data acquisition parameters can be expected not to influence 

findings for longitudinal assessment or data collected from multiple scanners.14 The 

techniques have been used to assess gray matter changes in longitudinal and cross-sectional 

studies,14,15 and may be useful for evaluating gray matter changes with time in CCHS 

subjects.

Gray matter tissue injury can be reflected as volume loss in both adult and pediatric 

conditions. Regional gray matter volume increases with development in early stages of life 

in many brain areas, and significantly reorganizes during adolescence.16 However, gray 

matter volume declines with time in adulthood due to normal aging processes.17 Disease-

related gray matter volume loss can be assessed only after accounting for normal age-related 

volume changes in CCHS subjects.

Our aim was to examine the progression of gray matter injury across the brain in CCHS 

patients with VBM procedures using high-resolution T1-weighted images. Because of the 

substantial potential for hypoxic exposure during daily life of CCHS children, we 

hypothesized that multiple brain areas would show increased gray matter injury over time.

METHODS

Subjects

We studied 7 CCHS and 3 control subjects twice approximately four years apart. The 

demographic data and other characteristics of CCHS and control subjects are summarized in 

the Table 1. The diagnosis of CCHS was based on the American Thoracic Society criteria 

(1999),2 and CCHS subjects were recruited through the CCHS family network (http://
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www.cchsnetwork.org). All CCHS subjects were of moderate severity, with requirement of 

ventilator support only during night; subjects requiring ventilatory support during the day 

were not included. CCHS subjects with other conditions that may induce brain injury, 

including cardiovascular or neurological conditions, or with diagnosed Hirschsprung’s 

disease, which may introduce malnutrition (increased risk for neural injury) through 

malabsorption issues, were excluded as well. All control subjects were healthy, without any 

history of neurological or other issues that may induce brain injury, and were recruited 

through advertisements at the university campus and surrounding area.

Brain imaging studies of CCHS and control subjects were performed without any anesthesia 

or sedatives, and subjects were provided rest from the scanner if required. The study 

protocol was approved by the Institutional Review Board of the University of California at 

Los Angeles, and CCHS and control subjects or their parents/caretakers provided informed 

written consent before the study.

Magnetic resonance imaging

Brain imaging studies were performed using a 3.0-Tesla MRI scanner (Magnetom Trio; 

Siemens, Erlangen, Germany), with a receive-only 8-channel phased-array head-coil and a 

whole-body transmitter coil. Both studies at the different ages were performed in the same 

MRI scanner. We used foam pads on both sides of the head to minimize head motion. Two 

high-resolution T1-weighted image series were acquired using a magnetization prepared 

rapid acquisition gradient-echo (MPRAGE) pulse sequence [repetition-time (TR) = 2200 

ms; echo-time (TE) = 3.05 ms; inversion time = 1100 ms; flip angle (FA) = 10°; matrix size 

= 256×256; field-of-view (FOV) = 220×220 mm; slice thickness = 1.0 mm], and proton-

density (PD) and T2-weighted images were collected using a dual-echo turbo spin-echo 

pulse sequence (TR = 8000 ms; TE1, 2 = 17, 133 ms; FA = 150°; matrix size = 256×256; 

FOV = 240×240 mm; slice thickness = 5.0 mm; turbo factor = 5). After four years, two 

high-resolution T1-weighted image series were collected again using a MPRAGE pulse 

sequence (TR = 2200 ms; TE = 2.34 ms; inversion time = 900 ms; FA = 9°; matrix size = 

320×320; FOV = 230×230 mm; slice thickness = 0.9 mm), and PD- and T2-weighted 

images were acquired using a dual-echo turbo spin-echo pulse sequence (TR = 10,000 ms; 

TE1, 2 = 12, 119 ms; FA = 130°; matrix size = 256×256; FOV = 230×230 mm; slice 

thickness = 3.5 mm; turbo factor = 5).

Data analysis

We examined high-resolution T1-weighted, PD-, and T2-weighted images of all CCHS and 

control subjects for presence of any major brain pathology, including cystic lesions, tumors, 

or major infarcts. No CCHS or control subjects showed any such abnormality on brain 

images. High-resolution T1-weighted images were also examined to confirm the absence of 

any head motion-related or other imaging artifacts.

