
5246–5254 Nucleic Acids Research, 2009, Vol. 37, No. 16 Published online 3 July 2009
doi:10.1093/nar/gkp554

Discovery of protein–DNA interactions by
penalized multivariate regression
Leonid Zamdborg1,2 and Ping Ma2,3,*

1Center for Biophysics and Computational Biology, 2Institute for Genomic Biology and 3Department of
Statistics, University of Illinois at Urbana-Champaign, IL, USA

Received May 15, 2009; Revised June 11, 2009; Accepted June 14, 2009

ABSTRACT

Discovering which regulatory proteins, especially
transcription factors (TFs), are active under certain
experimental conditions and identifying the corre-
sponding binding motifs is essential for understand-
ing the regulatory circuits that control cellular
programs. The experimental methods used for this
purpose are laborious. Computational methods
have been proven extremely effective in identifying
TF-binding motifs (TFBMs). In this article, we pro-
pose a novel computational method called
MotifExpress for discovering active TFBMs. Unlike
existing methods, which either use only DNA
sequence information or integrate sequence infor-
mation with a single-sample measurement of gene
expression, MotifExpress integrates DNA sequence
information with gene expression measured in mul-
tiple samples. By selecting TFBMs that are signifi-
cantly associated with gene expression, we can
identify active TFBMs under specific experimental
conditions and thus provide clues for the con-
struction of regulatory networks. Compared with
existing methods, MotifExpress substantially
reduces the number of spurious results. Statisti-
cally, MotifExpress uses a penalized multivariate
regression approach with a composite absolute
penalty, which is highly stable and can effectively
find the globally optimal set of active motifs.
We demonstrate the excellent performance of
MotifExpress by applying it to synthetic data and
real examples of Saccharomyces cerevisiae. Motif
Express is available at http://www.stat.illinois.edu/
~pingma/MotifExpress.htm.

INTRODUCTION

Transcription factors (TFs) regulate the expression of
target genes by binding in a DNA sequence-specific
manner to their recognition sites in the promoter regions

of these genes. The common pattern of the binding sites
for a particular TF is called a TF-binding motif (TFBM),
usually modeled by a position-specific weight matrix
(PWM). Discovery of TF-binding sites (TFBSs) and
TFBMs in TF–DNA interaction is essential for under-
standing the regulatory circuits that control cellular pro-
grams. In recent years, considerable progress has been
made in developing both experimental and computational
methods for elucidating TFBSs, and the mapping of their
locations in a number of model organisms. Experimental
techniques such as ChIP-chip (1) on promoter microarrays
and whole genome tiling arrays and ChIP-seq (2)
have been used to discover genome-wide TF–DNA-
binding sites for organisms ranging from Saccharomyces
cerevisiae (3) to Homo sapiens (4). Nonetheless, these
experimental techniques are laborious and expensive,
and require specialized antibodies which may be difficult
to obtain (5). As a given binding site is not necessarily
occupied under all conditions (6), a single set of ChIP-
chip/ChIP-seq experiments conducted under one experi-
mental condition is insufficient to fully detect all sites to
which a TF may bind to in another experimental condi-
tion. Because of these limitations, computational methods
provide appealing alternatives for pinning down TFBSs.
De novo motif discovery algorithms based on probability
models using PWMs, such as AlignACE (7), MDscan (8),
MEME (9) and Weeder (10) have been accepted as
important components of the computational biologist’s
toolkit. Moreover, rapid progress has been made to
detect cis-regulatory modules which consist of highly
coordinated TFBMs (11,12).

