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Abstract

Multistep cell fate transitions with stepwise changes of transcriptional profiles are common

to many developmental, regenerative and pathological processes. The multiple intermediate

cell lineage states can serve as differentiation checkpoints or branching points for channel-

ing cells to more than one lineages. However, mechanisms underlying these transitions

remain elusive. Here, we explored gene regulatory circuits that can generate multiple inter-

mediate cellular states with stepwise modulations of transcription factors. With unbiased

searching in the network topology space, we found a motif family containing a large set of

networks can give rise to four attractors with the stepwise regulations of transcription fac-

tors, which limit the reversibility of three consecutive steps of the lineage transition. We

found that there is an enrichment of these motifs in a transcriptional network controlling the

early T cell development, and a mathematical model based on this network recapitulates

multistep transitions in the early T cell lineage commitment. By calculating the energy land-

scape and minimum action paths for the T cell model, we quantified the stochastic dynamics

of the critical factors in response to the differentiation signal with fluctuations. These results

are in good agreement with experimental observations and they suggest the stable charac-

teristics of the intermediate states in the T cell differentiation. These dynamical features

may help to direct the cells to correct lineages during development. Our findings provide

general design principles for multistep cell linage transitions and new insights into the early

T cell development. The network motifs containing a large family of topologies can be useful

for analyzing diverse biological systems with multistep transitions.

Author summary

The functions of cells are dynamically controlled in many biological processes including

development, regeneration and disease progression. Cell fate transition, or the switch of

cellular functions, often involves multiple steps. The intermediate stages of the transition
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provide the biological systems with the opportunities to regulate the transitions in a pre-

cise manner. These transitions are controlled by key regulatory genes of which the expres-

sion shows stepwise patterns, but how the interactions of these genes can determine the

multistep processes was unclear. Here, we present a comprehensive analysis on the design

principles of gene circuits that govern multistep cell fate transition. We found a large net-

work family with common structural features that can generate systems with the ability to

control three consecutive steps of the transition. We found that this type of networks is

enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of

immune cells. We performed mathematical modeling using this gene circuit and we reca-

pitulated the stepwise and irreversible loss of stem cell properties of the developing T lym-

phocytes. Our findings can be useful to analyze a wide range of gene regulatory networks

controlling multistep cell fate transitions.

Introduction

Cell fate transition, including differentiation, de-differentiation and trans-differentiation, is a

fundamental biological process in which the function of a cell gets specialized, reprogrammed

or altered. The process often involves significant changes of multiple cellular properties,

including the morphology, the self-renewal capacity and the potentials to commit to alterna-

tive lineages [1,2]. These changes are controlled by the dynamics of interacting transcription

factors (TFs) and the modulation of chromatin structures, which in term are governed by com-

plex regulatory networks in the cells [3–5]. Interestingly, the fate transitions in many systems

are achieved by sequential commitments to a series of cellular states with stepwise changes in

their transcriptional profile towards the final stage of the program (Fig 1) [6–11]. The interme-

diate states between the initial state (e.g. the undifferentiated state in the case of cell differentia-

tion) and the final state may be important for multiple purposes, such as facilitating

‘checkpoints’ that ensure appropriate development of cellular behaviors, or allowing the cells

to make correct decisions at the lineage branching points [11–15].

One example of these stepwise cell lineage transitions is the development of T lymphocytes

in the thymus. The differentiation from multipotent pre-thymic progenitor cells to committed

T cells involves multiple cellular states with stepwise changes of their cellular properties and

the transcriptional profiles (Table 1) [16–19]. Several lines of evidence suggest that the transi-

tion states at an early phase of the differentiation can serve as stable checkpoints for sequential

lineage commitments. The progress through these intermediate states is accompanied by step-

wise loss of their potentials to differentiate into other cell types: pre-thymic progenitor cells

can be converted to a few types of cells, including B cells, natural killer (NK) cells, dendritic

cells (DCs) etc., whereas the multipotency of the intermediate cell types is more limited but

not completely lost [20–26]. In addition, the stability of these intermediate states is substantial

because the loss of differentiation signals does not result in de-differentiation of some interme-

diate states [20], suggesting restricted reversibility (or complete irreversibility) of the multiple

transitions. In addition, the lymphoid progenitor cells need to divide for a certain number of

times at an intermediate state before committing to the T cell lineage, and the stable activities

of the lineage defining transcriptional program at the intermediate stages may be important

for the proliferations [27]. Finally, the loss of certain transcription factors (e.g. BCL11B) can

lead to the termination of the differentiation at some intermediate states, which is often associ-

ated with diseases such as leukemia [18,20,28]. This further suggests that the intermediate

states are cellular ‘attractors’ between the initial and the final stages of the differentiation (Fig
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1, bottom panel). Similar stable intermediate states during cell lineage transitions are observed

in other systems, such as the epithelial-mesenchymal transition, and the skin development

(Table 1), and those states also serve as regulatory stages for altering cellular properties includ-

ing self-renewal and migration [10,29–37]. Therefore, the multiple intermediate states are

involved in diverse normal development and pathological conditions. Understanding the reg-

ulatory programs for the sequential cell lineage commitments is a key step towards the elucida-

tion of mechanisms underlying various biological processes involving multistep lineage

transitions. Despite the accumulating data and observations on these stepwise lineage commit-

ments, general mechanisms governing these differentiation processes with multiple intermedi-

ate cellular states remain unclear.

Fig 1. Illustration of multistep cell fate transition. A. transition from one cellular state to another via two

intermediate states. Dashed arrow indicates the limited reversibility of each transition. B. stepwise changes of the levels

of two transcription factors during the multistep transitions involving four states. C. metaphoric energy landscape

depicting the four-attractor system. Colors for cell states and transition arrows in B and C match those in the

illustration in A.

https://doi.org/10.1371/journal.pcbi.1006855.g001

Table 1. Examples of multistep transitions with restricted reversibility.

Physiological

scenario

Cellular phenotypic transition Key regulators with

stepwise modulations

Extracellular

signals

Evidence supporting multistep transitions,

multiple intermediate states and restricted

reversibility

Early T cell

development

ETP/DN1! DN2a! DN2b! DN3 PU.1 TCF-1 GATA3

BCL11B

Notch [17–20,28]

Skin development Stem cell! renewable spinous cell!

non-renewable spinous cell! granular

cell

OVOL1 OVOL2 Calcium ion [32,33,37]

Epithelial-

mesenchymal

transition

E! a EM1! a EM2! a M SNAIL1 TWIST ZEB1

miR200

TGF-β [29–31,34–36]

a Reversal transitions were observed, but they occur in a limited subpopulation.

https://doi.org/10.1371/journal.pcbi.1006855.t001
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In this study, we explored the strategies in terms of the transcriptional network design that

gives rise to stepwise transitions during cell differentiation. We first used a generic form of net-

works containing three interacting TFs to find network motifs that can produce four attractors

(the minimum number of attractors in the examples of T cell development, epithelial-mesen-

chymal transition and skin development) with stepwise changes of transcriptional factor levels.

We found two types of network motifs, both involving interconnections of positive feedback

loops, which can generate the four-attractor systems. These motifs constitute a large family of

gene regulatory networks. We found that there is an enrichment of these motifs in a network

controlling the early T cell development. We built a specific model using known interactions

among key transcription factors in developing T cells, and the model shows that the transcrip-

tional network governs multistep and irreversible transitions in the development process.

To investigate the stochastic dynamics for early T cell development, we mapped out the

quasi-energy landscape for the early T cell development. This landscape characterizes the four

attractors representing four stages of early T cell development quantitatively. In addition, by

calculating the minimum action paths (MAPs) between different attractors, we quantified the

dynamics of the key factors in response to Notch signal with fluctuations, which are in good

agreement with experimental observations. Finally, we identified the critical factors influenc-

ing T cell development by global sensitivity analysis based on the landscape topography. Over-

all, our model for early T cell development elucidates the mechanisms underlying the stepwise

loss of multipotency and multiple stable checkpoints at various stages of differentiation. The

network topologies for multiple attractors found in this study and our motif discovery strategy

combined with the landscape methodology can be useful for analyzing a wide range of cell dif-

ferentiation systems with multiple intermediate states.

Results

Networks in a large motif family govern systems with four attractors with

stepwise transcriptional modulation

To find transcriptional network topologies that can generate multiple intermediate states dur-

ing cell fate transition, we first performed random parameter sampling with a network family

containing up to 3 nodes (Fig 2A). In this framework of network topology, each node repre-

sents a transcription factor (TF) that can potentially influence the transcription levels of other

two TFs and itself. Topology searching with a 3-node network was used for motif discovery for

various performance objectives in previous studies [38,39]. We performed exhaustive search

for topologies with up to 6 regulations from a total of 9 regulations of the network family, and

constructed a mathematical model for each topology (see Methods for details). For each

model, we performed random sampling in the parameter space from uniformly distributed

values (S1 Table). We selected topologies containing at least one parameter set that is able to

generate four attractors with stepwise changes of transcriptional levels. We define the system

with four attractors with the stepwise changes of transcriptional levels as the scenario in which

there are four stable steady states and they can be consistently ordered by the concentrations

of any pairs of TFs. In other words, one TF always monotonically increases or decreases with

another TF in these four states, and we term these states ‘ordered’ attractors in this paper.