The statistical parametric mapping package (SPM8, http://www.fil.ion.ucl.ac.uk/spm/), 

MRIcroN, and MATLAB-based (The MathWorks Inc, Natick, MA) custom software were 

used to process and analyze data.
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Realignment, segmentation, normalization, and smoothing—For each study, both 

high-resolution T1-weighted image volumes were realigned to remove any potential 

variation from head-motion, and averaged to increase signal-to-noise ratio. The averaged 

images were bias-corrected for signal intensity differences, partitioned into gray, white, and 

cerebrospinal fluid (CSF) tissue types, and normalized to the Montreal Neurological 

Institute (MNI) space, using the unified segmentation approach. The normalized gray matter 

maps were modulated (scaled to native space) and smoothed with a Gaussian filter (full 

width at half maximum, 10 mm).

The averaged and bias-corrected T1-weighted images from individual CCHS and control 

subjects were also normalized to MNI space. The normalized images of all CCHS and 

controls were averaged to create background images for structural identification.

Statistical analysis

The normalized and smoothed gray matter maps of control subjects were compared voxel-

by-voxel between the two time points using paired t-tests (uncorrected threshold, p = 0.001; 

minimum extended cluster size, 5 voxels). Similarly, the normalized and smoothed gray 

matter maps of CCHS subjects were also compared between first and second time points 

using paired t-tests (uncorrected threshold, p = 0.001; minimum extended cluster size, 5 

voxels). The clusters showing significantly reduced gray matter volume across the brain in 

control subjects were converted into a brain mask, and used to exclude brain sites showing 

reduced gray matter volume from CCHS subjects for partitioning normal age-related 

changes. The statistical parametric maps with clusters showing significant differences 

between two time points in CCHS subjects, corrected for normal age-related changes, were 

overlaid onto background images for structural identification.

RESULTS

Multiple brain areas in control subjects showed reduced gray matter volume with 

development. Brain sites that emerged with reduced gray matter volume in controls at the 

later scans over the first scans included both anterior insulae (Fig. 1a), bilateral genu 

extending to anterior cingulate (Fig. 1b,e), and ventral medial prefrontal cortices (Fig. 1h), 

mid cingulate (Fig. 1g), bilateral frontal (Fig. 1i), parietal (Fig. 1f), and temporal operculum 

(Fig. 1d), prefrontal and fronto-medial cortices (Fig. 1j,k), and right caudal cerebellar cortex 

(Fig. 1l). A few regions showed increased gray matter volume at the later scan over the 

earlier scans in control subjects, and included the left rostral cerebellar and right midline 

occipital cortices.

Several brain regions showed reduced gray matter volume in CCHS subjects, corrected for 

normal age-related changes, at the second time point over the initial scans. Brain regions 

that showed reduced gray matter in CCHS at the later age included the bilateral ventral 

medial (Fig. 2a), dorsal prefrontal (Fig. 2b), and fronto-medial (Fig. 2d) cortices, anterior 

insula (Fig. 2e), caudate nuclei and putamen (Fig. 2f,h), genu (Fig. 2i), anterior (Fig. 2c), 

mid (Fig. 2j), and posterior cingulate cortices (Fig. 2k), ventral temporal (Fig. 2m), occipital 

(Fig. 2n), and parietal cortices (Fig. 2l), and bilateral cerebellar cortices (Fig. 2o). Only a 

few sites in CCHS subjects showed increased gray matter volume over time, and these areas 
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included a bilateral region of the dorsal parietal sensory cortex bordering the motor cortices 

(Fig. 3a), temporal (Fig. 3b), and dorsal medullary regions (Fig. 3c).

DISCUSSION

Overview

We investigated the progressive gray matter volume changes across the brain in patients 

with CCHS, controlling for normal developmental-related changes. Multiple brain regions 

showed reduced gray matter volume in CCHS subjects with time in autonomic, mood, 

motor, and cognitive regulatory areas, which may contribute to deterioration of those 

regulatory functions over time in the condition. The pathological processes that contribute to 

such increased injury are unknown, but may include hypoxic processes frequently 

encountered in CCHS subjects or sustained perfusion issues resulting from the vascular 

consequences of the condition.