A recent trend to improve the aforementioned com-
putational methods is to integrate information from rela-
tively inexpensive and easily obtained gene expression
data. The key idea to facilitate motif discovery using
gene expression is that a gene’s mRNA copy number is
associated with active TFBMs’ matching scores (or more
intuitively, number of TFBM copies) in the promoter
region of this gene. A number of attempts have been
made along this line of thinking. For example,
REDUCE (13) uses an exhaustive oligo-enumeration
strategy to identify a potential set of candidate motifs,
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then ‘reduces’ this candidate set to a set of active motifs
whose binding was best correlated with gene expression.
As an improvement over REDUCE, Motif Regressor
(14), incorporates gene expression in the initial identifica-
tion of candidate motifs; the top-ranking genes in a single
sample microarray experiment are used to identify an
initial set of candidate motifs by MDscan (8). This can-
didate list is then winnowed using stepwise regression
with genome-wide gene expression serving as the response
in a multiple regression model, resulting in a subset of
motifs that are best correlated with gene expression
across the genome.

These two approaches have stimulated many further
studies in the past several years (15), and have generated
a number of interesting results (16). However, several
issues remain that hinder their effective application in
real practice. Since they rely on a single sample microarray
measurement to carry out ranking and regression, they are
sensitive to experimental and biological noise, especially
in regards to low copy-number genes. Consequently, they
may select different sets of motifs depending which single
sample of microarray experiment is used in regression,
requiring time-consuming manual merging and validation
of the selected sets of motifs. Additionally, the stepwise
motif selection in Motif Regressor relies on adding/
deleting one motif at a time, a technique which is highly
unstable and can only explore a small portion of all the
possible models as the number of candidate motifs is usu-
ally hundreds (17).

To overcome these obstacles, we propose MotifExpress,
a novel method that selects a set of motifs that best cor-
relate with multiple samples of gene expression measured
by microarrays simultaneously. We utilize multivariate
regression to link gene expression (as responses) and can-
didate motifs (as predictors) together. In the multivariate
regression framework, the selection of active motifs is very
challenging as the number of parameters is much larger
than the number of motifs. Thus we have a huge space to
search for the globally optimal model which gives rise to
the set of active motifs. To surmount this challenge, we fit
a model using a composite absolute penalty (CAP). Unlike
the stepwise regression procedure, the CAP procedure
selects motifs via a convex optimization and can effectively
find the globally optimal set of active motifs. We use
the Bayesian information criterion (BIC) to select the reg-
ularization parameter. We demonstrate the excellent per-
formance of MotifExpress by applying it to synthetic data
as well as GCN2 constitutive activation and heat shock
experiments in Saccharomyces cerevisiae. It is evident from
these results that incorporating multiple samples of gene
expression substantially reduced the number of spurious
results.

MATERIALS AND METHODS

Microarray and sequence data

Microarray data was retrieved from Gene Expression
Omnibus (GEO) database and log2 base transformed.
Missing values were estimated using k-nearest-neighbor
imputation (18), implemented in the R (19) impute

package. The upstream 800-bp sequence for each gene
was used, with repetitive sequences masked using
RepeatMasker (20).

MotifExpress—framework

First, significance analysis of microarrays (SAM) (21), a
microarray analysis algorithm, is used to identify genes
that are differentially expressed between the treatment
and control conditions. The upstream promoter sequences
of significantly differentially expressed genes are then used
as input in a de novo motif discovery algorithm (MDscan)
to search for candidate motifs. The upstream promoter
sequences of all genes for which expression was measured
are then scored for matches to each candidate motif; our
MotifExpress algorithm then uses multivariate regression
to link gene expression in all samples with the motif
matching scores of all candidate motifs. The active
motifs that are significantly associated with gene expres-
sion are identified using a composite absolute penalty
approach with the regularization parameter selected
through minimizing BIC (22) (Figure 1).