Among the 2114 network topologies that we searched, we found 216 topologies that can pro-

duce such behavior. In addition, we found 417 topologies that can only produce four unor-

dered steady states (TF concentrations are non-monotonically correlated among the states)

(S11 Fig, S12 Fig).

To visualize the relationships among these topologies, we constructed a complexity atlas

(Fig 2B), in which the nodes represent the network structures that gave rise to four attractors,
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Fig 2. Network motifs governing four-attractor systems. A. Illustration of the network topology searching. Dashed arrows are regulations sampled. The

topologies were screened by the criterion of the four attractors with stepwise changes of TFs. B. Complexity atlas for selected topologies. Closed circles denote

minimum motifs. Open circles denote topologies containing more regulations than those in the minimum motifs. Each arrow denotes the difference by one

regulation in the network. Examples of minimum motifs are shown at the bottom. Red: Type I motif. Blue: Type II motif. Green: Hybrid motif. C. Overlaid

four attractors for each of the 29 minimum topologies. Factor A denotes the TF on the left of the network diagram. Factor B denotes the TF on the right of the

network diagram. In some topologies A and B and positively correlated (left panel), whereas they are negatively correlated in other topologies (right panel).

Colored dots denote the stable steady states. Colored lines connect states of their corresponding topologies. The colors of the cell states match the illustration in

Fig 1. The colors of the lines denote different representative models. The z-score is calculated by shifting the mean of each four attractors to 0 and then

normalizing the four data points to unit variance data. D. Example phase planes for two minimum topologies (Type I and Type II respectively). In each case,

four out of the seven steady states (intersections denoted by solid dots) are stable. Network structures and phase planes for all 29 minimum motifs are included

in S1 and S2 Figs. All models shown in this figure are built with additive form of Hill functions.

https://doi.org/10.1371/journal.pcbi.1006855.g002
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and the edges connect pairs of topologies that differ by a single regulation (addition or removal

of a transcriptional interaction) [40]. We define the minimum topologies as those of which the

reduction of complexity, or the removal of any regulation from the network, will abolish its

capability to generate four attractors (solid nodes in Fig 2B and examples in Fig 2C). We found

29 such minimum topologies which represent the non-redundant structures for producing the

four-attractor system.

Interestingly, all of the 216 topologies obtained from our search contain three distinct posi-

tive feedback loops (including double-negative feedback loops), and they can be categorized

into two types of motifs (Fig 2B, bottom panel). The Type I motif contains three positive feed-

back loops that are closed at a single TF (red nodes and edges in Fig 2B). The Type II motif

contains three connected positive feedback loops, two of which do not share any TF but are

connected via the third loop (blue nodes and edges in Fig 2B). There is a remarkable diversity

of each of the motif types because the interconnected positive feedback loops can share multi-

ple TFs (S1 and S2 Figs). Based on the complexity atlas (Fig 2B), we found that Type II motifs

contain 4–6 regulations, and Type I motifs contain 5–6 regulations. Some of the networks with

6 regulations contain subnetworks of both Type I and Type II motifs (Hybrid type, green

nodes). The four attractors in the space of two TFs exhibit a variety of patterns of nonlinear

monotonic correlations (Fig 2C, S3 Fig), which are governed by intersections of highly nonlin-

ear nullclines in the state space containing the two TFs (Fig 2D, S1 and S2 Figs). The defini-

tions of various types of motifs are listed in Table 2, and the statistics of the topologies

discovered are summarized in Table 3 (also see S11 Fig for an illustration). Overall, this motif

family represents a large number of networks that can produce a common type of behaviors:

multiple stable intermediate states in terms the transcriptional activity.

We next asked whether there is a difference between Type I and Type II motifs in terms of

their ability to generate systems with four ordered attractors. We found that with the same

number of sampled parameter sets, Type II motifs have greater fractions of parameter sets that

Table 2. Definitions and key features of network motifs that generate systems with four ordered attractors.

Definition Minimum number of

regulations

Minimum number of positive

feedback loops

Type I

motifs

Three positive feedback loops that share one or more TFs among all of them. 5 3

Type II

motifs

Three connected positive feedback loops. Two of them do not share any TF but are

connected via the third loop.

4 3

Hybrid

motifs

Motifs containing both Type I and Type II motifs. 6 4

https://doi.org/10.1371/journal.pcbi.1006855.t002

Table 3. Numbers of sampled network structures and discovered motifsa.

3-node networks T cell model

Total networks sampled 2114 (12258) 1553 (2047)

Type I motifs 77 (448) 191 (286)

Type II motifs 115 (638) 108 (120)

Hybrid motifs 24 (144) 269 (295)

Minimum Type I motifs 15 (84) 44 (71)

Minimum Type II motifs 14 (78) 22 (26)

a In each cell of the table, the first number is the number of non-redundant network topologies. The number in the

parentheses is the number of networks (or sub-networks of the T cell model) including the isometric topologies.

https://doi.org/10.1371/journal.pcbi.1006855.t003
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give rise to four ordered attractors than Type I motifs do (Fig 3A and 3B, p-value < 0.0001,

Mann-Whitney U test). This suggests that Type II motifs may be more robust for governing

the four ordered attractors. However, among the 15 Type I and 14 Type II minimum motifs,

all Type II motifs are able to generate four unordered attractors (Some TFs are not monotoni-

cally correlated. See S12 Fig), whereas there is no Type I motif that has any parameter set that

gives rise to four unordered attractors (Fig 3C). This suggests that as compared to Type II

motifs, Type I motifs has higher specificity in generating four ordered attractors, which is

more relevant to the stepwise cell fate transitions than the unordered ones. Moreover, we

observed that the inter-attractor distances between neighboring attractors in the gene expres-

sion space were generally more variable with Type I motifs than those with Type II motifs (Fig

3D, magenta boxes). In particular, among the three inter-attractor distances for each model,

Type I motifs generated smaller minimum distance than Type II motifs did (Fig 3D, orange

boxes. p-value< 0.0001, Mann-Whitney U test). We did not observe any significant difference

between Type I and Type II motifs in terms of the stabilities of the attractors and the kinetic

paths that they generate (S13 Fig See Methods for calculation of quasi-energy landscape and

kinetic path). In addition to the effects of motif types, we also asked whether the fractions of

Fig 3. Comparison of Type I and Type II motifs for their performance in producing systems with four ordered

attractors. A. The numbers of parameter sets per 106 samples per topology that generate four ordered attractors from

two types of minimum motifs. B. The numbers of parameter sets per 106 samples per topology (limited to 30 per

topology) that generate four ordered attractors from three types of motifs. C. The numbers of parameter sets per 106

samples per topology that generate four unordered attractors from two types of minimum motifs. D. Inter-attractor

distances for each parameter set that generates four ordered attractors were calculated and summarized. For each set of

parameters associated with the four attractors, the minimum, the maximum and the standard deviation of the

distances were analyzed. Minimum Type I and Type II motifs were compared using these statistics.

https://doi.org/10.1371/journal.pcbi.1006855.g003
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positive or negative regulations in the network can influence the function of generating four-

attractor systems. We found that the fraction of positive regulations has a weak but significant

correlation with the fraction of successful parameter sets generating four-attractor systems

(S14A and S14B Fig). Although negative regulations are slightly less favorable, they might be

important to ensure that the levels of some TFs are inversely correlated during multistep cell

fate transitions, which is necessary for having at least one highly expressed TFs in each of the

initial and the final cell states (S14C Fig).

In summary, we found two types of network motifs that generate four attractors with step-

wise changes of the transcriptional profile. Two of these attractors represent the multiple inter-

mediate states observed in various biological systems. This exploratory analysis elicits several

interesting questions: what are the biological examples of such network motifs? Can the con-

clusions with respect to the two types of motifs be generalized to networks with more than

three TFs? Is there any advantage of combining both types of motifs? How are the transitions

among these states triggered deterministically and stochastically? To provide insights into

these questions in a more biologically meaningful context, we will use a specific biological sys-

tem to describe more detailed analysis of these motifs and their underlying gene regulatory

networks in the following sections.

Type I and Type II network motifs are enriched in a transcriptional

network controlling early T cell development

We asked whether the motifs that we discovered can be found in any known transcriptional

network that potentially control multistep cell differentiation. We used the early T cell differ-

entiation in the thymus as an example to address this question. The differentiation from multi-

potent lymphoid progenitor cells to unipotent early T cells involves multiple stages at which

the cells have differential potentials to commit to non-T lineages and other cellular properties

such as proliferation rates. At the early phase of this process, four stages of development T cells

(ETP/DN1, DN2a, DN2b, DN3) were identified experimentally, and the progression through

these stages is controlled by a myriad of transcription factors including four core factors, TCF-

1, PU.1, GATA3 and BCL11B. These TFs form a complex network among themselves (see Fig

4A and supporting experimental observations in S3 Table), and the stepwise changes in the

levels of these TFs were observed in the four developmental stages of T cells [20,28]. The inter-

actions involving these core TFs were shown to be critical for the irreversible commitment to

the T cell lineage by forming a bistable switch [41]. Among these factors, PU.1 level decreases

as the cells commit to later stages, whereas the levels of other three factors increase in this pro-

cess. It is unclear, however, whether this transcriptional network can serve as a regulatory unit

that governs the multistep nature of the T cell differentiation.