Gray matter changes with age

In healthy control subjects, gray matter volume increases at an early stage of life, due to 

increase in neurons and glia, and volume begins to decline from puberty, a consequence of 

gray matter maturation and increase in neuronal density.16 Such neuro-anatomic changes are 

region-specific, and appear with variable maturation patterns in pediatric subjects.16 In adult 

stages of life, with normal aging, neuronal and other cell loss over time leads to gray matter 

volume reduction with age.15 Other MRI measures, including T2-relaxation values and DTI-

based indices, also indicate a similar pattern of tissue changes in gray, as well as white 

matter regions in adult and pediatric control subjects.18–20

Many sites in CCHS subjects showed reduced gray matter volume, even after controlling for 

normal age-related volume changes. Such significant reductions in gray matter volume 

indicate progression of tissue injury over time that may result from hypoxic mechanisms 

commonly encountered in the condition. A few brain regions in CCHS subjects emerged 

with increased gray matter volume over time, which possibly results from delayed 

developmental changes in the condition.

Reduced gray matter volume in autonomic regulatory areas

Brain sites that play significant roles in autonomic regulation include insular, hypothalamic, 

ventral medullary, and cerebellar regions.21–25 Most of these areas, including bilateral 

insular and cerebellar sites, showed increased injury with time in CCHS subjects. The 

augmented damage may contribute to worsening autonomic functions in the syndrome, 

possibly furthering conditions that lead to the reduced life-span in affected children.

Cerebellar structures, including the cortices, play major roles in blood pressure regulation, 

especially in coordination of blood pressure changes with body motion or dampening of low 

and high of blood pressure.21,22 To our knowledge, no evidence yet exists that postural 

blood pressure issues worsen with development in CCHS, but such an issue could readily be 

examined.
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The autonomic roles of the right insular cortex are principally related to sympathetic 

regulation, and the left side, parasympathetic activity.26,27 Stimulation of the right anterior 

insula in humans greatly diminishes the baroreflex, while posterior insular stimulation elicits 

cardiac arrhythmia.23 Stroke-related injury of the right insula is followed by a high 

incidence of myocardial infarction,28 possibly from high sympathetic action related to the 

right insular damage.

CCHS subjects show a range of aberrant cardiovascular issues, including reduced heart rate 

variability, decreased nocturnal “dipping” of blood pressure, and a propensity for potentially 

fatal cardiac arrhythmia;29–31 subjects also have a limited life-span, with sudden death 

common in the condition. At least some of the sudden deaths apparently result from 

cardiovascular irregularities in the syndrome.32 Positive associations occur between cardiac 

disturbances and CCHS severity; with some severities, cardiac deficits appear to be 

progressive as well.32 Altered autonomic tone resulting from progressive injury in insular 

and other autonomic area may contribute to the worsening of the arrhythmia incidence.

Gray matter volume changes in cognitive, motor, and mood regulatory sites

Multiple brain regions in CCHS subjects showed reduced gray matter volume over time in 

motor, mood, and cognitive regulatory regions. These sites included caudate, cingulate, 

prefrontal, frontal, and temporal areas. The caudate nuclei are implicated in motor and 

cognitive behaviors, including learning, verbal fluency, attention, short- and long-term 

memory, mental flexibility, and motivation,33–35 and prefrontal and frontal cortices are 

involved in executive function.36,37 Although prefrontal and frontal cortices also showed 

increased volume loss in CCHS over time, extensive injury in the caudate nuclei, which 

project to the frontal and prefrontal cortices, may contribute to the underlying executive 

dysfunction.38

The progression of injury in regions serving motivation, as well as in frontal cortices for 

judgment and behaviors based on comprehension of consequences, is a particular concern, 

since such neural injury likely contributes to the frequent anecdotal reports of CCHS 

children engaging in high risk behaviors. Some of these behaviors are life-threatening, e.g., 

underwater breath-holding competitions, alcohol consumption, and some lead to 

carelessness in nocturnal ventilatory use, which places the individual at grave risk, certainly 

contributing to the short lifespan in these individuals.