We noticed that this T cell transcriptional network contains the motifs that we found in our

analysis using the generic form of networks, we therefore hypothesized that the models based

on this network can have four attractors with sequential changes of the four TFs. Indeed, using

random sampling we were able to find parameter sets that give rise to four-attractor systems

similar to what we obtained with the generic 3-node framework. To find the functional com-

ponents that generate this behavior, we analyzed the subnetworks of the complex T cell regula-

tory network [42]. We removed the regulations from the network systematically, and we

found that out of the non-redundant 1553 topologies (2047 subnetworks), there are 568 topol-

ogies (701 subnetworks) that can generate four attractors with stepwise changes of the TFs (Fig

4B). We used a complexity atlas to visualize the relationships among these subnetworks (Fig

4C). We found that the network can be reduced to one of the 66 minimum topologies (97 min-

imum subnetworks) which retains the four-attractor property (solid nodes in Fig 4C). Notably,
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these networks can be classified into the two types of motifs described earlier (Fig 2B). Similar

to the networks that we obtained through the generic framework, the two types of minimum

motif have 4–6 regulations. Subnetworks with both types of motifs (green nodes and edges)

start to appear when the number of regulations reaches six. The numbers of motifs and subnet-

works obtained for the generic framework and the T cell model are summarized in Table 3.

We next quantified the enrichment of the two motif families in the early T cell transcription

network. We first generated random networks by perturbing the existing regulations in the

network model and computed the empirical p-values for observing the numbers of different

types of network motifs. The T cell network contains a large number of positive feedback

loops and the two types of motifs that we described earlier (Fig 5, top panel). As expected, the

network is significantly enriched with positive feedback loops in general (Fig 5, middle panel,

red bars). However, the enrichments of Type I motifs and the combinations of Type I and

Type II motifs are even more significant than that of the single positive feedback loops (Fig 5,

middle panel, red bars). To exclude the possibility that this differential significance was

observed due to the way we generate random networks which gives low p-values (<10−4) in

general, we used another method to generate random networks with an augmented number of

regulations (Fig 5, middle panel, blue bars). Each pair of TFs were assigned with a pair of ran-

dom regulations (positive, negative or none). Consistent with the previous method, the T cell

transcriptional network is enriched with positive feedback loops overall, but the enrichment is

more significant for Type I motifs or for the combination of Type I and Type II motifs. Inter-

estingly, motifs that are similar to Type I motif but have higher complexity (more positive

feedback loops) do not show more significant enrichment than Type I motif does (S15 Fig). In

addition, we found that networks controlling switch-like behaviors, but not multistep cell fate

transitions, are not enriched with Type I or Type II motif [43–46]. These results suggest the

possibility that the network has been evolved to reach more complex performance objectives

than those enabled by simple positive feedback loops alone.

Since the minimum motifs alone can generate the four-attractor system, we asked whether

the combination of these motifs enhances the ability of the network to produce the system. We

therefore compared a subnetwork containing only one minimum Type I motif with another

one containing multiple such motifs in terms of the performance to generate a particular four-

attractor system (Fig 6A See Methods and S1 Text for details). We found that the subnetwork

with multiple Type I motifs (Network 1) outperforms the one with only one motif (Network 2)

in that Network 1 can give a better fit to a hypothetical four-attractor system (Fig 6A–6C). In

this hypothetical ‘target’ system, the four attractors are assumed to be determined by dynamics

of PU.1 with multiple feedback loops. The assumed degradation (Fig 6B, gray curve) and pro-

duction rate functions of PU.1 (Fig 6B, green curve) are specified. The curves of these two

functions have 7 intersections, four of which represent attractors. The optimized production

function obtained from Network 1 (Fig 6B, purple curve) has more robust intersections with

the degradation curve than one obtained from Network 2 (Fig 6B, red curve). This difference

was observed for production functions of these two categories from multiple runs of optimiza-

tion (Fig 6C). This suggests the advantage of combining multiple motifs with similar functions

Fig 4. Four-attractor motifs in the early T cell transcriptional network. A. Influence diagram for transcriptional regulations among four core factors controlling

the early T cell development. Arrows represent activations and short bars represent inhibitions. B. Functional subnetworks of the T cell network were systematically

obtained by removing regulations from the network. These subnetworks were screened by the criterion that four attractors with stepwise changes of TFs exist in the

absence of Notch signal. C. Complexity atlas showing the relationships of the two four-attractor motifs in the subnetworks of the T cell model. Top callout shows the

full network in the absence of Notch. Bottom callouts show examples of the minimum functional subnetworks of the two types with particular numbers of

regulations. Red: Type I motif. Blue: Type II motif. Green: Hybrid motif. D. Overlaid four attractors for each of the 66 minimum topologies. Colored dots denote the

stable steady states. Colored lines connect states of their corresponding topologies. All models shown in this figure are built with the multiplicative form of Hill

functions.

https://doi.org/10.1371/journal.pcbi.1006855.g004
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to enhance its overall performance. We next compared the 66 minimum motifs (Fig 4C bot-

tom solid nodes) and the full topology (Fig 4C top node) in terms of the parameter values that

gave rise to the four-attractor systems. We found that the full model contains more parameter

sets that have low nonlinearity of the regulations than the minimum motifs do (S16A Fig), and

the parameter values are distributed in larger regions with the full model than those with the

minimum motifs (S16B Fig).

We next asked whether the topologies that contain both Type I and Type II motifs have

greater probabilities to generate the four-attractor system than the topologies with one type of

motifs do. When we explored the parameter space randomly for each topology with a fixed

number of samples, a larger number of parameter sets that can generate the four-attractor sys-

tem were found with the topologies containing both motifs than with those containing either

Fig 5. Enrichment of Type I and Type II motifs in the T cell model. Top panel: total occurrences of various types of

motifs in the T cell network. Middle panel: empirical p-values of the single positive feedback loops and the sum of the

two types of motifs. Bottom panel: an illustration of the p-values with the distributions of background population.

Random networks were obtained by 1) permuting the regulations in the existing network by randomly assigning their

sources and targets (red) and 2) assigning random regulations (positive, negative or none) between each pair of TFs

(blue). 105 random networks were generated with each method. Empirical p-values were obtained by counting the

number of the random networks with the number of motifs not less than those in the T cell network. See Methods for

details of the p-value definition. Distributions of motif frequencies obtained from the random networks using the

second method are shown in the bottom panel. The yellow vertical bars represent the number of occurrences in the T

cell network. The right-tail areas defined by the vertical bars correspond to the p-values shown in the middle panel

(blue bars).

https://doi.org/10.1371/journal.pcbi.1006855.g005
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Fig 6. Comparisons of motifs with different complexity and types. A. Two specific network topologies were selected

for comparing models with different complexity. Network 1 contains multiple Type I motifs, whereas Network 2 is a

single Type I motif. The color code of the complexity atlas is the same as that in Fig 2 and Fig 4. Red: Type I motif.

Blue: Type II motif. Green: Hybrid motif. B. Performances of the two subnetworks are compared. Performance was

quantified with the sum of squared distance (SSD) from a predefined hypothetical continuous production function

(gray curve) of PU.1 level that have 7 intersections with the degradation function, which generates four attractors (see

details in supplementary text). The purple and red curves represent the optimized functions fitted to the gray curve.

The gray curve is closer to the purple curve than to the red curve, suggesting a better fit with Network 1. C. SSD values

obtained from 500 optimization runs for each of Network 1 and Network 2. Each value was calculated using the

procedure shown in B. D. Numbers of parameter sets that generate the four-attractor systems per 106 random samples

per topology. Three types of network motifs with 7 regulations are compared.

https://doi.org/10.1371/journal.pcbi.1006855.g006
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Type I or Type II motifs only (S5 Fig and Fig 6D). This suggests that the combination of both

motifs might be a robust strategy to generate the four-attractor system. This pattern was

observed for all the topologies in the complexity atlas (S6 Fig) as well as those with the same

degree of complexity (Fig 6D, networks with 7 regulations were chosen because they have

comparable fractions of the three types of motifs).

In summary, we found that the core transcriptional network controlling early T cell differ-

entiation are enriched with Type I and Type II network motifs. The network composed of

these two types of motifs governs a dynamical system containing four attractors, correspond-

ing to four known stages in the early T cell development. The networks with both types of

motifs and greater number of such motifs have more robust capability of generating the four-

attractor systems than those networks with fewer types of numbers of motifs do.

Stepwise transitions with restricted reversibility provide robustness to

fluctuating differentiation signal to multiple intermediate states

We next characterized the dynamical features of the four-attractor system of the T cell devel-

opment model in response to differentiation signals. For this and subsequent analysis, we

focused on a model describing the network topology shown in Fig 4A (the full model). We

first performed bifurcation analysis of the system to the changes of Notch signaling (Fig 7A).

With the increasing Notch signal, the system undergoes three saddle-node bifurcations, at

which the stability of the proceeding cellular states is lost (Fig 7A, black arrows). These bifurca-

tion points therefore represent the cell state transitions from one stage to the next. The struc-

ture of the bifurcation diagram shows a remarkable robust multistep commitment program

governed by the T cell transcription network: the commitment to each stage of the program

has restricted reversibility in that the attenuation or withdrawal of the Notch signaling does

not result in de-differentiation of the developing T cells (i.e. the return of the transcription

profile to earlier stages that may have greater multipotency). It was previously shown that the

commitment from DN2a to DN2b is an irreversible process with respect to Notch signaling,

and this transition eliminates developing T cells’ potential to be diverted to any other lineages

when Notch signaling is abolished [20,41]. However, simple toggle-switch models do not

explain the observation that the multipotency of the early T cells is lost in a stepwise manner.

For example, cells at ETP can be differentiated into B cells, macrophages, dendritic cells (DCs),

granulocytes, natural killer (NK) cells and Innate lymphoid cellsubset2 (ILC2), whereas the

potentials to commit to many of the lineages are blocked even in the absence of Notch signal-

ing at the DN2a stage, at which the cells can only be differentiated into NK cells and ILC2 [20].

Therefore, the stepwise, irreversible transcriptional transitions revealed by our model is consis-

tent with the experimental observations with respect to the loss of multipotency in the stepwise

manner.

Although the absence of Notch signal does not allow the reversal of lineage progression, it

was previously shown that the absence of BLC11B in lymphoid progenitor cells blocks its abil-

ity to progress to DN2b stage, whereas the Cre-controlled knockout of Bcl11b in committed T

cells (e.g. DN3 cells) reverts its transcriptional profile to DN2a-like cells [28]. Upon blocking

the production of BCL11B in our model, we observed the loss of attractors of DN2b and DN3,

and the DN2a state is the only stable stage even in the presence of the strong Notch signaling

(Fig 7B). As a result, increasing Notch signaling only triggers one saddle-node bifurcation, rep-

resenting the transition from ETP to DN2a cell (Fig 7B black arrow), whereas the decrease of

the BCL11B production triggers the transition back to DN2a instead of ETP (Fig 7C). These

results are in agreement with the previous experimental findings [28], and they further support

the importance of the multistep differentiation system revealed by our model.
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Fig 7. Stability analysis of the T cell model. The full model shown in Fig 4A is used for all the analysis. A. Bifurcation diagrams for the steady

states of the four core factors with respect to the Notch signal. Solid curve: stable steady state. Dashed curve: unstable steady state. B. Bifurcation

diagram under Bcl11b knockout condition with respect to Notch signal. Solid curve: stable steady state. Dashed curve: unstable steady state. C.

Bifurcation diagram with respect to BCL11B production rate parameter. Solid curve: stable steady state. Dashed curve: unstable steady state. D.

Illustration of the observed transitions among the four states. Colors of the stable branches of the bifurcation diagrams and the cell icons are

matched to the cellular states shown in Fig 1.

https://doi.org/10.1371/journal.pcbi.1006855.g007

Network motifs regulating multistep cell fate transitions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006855 March 7, 2019 14 / 36

https://doi.org/10.1371/journal.pcbi.1006855.g007
https://doi.org/10.1371/journal.pcbi.1006855


The bifurcation analysis shows how the lineage progression is influenced by stably increasing

or decreasing Notch signal strengths. We next asked how the duration of Notch signal may con-

trol the multistep lineage transition. By inducing the differentiation with varying durations of

the Notch signaling, we found that cells experiencing transient Notch signals may only commit

to intermediate stages of differentiation (Fig 8A). In addition, the system is able to integrate the

information of the signal intensity and duration to make decision on the lineage progression.

These results suggest that the multistep lineage transition can be triggered by the increasing

strength of the signal, the increasing duration of the signal, or the combination of both types of

signal dynamics. Earlier experimental studies have shown that transient Notch signaling can

irreversibly drive the cells to an intermediate, but committed stage with a definitive T cell iden-

tity (DN2b) [28,41,47]. This is in agreement with our results, and our model further suggests

that the commitment to other intermediate states is also irreversible with respect to the lineage

progression (note that this irreversibility does not refer to the establishment of T cell identity).

One possible advantage of the multi-stable system is its robustness of response in facing

fluctuating signals. We therefore performed numerical simulations of the dynamical system

under increasing Notch signaling with significant fluctuations. Under this condition, transient

reduction of Notch signaling halted the progress of the lineage commitment but did not trigger

the de-differentiation (Fig 8B). Our model suggests that the design of transcriptional network

allows the system to stop at intermediate stages before proceeding to the next ones. This strat-

egy has several potential physiological benefits: 1) it protects the cell lineage progression

against sporadic fluctuations of Notch signaling; 2) it facilitates the ‘checkpoints’ before lineage

commitment in the middle of the developmental process and 3) it allows the stable storage of

differentiation intermediates which can be differentiated into mature T cells rapidly when

there is an urgent need of new T cells with a diverse T cell receptor repertoire.

Quantitative analysis of the energy landscapes and minimum action paths

delineates the patterns of the multiple-attractor system in T cell differentiation

With the deterministic modeling and bifurcation approaches, we described the local stability

for multi-stable T cell model. However, the global stability is less clear from the bifurcation

Fig 8. Multistep lineage transitions under the influence of varying dynamics Notch signals. A. Strength and duration of the Notch signal were

varied in each simulation. 200X200 combinations of different signal strengths and durations were tested, and the final cellular phenotypes were

determined using the levels of the four core factors. B. Dynamics of PU.1 in response to increasing Notch with significant fluctuations. The mean

of the Notch signal increases linearly in the first phase, then it is attenuated in the second phase. Fluctuations were simulated with additive noise

in small time intervals.

https://doi.org/10.1371/journal.pcbi.1006855.g008
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analysis alone. In addition, it is important to consider the stochastic dynamics for T cell devel-

opment model because the intracellular noise may play crucial roles in cellular behaviors

[48,49]. The Waddington landscape has been proposed as a metaphor to explain the develop-

ment and differentiation of cells [50]. Recently, the Waddington epigenetic landscape for the

biological networks has been quantified and employed to investigate the stochastic dynamics

of stem cell development and cancer [51–57].

Following a self-consistent approximation approach (see Methods), we calculated the

steady state probability distribution and then obtained the energy landscape for the model of

the early T cell development (full model in Fig 4A). For visualization, we selected two TFs

(PU.1 and TCF-1) as the coordinates and projected the 4-dimensional landscape into a two-

dimensional space by integrating the other 2 TF variables (Fig 9A). Here TCF-1 is a represen-

tative T cell lineage TF, and PU.1 is a TF for alternative cell fates. We also displayed the land-

scape in a four-dimensional figure, where the three axes represent three TFs (TCF-1, BCL11B

and PU.1), and the color represents the energy U (Fig 9B). Note that our major conclusions do

not depend on the specific choice of the coordinate (see S7 and S8 Figs for landscapes with

PU.1/BCL11B and PU.1/GATA3 as the coordinates).

In the case without Notch signal (N = 0), four stable cell states emerge on the landscape for

the T cell developmental system (Fig 9). On the landscape surface, the blue region represents

lower potential or higher probability, and the yellow region represents higher potential or

lower probability. The four basins of attraction on the landscape represent four different cell

states characterized by different TF expression patterns in the 4-dimensional state space (Fig

9A and 9B provide two types of projections of the whole 4-dimensional landscape). These

states separately correspond to ETP/DN1 (high PU.1/low TCF-1/low BCL11B/low GATA3

expression), DN3 state (low PU.1/high TCF-1/high BCL11B/high GATA3 expression), and

two intermediate states (DN2a and DN2b, intermediate expression for the four TFs). The exis-

tence of four stable attractors is consistent with experiments [16–19]. As the Notch signal (N)

increases, the landscape changes from a quadristable (four stable states coexist), to a tristable

(DN2a, DN2b and DN3), to a bistable (DN2b and DN3) and finally to a monostable DN3 state

(S9 Fig). These results provide a straightforward explanation for the irreversibility observed in

experiments for the stepwise T cell lineage commitment.

To check whether our modelling results match experimental data quantitatively, we

acquired two sets of gene expression data of the four core TFs for T cell development from pre-

vious publications [17,47], and mapped the normalized values (see Methods) to the landscape

(Fig 9A and 9B, S7 and S8 Figs). Here, the golden balls represent the four steady states (charac-

terizing four stages of T cell development) from the models, the red balls represent the gene

expression data points (Data1) from Zhang et al. [47], and the green balls represent the gene

expression data points (Data2) from Mingueneau et al. [17]. We found that these gene expres-

sion data agree well with our landscape models in the sense that each data point is almost posi-

tioned in the corresponding basin (Fig 9A and 9B, S7 and S8 Figs). We found that the

landscapes give a better fit to Data2 (green points), since each green data point can be well

positioned in one of the four basins, corresponding to four stages of T cell development. In

fact, the two sets of data points are not very close to each other or to the steady states (golden

points) from the models. This is reasonable because these two sets of experimental data are

measured separately, probably in different conditions, and these data usually delineate the

average of multiple measurements from different samples. Also, the gene expression fluctua-

tions are common in biological systems. Therefore, our landscape pictures provide a natural

way to reconcile the two different experimental data, i.e. the gene expression data do not have

to be at the positions of steady states. Instead, the gene expression data for each individual
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Fig 9. Energy landscape for T cell development. The landscape and corresponding minimum action paths (MAPs) for the T

cell developmental network are shown in 3-dimensional (A) and 4-dimensional (B) figure (the full model shown in Fig 4A is

used for all the analysis). A. The blue regions represent higher probability or lower potential and the yellow regions represent

lower probability or higher potential. White solid lines represent the MAP from ETP state to DN2a, DN2b, and DN3 states.