Along with autonomic deficits, CCHS subjects show a variety of motor deficits in addition 

to the reduced drive to the breathing musculature during sleep.2 These deficits include 

unilateral smiling following a joke (despite ability to voluntarily smile bilaterally), and eye 

movement issues.39 Other deficits in CCHS include learning, working memory, attention, 

and social interaction.3,4 These deficits in motor function and cognition aspects, including 

learning and memory and executive function in CCHS may result from injury in caudate, 

frontal, and prefrontal cortices.33,34,36 However, we lack evidence as to whether these 

functional deficits progressively worsen with age in CCHS.
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Potential mechanisms of gray matter injury

Multiple pathological mechanisms in CCHS may have contributed to gray matter volume 

loss over time. Since the major signs, including failed breathing drive during sleep and 

severe autonomic symptoms appear early in life, brain injury incurred by PHOX2B 

mutations in early stages may contribute to these deficient functions. However, the 

autonomic sequelae in CCHS subjects also alter the cerebral vasculature,40 and those 

changes may modify perfusion to brain structures, with obvious deleterious consequences, in 

addition to the repeated hypoxia exposure from loss of ventilatory drive during sleep with 

failed ventilatory support. We believe that much of the injury to medullary areas in CCHS, 

especially injury to the raphe system,7 the damage to the locus coeruleus, one structure 

where PHOX2B is localized, and possibly the hypothalamic damage, due to unique pattern 

of injury,8 result from initial PHOX2B mutations, with hippocampal, possibly cerebellar, 

and cortical damage found here resulting from perfusion and hypoxia issues.

Limitations

Some limitations of the study should be acknowledged, including use of different MRI 

scanning parameters for data acquisition that may influence the findings, and the limited 

number of subjects, including only male controls. The relative neuroprotection offered by 

the female sex may significantly reduce hypoxic or other injury in female adolescents. The 

MRI scanner software was upgraded repeatedly over time, disallowing identical scanning 

parameters, resulting in slightly different scanning parameters to acquire the high-resolution 

T1-weighted images. However, the analytical procedures used here, VBM, require 

partitioning gray matter from other tissue types, and comparison of whole brain regional 

gray matter changes; small differences in scanning parameters should not drastically 

influence findings. Such procedures, with variable scanning parameters, have been used 

reliably to assess tissue changes using data collected from multiple scanners.14 The rare 

nature of the CCHS condition restricted follow-up to a limited number of CCHS subjects. 

Moreover, relocation issues limited follow-up of control subjects.

Conclusions

CCHS patients show progressive gray matter volume loss, after partitioning for normal age-

related tissue changes, in several brain regions which control autonomic, mood, motor, and 

cognitive functions. Only a few areas emerge with increased gray matter over time in CCHS 

subjects. Such progressive gray matter injury in autonomic, motor, and cognitive regulatory 

regions may contribute to worsening of essential functions found in the condition, including 

protection against life-threatening risk behaviors and autonomic characteristics that enhance 

protection against fatal arrhythmia. The pathological mechanisms contributing to 

progression of injury with age are unknown, but likely include hypoxic processes that 

accompany the syndrome.
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Figure 1. 
Brain sites with decreased gray matter volume in control subjects with age. Decreased gray 

matter volume with time emerged in the insula (a), cingulate cortices (b, e, g), prefrontal and 

frontal cortices (h, j, k), frontal (i), parietal (f), and temporal operculum (d), and cerebellum 

(l). All brain images are displayed in neurological convention (L = Left, M = Middle, R = 

Right), and color scale represents t-statistic values.
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Figure 2. 
Brain areas with injury progression with time in CCHS subjects. Brain regions that showed 

injury progression included the prefrontal and frontal cortices (a, b, d), insular regions (e), 

caudate nuclei and putamen (f, h), cingulate cortices (c, i-k), temporal (m), occipital (n), and 

parietal cortices (l), and cerebellar cortex (o). Figure conventions are the same as in Figure 

1.
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Figure 3. 
Brain regions with increased gray matter volume over time in CCHS subjects. Brain 

structures that showed increased gray matter volume included primary sensory/motor cortex 

(a), temporal (b), and medullary regions (c). Figure conventions are the same as in Figure 1.
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