Magenta solid lines represent the MAP from DN3 to DN2b, DN2a, and to ETP state. Dashed lines represent the direct MAP

from ETP to DN3 and from DN3 to ETP states, respectively. Here, TCF-1 and PU1 are selected as the two coordinates for

landscape visualization. B. The landscape and paths are displayed in a 4-dimensional figure, where the three axes represent
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stage could be somewhere around that basin because of the fluctuations. This reflects the origi-

nal spirit of the classic Waddington developmental landscape.

To examine the transitions among individual cell types, we calculated kinetic transition

paths by minimizing the transition actions between attractors [58,59], obtaining minimum

action paths (MAPs). The MAPs for different transitions are indicated on the landscape (Fig

9). The white MAPs from the ETP state to the DN3 state, correspond to the T cell developmen-

tal process while the magenta MAPs from the DN3 state to the ETP state, correspond to repro-

gramming process. The lines represent the MAPs, and the arrows denote the directions of the

transitions. The MAP for T cell developmental process and the MAP for the backward process

are irreversible, since the forward and reverse kinetic paths are not identical. This irreversibil-

ity of kinetic transition paths is caused by the non-gradient force, i.e. the curl flux [60,61].

Here, the solid white lines represent three stepwise transitions from ETP to DN2a, DNa2 to

DN2b, and DN2b to DN3, whereas the dashed white line represents the direct transition path

from ETP to DN3. From the MAPs for T cell development, we found that the direct transition

path is very similar to the stepwise transition path (the white solid line is similar to the white

dashed line, Fig 9, S7 and S8 Figs), which indicates that the T cell developmental process needs

to go through the two intermediate states (DN2a and DN2b). This confirms the critical roles

of the intermediate states for the T cell differentiation. It is worth noting that the MAPs here

quantify the most probable transition paths, which suggest the optimal path (with least transi-

tion action) for cells to switch from one state to another. However, in a realistic gene regula-

tory system, usually a signal is needed to induce rapid cell state transitions (e.g. the Notch

signaling is used here to induce T cell development).

To investigate the dynamical developmental process of T cell for multiple TFs, we visualized

the 4-dimensional MAP from the ETP to the DN3 state by discretizing the levels of the four

TFs. We found that for T cell development, TCF-1 is upregulated first, followed by the activa-

tion of GATA3. This leads to the complete inactivation of the alternative fate TF PU.1 and the

activation of BCL11B (Fig 10). Interestingly, this temporal order is in good agreement with

experimental observations [62] (Also see the gene expression data of four core TFs for four

stages in Fig 9, S7 Fig and S8 Fig). These results suggest that the sequence of switching on or

off for different TFs can be critical for the lineage commitment of T cell development. More-

over, under the Bcl11b knockout condition (kB = 0), the landscape changes from a quadrista-

ble (four stable states coexist), to a bistable (ETP and DN2a) state (S10 Fig), which is consistent

with the bifurcation analysis (Fig 7) and experimental observations [28].

Global sensitivity analysis based on landscape topography reveals the

critical factors for T cell development

To identify the critical factors (regulations and TFs) which determine T cell development, we

performed a global sensitivity analysis based on the landscape topography. Specifically, we use

the transition action between attractors as a measure to quantify the feasibility of a transition

between different attractors. A smaller transition action, corresponding to a smaller energy

barrier, means a more feasible transition from one attractor to another. In this way, by chang-

ing the parameters each at a time we can identify the critical parameters for T cell development

three TFs (TCF-1, BCL11B and PU. 1), respectively, and the fourth dimension (color) represents the energy U. The

normalized gene express data (including TCF-1, BCL11B, GATA3, and PU. 1) of four stages for T cell development are

mapped to the landscape, where the golden balls represent the four steady states (four stages of T cell development) from the

models, the red balls (Data1) represent the data from Zhang et al. [47], and the green balls represent the data from

Mingueneau et al. [17]. See S7 Fig and S8 Fig for the landscapes and the gene expression data using other pairs of TFs.

https://doi.org/10.1371/journal.pcbi.1006855.g009
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(we use the transition from ETP to DN3 as an example). To do this, we constrict the models

within the parameter region corresponding to the four-attractor system, so that we can make

comparisons for the changes of transition actions as parameters are varied.

We identified some critical parameters of which the variations caused significant changes

of transition actions between ETP and DN3 attractor. These parameters include the effective

degradation rate of PU.1, (rdP), the regulated production rate of PU.1 (kP), the basal produc-

tion rate of PU.1 (kP0), the threshold of the self-activation of PU.1 (KPP), and the threshold

for the repression of PU.1 on GATA3 (KGP) (Fig 11). In particular, the increase of the self-

activation strength of PU.1 (i.e. decreased KPP) reduces the transition action from DN3 to

DN2b (Fig 11B), indicating a less stable DN3 state and a more stable ETP state. This is reason-

able because the PU.1 is a major TF for alternative cell fates (B-cell, dendritic-cell, and myeloid

cell), and silencing of PU.1 is operationally important for T cell commitment [28]. Addition-

ally, the increase of the repression strength of PU.1 on GATA3 (decreased KGP) raises the

transition action from ETP to DN2a (Fig 11B), indicating a more stable ETP state and a less

stable DN3 state, which is consistent with the observation that GATA3 is a critical TF promot-

ing T cell development. Overall, these results from sensitivity analysis indicate that the PU. 1

synthesis/degradation related parameters, the GATA3 synthesis related parameters, and the

regulations between PU.1 and GATA3 are critical to the dynamics and the cell fate decisions

of T cell development. This indicates that the regulatory circuit between PU.1 and GATA3

plays critical roles for the cell fate determinations during T cell development.

Discussion

In this study, we identified two types of network motif families that are responsible for generat-

ing a four-attractor dynamical system commonly observed in stepwise cell differentiation.

Some instances of these motifs were previously described and analyzed in the context of binary

or ternary switches during lineage transitions [63–67], but the systematic analysis for these

motifs was not performed to our knowledge. In addition, the design principle for multiple

Fig 10. Discrete kinetic transition paths for T cell model. Transition paths from ETP state to DN3 state in terms of levels of 4 different TFs. A. The relative

TF levels are discretized to 0 or 1. 1 represents that the corresponding TFs are in the on (activated) state and 0 represents that the corresponding TFs are in the

off (repressed) state. B. The relative TF levels are discretized to five values from low to high. X axis shows the time along the transition path.

https://doi.org/10.1371/journal.pcbi.1006855.g010
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intermediate states was not clear. Our approach provides a comprehensive framework for ana-

lyzing systems with a complex dynamical property, a four-attractor system with stepwise tran-

scriptional modulation, and we illustrate the intricate relationships among these motifs with

an intuitive visualization method.

Previous studies on biological circuits governing irreversible transitions focused on the

analysis of toggle switches which generate none-or-all type of responses [68,69]. Our work sug-

gests that multistep or graded responses can be associated with irreversible transitions as well.

Given the importance of graded response in various biological scenarios [70–72], we expect

the design strategy that we found can be useful for discovery of natural-occurring irreversible

graded responses or construction of synthetic biological circuits producing these responses.

Our work also suggests that the response to signals, or the progression of lineage transition,

may be proportional to the intensity and/or the duration of the signal. This is consistent with

the previous observations that the duration of the morphogen signal can be critical for cell

Fig 11. Global sensitivity analysis for T cell developmental model. Sensitivity analysis was performed for the 39 parameters in the T cell model. The

transition actions between different states (SETP->DN2a and SDN3->DN2b) were calculated to quantify the sensitivity of parameters on the landscape. The Y-Axis

represents the 39 parameters. The X-Axis represents the percentage of the transition action (S) changed relative to S without parameter changes. Here, SETP-

>DN2a represents the transition action from attractor ETP to attractor DN2a (cyan bars), and SDN3->DN2b represents the transition action from attractor DN3 to

attractor DN2b (magenta bars). A. Each parameter is increased by 1%, individually. B. Each parameter is decreased by 1%, individually.

https://doi.org/10.1371/journal.pcbi.1006855.g011
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lineage choice [73,74]. Of note, when signal strength is converted to digital (none-or-all)

response in early phases of signal transduction, its duration can play an essential role in deter-

mining the graded response [75].

In our systematic exploration in the network topology space, we took the assumption that

network structure is correlated with its function, i.e. assuming the existence of functional motif

structure in transcription regulatory networks. The notion of network motifs is very helpful for

understanding many complex biological systems [76,77], but the richness of dynamic behaviors

of these motifs is beyond their structures–distinct kinetic rates in the same motif can produce

diverse responses [78]. Therefore, it is expected that the motifs that we discovered may be able

to generate dynamical behaviors different from the four-attractor system (we will discuss some

of them in the following paragraphs). We also expect that some of network motifs can be

responsible for multiple functions by themselves, and this multifunctionality may explain the

diverse motifs that we found for the four-attractor systems in the biological examples. Future

work is warranted to examine the distributions of the diverse functions in the parameter space

of the motifs that we found. Nonetheless, it is important to understand the capacity of the net-

work motifs in terms of their functional outputs. Our work provides a holistic view of the poten-

tial network motif structures governing multistep cell lineage transitions.

Although network motifs with three positive feedback loops closing at a single factor (Type

I motifs discussed in this study) were not systematically analyzed in previously studies to our

knowledge, some simpler versions of Type I motif, e.g. a pair of interconnected positive feed-

back loops, have been described in various systems such as the epithelial-mesenchymal transi-

tion and the cancer progression [65,79]. These systems typically govern ternary switches with

a single intermediate state. These studies and ours suggest a correlation between the number

of positive feedback loops and the number of the intermediate states the system may be able to

generate. In fact, early studies on multistable systems have shown the requirement of positive

feedback loops for generating multiple steady states [80], which was proved mathematically

[81]. Intriguingly, an ultrahigh feedback system similar to the Type I motifs was shown to gov-

ern irreversible transitions with low differentiation rates for adipocytes [82]. It would be inter-

esting to examine whether controlling the low differentiation rate through cell-to-cell

variability and controlling the number of intermediate states suggested by our model can be

achieved in the same system. Our findings are consistent with the earlier work in that they

highlight the importance of this type of signaling motifs in controlling cell differentiation by

preventing the direct and homogeneous transition from the initial state to the final one.

Near symmetrical parameters in models based on a particular instance of the Type II motif

class (the one with mutually inhibiting TFs) have been widely used to explain stochastic lineage

choice observed in embryonic stem cells, developing hematopoietic cells and CD4+ T cells

[83,84]. Our findings with Type II motifs complement these studies with newly identified

functions of these motifs for cell differentiation. Instead of the stochasticity that breaks the

symmetry of this motif, the Notch signal may be responsible for switching the system from

one side (PU.1 high) to another (PU.1 low) in a stepwise fashion, and the intermediate states

mark the stable stages where the system is relatively balanced in terms of two groups of com-

peting TFs.

It was previously suggested that the network consisting of four core transcription factors

governs a bistable switch with irreversible transition [41]. Our models based on this network

provide explanations for additional experimental observations with respect to the multistep

feature of the early T cell development (see S1 Text for a comparison between our model and

the bistable model). Although it is possible that interconnection of multiple positive feedback

loops simply enhances the robustness of the bistable switches, the observation that several

important irreversible transitions in cell cycle progression are primarily controlled by two
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positive feedback loops implies that the enrichment of the positive feedback loops in the T cell

transcriptional network is unlikely due to the intrinsic biophysical limits of positive feedback

loops in generating bistable switches [46,69]. Instead, other cellular functions, such as generat-

ing the multiple intermediate states, might be the performance objectives for the design of this

network. Future work with more systematic analysis is warranted to compare the parameter

regions corresponding to the bistable, tristable and quadristable systems with ordered and

unordered attractors.

Our model of early T cell development suggests that the differentiation program may be

stopped at multiple locations in the state space of transcription levels of key factors. These mul-

tiple attractors may correspond to the lineage branching points at which the progenitor cells

are given opportunities to be converted to T cell as well as other types of lymphocytes. As such,

it is possible that this dynamical property is exploited to achieve a better control for the fate

determination of the lymphoid progenitor cells at systems level. Given that subpopulations of

NK cells and DCs are generated by the thymus [85–87], the multistep lineage transition pro-

vides a basis for channeling the lymphoid progenitor to multiple lineages in a precise manner.

Based on the recent landscape-path theory and the T cell gene regulatory network model,

we investigated the stochastic dynamics of T cell development. We identified four stable cell

states characterized by attractors on the landscape including ETP/DN1, DN3, and two inter-

mediate states (DN2a and DN2b). These attractors (cell states) match two published datasets

of gene expression values in a reasonable way [17,47]. We also calculated the kinetic transition

paths between different cell states from minimum action path approaches. Importantly, from

the MAPs of T cell development, we found that different TFs are switched on or off in different

orders. For example, TCF-1 needs to be first activated, and then GATA3 is activated, leading

to the inactivation of PU.1 and activation of BCL11B. These predictions agree well with experi-

ments [28,62], which provides further validations for our mathematical model.

In our models, we only considered four core factors based on previous published T cell

gene regulatory network for simplicity [41]. In the realistic biological system, there are more

factors critical to T cell development [28]. It would be interesting to incorporate other impor-

tant factors into the network and construct a more realistic model for T cell development. By

studying the landscape of more comprehensive T cell development network, we will better

understand the underlying regulatory machinery and obtain more insights into the intricate

mechanisms for T cell development.

In summary, we identified a large family of network motifs that can generate four attractors

that are observed in various biological systems involving cell lineage transition. We built a mathe-

matical model for transcriptional network controlling early T cell development, and we found

that the network underlying this developmental process is enriched with the motifs that we identi-

fied. The system with the four attractors has a remarkable irreversibility for transitions to multiple

intermediate states when the differentiation signal is varied. We suggest that this multistep process

may be useful for precise control of the differentiation of lymphoid progenitor cells towards T cell

and other cell types. Our T cell model provides new insights into the complex developmental or

regeneration processes, and our combined approaches of comprehensive analysis of network

motifs for generating multistable systems and landscape-path framework provide a powerful tool

for studying a wide range of networks controlling cell lineage transitions.

Methods

Framework of mathematical modeling

We used ordinary differential equations (ODEs) to describe the dynamics of the concentra-

tions of transcription factors (TFs). We used Hill function to describe the transcriptional
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regulation by TFs. Each ODE has the following form:

Xi
_ ðtÞ ¼ k0;Xi

þ kXi
Xn

j¼1

bi;j

ð1 � yÞ þ y
Xj
Ki;j

� �ni;j

1þ
Xj
Ki;j

� �ni;j � rd;Xi
Xi ð1Þ

Here, Xi represents the concentration of a transcription factor (TF). k0;Xi
is the basal production

rate of the TF in the absence of any regulator. kXi is the maximum production rate under the con-

trol of the transcriptional activators and inhibitors of this TF. βi,j denotes the weight of the influ-

ence of the TF j on i. The sum of the Hill functions determines the regulation of the production of

this TF by other TFs. In each term of the summation, θ = 1 when the regulating TF (Xj) is an acti-

vator. θ = 0 when the regulating TF is an inhibitor. Ki,j is the apparent dissociation constant of the

regulating TF binding to its regulatory element of the promoter, and it describes the effectiveness

of the regulation in terms of the concentration of the TF. n is the total number of regulating TFs.

rd;Xi
is the effective degradation rate constant. The production rate of the proteins is assumed to be

linearly correlated with mRNA production rate. Similar generalized forms of Hill function were

previously used for analysis of a variety of gene regulatory networks [52,88]. One time unit of our

model corresponds to 6 hours, and all the parameters are dimensionless.

To exclude the possibility that our conclusions are sensitive to the choice of the form of

equations, we used an alternative form of ODE to describe the regulatory networks:

Xi
_ ðtÞ ¼ k0;Xi

þ kXi
Yn

j¼1

ð1 � yÞ þ y
Xj
Ki;j

� �ni;j

1þ
Xj
Ki;j

� �ni;j � rd;Xi
Xi ð2Þ

In these ODEs, multiplication of Hill functions was used instead of addition. Similar forms

of Hill function were also used for modeling a variety of gene regulatory networks [66,89].

With this form, the two types of network motifs that generated the four-attractor behavior are

the same as those discovered with the additive form of Hill functions (S3 Fig). In fact, using

both forms of equations gave rise to the same number of network topologies (216 topologies

with the steady states shown in both S3 Fig and S4 Fig). Therefore, our conclusions are robust

in terms of the choice of equation form.

During topology searching, random parameters values were chosen from defined ranges

(S1 Table, see below).

Topology searching for four-attractor systems

Network topology searching was first performed for all possible topologies involving up to 3

nodes (TFs) and 6 regulations that are able to generate four-attractor systems with stepwise

changes of TF levels. We sampled n of the 9 arrows in Fig 2A, where 1�n�6. The procedure

for the exhaustive search is the following: 1) Choose n arrows from the 9 arrows in Fig 2A (9

choose n), which gives rise to 465 topology templates. 2) For each topology template contain-

ing n regulations, enumerate all 2n networks (the number 2 represents positive and negative

regulations), which gives 12258 networks in total. 3) Remove redundant networks that are dif-

ferent in terms of labels of nodes but are otherwise identical in terms of topology (isometric

topologies), which produces 2114 non-redundant topologies. Three-node networks were pre-

viously used to explore several types of functional dynamics of network motifs [38,90]. For

each topology, we performed random sampling of 106 parameter sets. For each parameter set,

we selected 125 initial conditions in the three-dimensional state space ((0, 3.3) for each vari-

able) using Latin Hypercube sampling, and then solved the ODEs numerically. We stopped
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the simulations at time point 500 and checked if the 125 ODE systems are stabilized at four or

more distinct steady states. We next checked if the changes of the TFs are monotonically cou-

pled. We first ordered the steady states by the levels of one TF, and then we looked for scenar-

ios in which all other TFs monotonically increase or decrease with the ordered TF (i.e. the

attractors with stepwise changes of the TFs). We excluded the scenarios in which one TF is not

monotonically correlated with others in terms of their levels at the four attractors. Models that

generated oscillations at the final time point were also excluded. The parameter sets which pro-

duced the stepwise changes of steady state were accepted and their associated network topolo-

gies were analyzed. Parameter values for the minimum topologies are listed in S2 Table.

Topology classification

To determine whether a network topology contains Type I and/or Type II motifs, we devel-

oped a simple algorithm for motif identification. We first enumerated all positive feedback

loops (PFLs) in the network. A PFL is defined as any unbranched closed loop structure that

has even number of negative regulations. We then followed the scheme described in Table 2 to

check if Type I and/or Type II motifs exist in a specific network: we enumerated all combina-

tions of three PFLs in the network. If any three PFLs share one or more TFs, then the network

contains a Type I motif. If two of any three PFLs do not share any TF, but they (i.e. at least one

TF from PFL 1 and at least one TF from PFL 2) are connected via the third PFL, then the net-

work contains a Type II motif.

Complexity atlas was plotted for the obtained network topologies as described previously

by Jiménez et al [40] (Fig 2B and Fig 4C).

Transcriptional network model for early T cell development

We built a model for early T cell development based on the regulations that were previously

shown experimentally [91–104]. Information about experimental evidence is described in S3

Table. The form of equations is similar to Eq (2). We chose this multiplicative form of Hill

functions because earlier experimental study suggested that regulations of Bcl11b gene are

combined via an ‘and’ logic gate [105], which favors the use of multiplication. Although similar

detailed information is not available for other TFs, we have shown that our main conclusions

with respect to the multistep transitions controlled by a network motif family do not depend

on the choice of the form of equations (Fig 2 and S4 Fig). Full list of equations is included in

S1 Text. The parameter values were obtained by random searching described above with the

four-attractor property as the selection criterion followed by minor manual adjustments. All

parameter values are dimensionless. To our knowledge, there is no published experimental

measurement that would allow us to directly constrain the ranges of these values except for the

degradation rates, which have a unit of the inverse of time. These degradation rates were esti-

mated from a previous study that measured the half-lives (approximately 4 hours) of the tran-

scription factors [41]. The parameter values are listed in S4 Table. To explore the subnetworks

of the T cell development model that are essential for the four-stage transition, we performed

similar exhaustive search in a set of 1553 non-redundant topologies (2047 subnetworks) to

find functional circuit in the model. We obtained 568 topologies (701 topologies) from the

search, and we analyzed them with complexity atlas. Isometric topologies were removed in the

simulations, but they are included in the complexity atlas so that we do not mix isometric

topologies with possibly differential biological meanings specific to certain genes.

In the bifurcation analysis, the value of the parameter N (Notch signal strength) or kBCL11B

(maximum production rate of BCL11B) is varied and the changes of the steady states of the

system were analyzed. We let kBCL11B = 0 to simulate the Bcl11b knockout condition.
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To simulate the system under various scenarios of Notch signaling, we first varied the

strength and/or duration of the Notch signal and checked the steady state distribution of the

system under the varying strengths and durations. We tested 200X200 combinations of

strengths and durations of Notch signals and obtained the phenotypes of the cells at the steady

state. To simulate the fluctuating Notch signals, we divided the time window of the simulation

into small intervals (0.1 unites of time). For each interval, we used a random number with a

specified mean and an additive noise. The mean of the Notch signal first increased overtime

and then became attenuated.

Enrichment analysis of the four-attractor motifs in the T cell model

To quantify the enrichment of various types of motifs, we used the generic definition of p-

value: the p-value for a particular motif is the probability of obtaining at least n number of

motifs from a random network population, where n is the observed number of such motif in

the T cell network. To compute the p-values, we first counted the frequencies of the positive

feedback loop, Type I motif and Type II motif in the T cell model (i.e. n1, n2, n3, n4 represent-

ing the numbers of positive feedback loops, Type I motifs, Type II motifs, and the sum of the

Type I and Type II motifs respectively). Random networks were generated using two methods:

1) for each regulation in the existing T cell model, we randomly reassign its source and target

TFs (referred to as ‘permuted regulations’), and 2) for each pair of TFs from the network, we

randomly assign a regulation (positive, negative or none) (referred to as ‘permuted regula-

tions’). For each of the two methods, we generated 105 networks, and we calculated the empiri-

cal p-values by counting the number of the random networks with the numbers of motifs not

less than those of respective motifs in the T cell network. The method with permuted regula-

tions is more biologically relevant because the number of the positive and negative regulations

are retained in the random networks. We used the second approach as an alternative to

exclude the possibility that the conclusion based on the trend of the p-values is due to the low

number of networks containing the extreme amount of the motifs.

Optimization for performance comparison of two subnetworks

Due to the difficulty to compare the performances of regulatory circuits with different com-

plexities in general, we selected two specific instances of Type I network motif for comparison.

One of them contains only one Type I motif, whereas the other one contains multiple motifs.

For each topology, we reduced the system to one ODE with quasi-steady state assumption and

defined a continuous production rate function that can produce four attractors as a surrogate

function (see S1 Text). Multiple runs of optimization using differential evolution algorithm

was used, and 500 converged parameter sets for each circuit were used for comparison. This

optimization method was previously used for finding optimum parameter sets and for com-

paring the performances of regulatory circuits [64,106,107].

Self-consistent mean field approximation for the quantification of energy

landscape

The temporal evolution a dynamical system was determined by a probabilistic diffusion equa-

tion (Fokker-Planck equation). Given the system state P(X1,X2,. . .,XN,t), where X1,X2,. . .,XN,

represent the concentrations of molecules or gene expression levels, we have N-dimensional

partial differential equation, which are difficult to solve because the system has a very large

state space. Following a self-consistent mean field approach [52,61,108], we split the probabil-

ity into the products of the individual probabilities: PðX; tÞ ¼ PðX1;X2; . . . ;XN;tÞ ¼
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QN
i PiðXi; tÞ and solve the probability self-consistently. In this way, we effectively reduced the

dimensionality of the system from MN to MN (M is the number of possible states that each

gene can have), and thus made the computation of the high-dimensional probability distribu-

tion tractable.

Based on the diffusion equations, when the diffusion coefficient D is small, the moment

equations can be approximated to [109,110]:

_�xðtÞ ¼ Fð�xðtÞÞ ð3Þ

_sðtÞ ¼ sðtÞATðtÞ þ ATðtÞsðtÞ þ 2Dð�xðtÞÞ ð4Þ

Here, �xðtÞ; σ(t) and A(t) are vectors and tensors. σ(t) denotes the covariance matrix and A
(t) is the jacobian matrix of Fð�xðtÞÞ. AT(t) is the transpose of A(t). The elements of matrix A

are specified as: Aij ¼
@FiðXðtÞÞ
@xjðtÞ

. By solving these equations, we can acquire �xðtÞ and σ(t). Here,

we consider only the diagonal elements of σ(t) from the mean field approximation. Then, the

evolution of the probability distribution for each variable can be acquired from the Gaussian

approximation:

P x; tð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2psðtÞ

p e�
ðx� �xðtÞÞ2

2sðtÞ ð5Þ

The probability distribution acquired above corresponds to one stable steady state or the

basin of attraction. If the system has multiple stable steady states, there should be several prob-

ability distributions localized at each basin with different variances. Thus, the total probability

is the sum of all these probability distributions with different weights. From the self-consistent

approximation, we can extend this formulation to the multi-dimensional case by assuming

that the total probability is the product of each individual probability for each variable. Finally,

with the total probability, we can construct the potential landscape by: U(x) = −lnPss(x). Here,

Pss is the steady state probability distribution, and U is dimensionless potential energy. In this

work, we define two quantities based on the landscape theory. One is the energy barrier height,

which is defined as the energy difference between the local minimum and the corresponding

saddle point. Another quantity is the transition action, which is defined as the minimum

action from one attractor to the other. These two quantities both measure the difficulty of the

transitions. However, the transition actions are suggested to provide a more accurate descrip-

tion for the barrier crossing between attractors or the transition rate [111]. Therefore, we used

the transition actions to quantify the difficulty of the transitions between attractors in this

work (see the following section for the approach of calculating minimum action paths).

Minimum action paths from optimization

Following the approaches based on the Freidlin-Wentzell theory [58,112,113], for a dynamical

system with multistability the most probable transition path from one attractor i at time 0 to

attractor j at time T, �
�

ijðtÞ, t2[0,T], can be acquired by minimizing the action functional over

all possible paths:

ST �ij

h i
¼

1

2

R T
0
j _� ij � Fð�ijÞj

2dt ð6Þ

Here F(ϕij) is the driving force. This optimal path is called minimized action path (MAP).

We calculated MAPs numerically by applying minimum action methods used in [58,112].
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Comparison between simulated attractors and experimental data

Gene expression data for the four core TFs were obtained from two previous studies on T

cell development (Zhang et al. and Mingueneau et al. [17,47]). We rescaled these data to

the range of the attractors obtained from our models by linearly transforming the expression

values so that they match the attractors approximately. This rescaling is necessary because

some corresponding expression values from these two datasets differ from each other by

more than 10-fold. The corresponding ratios between these two datasets vary significantly as

well.
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S1 Fig. Phase planes for Type I minimum network topologies. Nullclines for TF A (the node

on the left of the network diagram) and TF B (the node on the right of the network diagram)

are shown. Stable steady states are shown as black dots. The inset network diagram shows the

corresponding network. Random parameter sampling was used to obtain the parameter sets

that allows the 4-attractor systems.

(TIF)

S2 Fig. Phase planes for Type II minimum network topologies. Nullclines for TF A (the

node on the left of the network diagram) and TF B (the node on the right of the network dia-

gram) are shown. Stable steady states are shown as black dots. Random parameter sampling

was used to obtain the parameter sets that allows the 4-attractor systems.

(TIF)

S3 Fig. Overlaid four attractors for each of the 216 topologies from the 3-node network

that produce 4-attractor systems. Factor A denotes the TF on the left of the network diagram.

Factor B denotes the TF on the right of the network diagram. In some topologies A and B are

positively correlated (left panel), whereas they are negatively correlated in other topologies

(right panel). Colored dots denote the stable steady states. Colored lines connect states of their

corresponding topologies. The colors of the cell states match the illustration in Fig 1. The col-

ors of the lines denote different representative models. z-score is calculated by shifting the

mean of each four attractors to 0 and then normalizing the four data points to unit variance
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data. All models shown in this figure are built with additive form of Hill functions.

(TIF)

S4 Fig. Four-attractor systems generated with the alternative form of equations. A. Over-

laid four attractors for each of the 216 topologies from the 3-node network that produce

4-attractor systems. Factor A is the TF on the left of the network diagram. Factor B is the TF

on the right of the network diagram. In some topologies A and B and positively correlated (left

panel), whereas they are negatively correlated in other topologies (right panel). Colored dots

denote the stable steady states. Colored lines connect states of their corresponding topologies.

The colors of the cell states match the illustration in Fig 1. The colors of the lines denote differ-

ent representative models. z-score is calculated by shifting the mean of each four attractors to 0

and then normalizing the four data points to unit variance data. B. Example phase planes for

two minimum topologies (Type I and Type II respectively). In each case, four out of the seven

steady states (intersections denoted by solid dots) are stable. All models shown in this figure

are built with multiplicative form of Hill functions.

(TIF)

S5 Fig. Overlaid four attractors for each of the 559 topologies from the T cell network that

produce 4-attractor systems. Colored dots denote the stable steady states. Colored lines connect

states of their corresponding topologies. The colors of the cell states match the illustration in Fig 1.

The colors of the lines denote different representative models. z-score is calculated by shifting the

mean of each four attractors to 0 and then normalizing the four data points to unit variance data.

All models shown in this figure are built with multiplicative form of Hill functions.

(TIF)

S6 Fig. Comparison of three types of network topologies. Letter-value plot shows distribu-

tions of the numbers of topologies from the entire complexity atlas (Fig 4C) over the space of

parameter sets that generate the four-attractor systems per 106 random parameter sets. Distri-

butions are separately shown for three types of motifs. Red: Type I motif. Blue: Type II motif.

Green: Hybrid motif.

(TIF)

S7 Fig. Landscape and corresponding minimum action paths (MAPs) for the T cell develop-

mental network in the BCL11B-PU.1 state space. The blue regions represent higher probabil-

ity or lower potential and the yellow regions represent lower probability or higher potential.

Four basins of attractions characterize four different cell states (ETP, DN2a, DN2b, and DN3).

White solid lines represent the MAP from ETP state to DN2a, DN2b, and DN3 states. Magenta

solid lines represent the MAP from DN3 to DN2b, DN2a, and to ETP state. Dashed lines repre-

sent the direct MAP from ETP to DN3 and the direct MAP from DN3 to ETP states, respec-

tively. The normalized gene express data (BCL11B and PU. 1) of four stages for T cell

development are mapped on the landscape, where the golden balls represent the four steady

states (four stages of T cell development) from the models, the red balls (Data1) represent the

data from Zhang et al. [47], and the green balls represent the data from Mingueneau et al. [17].

(TIF)

S8 Fig. Landscape and corresponding minimum action paths (MAPs) for the T cell devel-

opmental network in the GATA3-PU.1 state space. The blue regions represent higher proba-

bility or lower potential and the yellow regions represent lower probability or higher potential.

Four basins of attractions characterize four different cell states (ETP, DN2a, DN2b, and DN3).

White solid lines represent the MAP from ETP state to DN2a, DN2b, and DN3 states. Magenta

solid lines represent the MAP from DN3 to DN2b, DN2a, and to ETP state. Dashed lines
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represent the direct MAP from ETP to DN3 and the direct MAP from DN3 to ETP states,

respectively. The normalized gene express data (GATA3 and PU. 1) of four stages for T cell

development are mapped on the landscape, where the golden balls represent the four steady

states (four stages of T cell development) from the models, the red balls (Data1) represent the

data from Zhang et al. [47], and the green balls represent the data from Mingueneau et al. [17].

(TIF)

S9 Fig. Landscape changes as Notch signal increases. On the landscape, the blue regions rep-

resent higher probability or lower potential and the yellow regions represent lower probability

or higher potential. As the Notch signal (N) increases (from 0.1 to 0.2, 0.3, and 0.4), the land-

scape changes from a quadristable (four stable states coexist), to tristable (DN2a, DN2b and

DN3 coexist), to bistable (DN2b and DN3 coexist) and finally to a monostable DN3 state. The

landscape change shows how the Notch signal promotes the transition from ETP to DN3,

quantitatively.

(TIF)

S10 Fig. Quasi-energy landscape for the Bcl11b knockout condition. With the Bcl11b knock-

out (kB = 0), the landscape changes from a quadristable (four stable states coexist), to a bistable

(ETP and DN2a) state. On the landscape, the blue regions represent higher probability or

lower potential and the yellow regions represent lower probability or higher potential. Two

basins of attractions characterize two different cell states (ETP and DN2a). The landscape

change shows that the Bcl11b knockout will make ETP/DN2a states more stable and DN2b/

DN3 less stable.

(TIF)

S11 Fig. Venn diagram of four types of network motifs that can produce four attractors

with up to three TFs. Red and blue areas correspond to Type I and Type II motifs shown in

Fig 2B. Green area corresponds to motifs that contain both Type I and Type II networks.

Orange area corresponds to motifs that can only produce four unordered attractors, in which

the concentrations of the TFs are non-monotonically correlated. Numbers in the diagrams

denote the total numbers of non-redundant topologies for each type. The Type II (blue) and

Hybrid (green) motifs can produce both ordered and unordered 4-attractor systems, depend-

ing on the choice of parameters.

(TIF)

S12 Fig. A phaseplane for a system containing four unordered attractors. Model 2 (Type II)

is chosen as an example. See S2 Fig for the scenario with ordered attractors. Nullclines for TF

A (the node on the left of the network diagram) and TF B (the node on the right of the network

diagram) are shown. Stable steady states are shown as black dots. Random parameter sampling

was used to obtain the parameter set.

(TIF)

S13 Fig. The comparisons for the landscape and paths between Type I and Type II minimal

motifs. To make comparisons, two models (A and B) are picked from Type I motifs (Model 11

and Model 17 in S1 Fig) and two models (C and D) are picked from Type II motifs (Model 19

and Model 28 in S2 Fig). On the landscape, the blue regions represent higher probability or

lower potential and the yellow regions represent lower probability or higher potential. For

each subfigure, four basins of attractions characterize four different cell states (ETP, DN2a,

DN2b, and DN3). Both Type I motif (A and B) and Type II motif (C and D) can generate sta-

ble four-attractor system.

(TIF)
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S14 Fig. Effects of the fraction of positive regulations in network topologies on the perfor-

mance of four-attractor systems. Scatter plots and regression lines show correlations of the

numbers of successful parameter sets per topology and the fractions of positive regulations in

corresponding topologies. A. Sampled 3-node generic topologies. Spearman correlation coeffi-

cient: 0.21, p-value = 0.008. B. Subnetworks of the T cell development model. Spearman corre-

lation coefficient: 0.31, p-value < 0.0001. C. Comparison of networks generating attractors

with all positively correlated TFs and those with at least one pair of inversely correlated TFs.

Three-node generic topologies were analyzed.

(TIF)

S15 Fig. Enrichment motifs containing varying numbers of positive feedback loops similar

to Type I motif. Top panel: total occurrences of various types of motifs in the T cell network.

Middle panel: empirical p-values (middle panel) for these motifs with a background network

population. Bottom panel: an illustration of the p-values with the distributions of the back-

ground population. Each motif has n (0<n<9) positive feedback loops, all of which share at

least one TFs in the motif. Type I motif is a special case of such motifs with n = 3. Random net-

works were obtained by assigning random regulations (positive, negative or none) between

each pair of TFs. 105 random networks were generated. Empirical p-values were obtained by

counting the number of the random networks with the motifs not less than those in the T cell

network. See Methods for details of the p-value definition. Distributions of motif frequencies

obtained from the random networks are shown in the bottom panel. The yellow vertical bars

represent the number of occurrences in the T cell network. The right-tail areas defined by the

vertical bars correspond to the p-values shown in the middle panel (blue bars).

(TIF)

S16 Fig. Comparison of parameter sets from the 66 minimum motifs and the T cell net-

work full model that generated the four-attractor systems. A. Distributions of Hill expo-

nents (steepness of regulations) of 900 parameter sets from each category. The parameter sets

from 66 minimum motifs are combined. B. Distributions of the activation threshold parame-

ters of the regulation of GATA3 by TCF-1 and the regulation of TCF-1 by GATA3. 440 param-

eter sets (maximum number of parameter sets from minimum motifs that contain these two

parameters) from each category are plotted.

(TIF)
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