MotifExpress—motif discovery

SAM (21) analysis is run on the gene expression profiles to
determine which genes are differentially expressed between
treatment and control conditions at a pre-specified false
discovery rate. MDscan (8) is then run on the upstream
promoter sequences of the significantly differentially
expressed genes to discover motifs ranging from 7 to
15 bp in width. The 30 most significant motifs for each
motif width are combined to form a set of candidate
motifs. We then calculate the motif matching score xik
which indicates how likely motif k binds upstream
of gene i in terms of both goodness of matching and
number of sites as defined in Conlon et al. (14).

xik ¼ log2
X
s2Siw

Prðs from �kÞ

Prðs from �oÞ

" #
1

where k=1, . . . , p, and p is the total number of candidate
motifs, �k is the probability matrix of motif k of width w,
�0 is the third-order Markov model learned from inter-
genic sequences, and Siw is the set of all w-mers in the
upstream of gene i.

MotifExpress—integration of gene expression with
motif selection

The gene expression profile of gene i is denoted as
yi ¼ ðyi1,yi2, . . . ; yimÞ where yij is the expression ratio
in sample j for gene i, and m is the number of
samples. Motif discovery further associates expression of
gene i with all candidate motifs’ matching scores xik,
k=1, . . . , p. We assume a multivariate regression model
between expression y and motif matching scores x

yij ¼ xi1�1j þ xi2�2j þ � � � þ xip�pj þ eij 2

where random errors eij are independently and identi-
cally distributed with mean zero and standard deviation
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�", and �kj is the unknown coefficient which relates the
expression of gene i to the motifs that putatively regulate
it. We may write Equation (2) as
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Note that for any motif k, if �k1= . . .=�km=0, then
motif k is not associated with gene expression. We thus
infer that motif k is not active in the biological conditions
under which gene expression was measured. Otherwise,
motif k is inferred to be active. Identifying active motifs
thus becomes a variable selection problem in Equation (3).

MotifExpress—motif selection using penalized
multivariate regression with CAP

By combining regression with variable selection, it is pos-
sible to select a set of active motifs which is significantly

associated with gene expression. Classically, stepwise
regression is used for variable selection; however, it is sen-
sitive to perturbation of the data and can only explore a
small portion of all the possible models as the number of
candidate motifs is usually hundreds.

Lasso (23) has recently received significant attention as
an efficient variable selection method.

Lasso estimates the coefficients of predictors through
minimizes the following expression

RSSþ l� Sum of Absolute values of coefficients 4

where the residual sum of squares (RSS) and the sum
of Absolute values of coefficients are two conflicting
measures: the model with a smaller residual sum of
squares tends to have more nonzero coefficients, which
in turn results in a higher sum of absolute values of coeffi-
cients. l is a regularization parameter controlling the
trade-off between these two goals. Compared to a solu-
tion that minimizes only the residual sum of squares, i.e.
the least squares estimate, the estimated coefficients
in Lasso are closer to zero, which is referred to as
‘shrinking’. It has been shown that the Lasso can select
predictors consistently, i.e. selecting correct predictors

Figure 1. MotifExpress system diagram.
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with probability one asymptotically, by shrinking the
coefficients of the insignificant predictors to zero.
However, Lasso was developed for regression with a
single response rather than that with multivariate
responses as in Equation (2). Moreover, we are interested
in eliminating any inactive motif in Equation (2), which
requires simultaneously shrinking all m coefficients cor-
responding to that motif to zero, rather than shrinking
an individual coefficient. Recently, the simultaneous
variable selection (23) and group Lasso (24,25) methods
have been developed for selecting groups of variables.
These methods have been nicely summarized in a unified
shrinkage method, the composite absolute penalty
(CAP) approach (25). We apply the idea of a composite
absolute penalty to a multivariate regression model in
Equation (2).

Our estimate is defined as the minimizer of:

Xn
i¼1

Xm
j¼1

ðyij � xi1�1j � xi2�2j � � � � � xip�pjÞ
2

þ l� penð�11,�12, . . . ; �pmÞ

5

where l is a regularization parameter. The composite
absolute penalty uses a combination of various metrics
to achieve the objective of group predictor selection.
One possible choice of penalty to achieve this goal is
penð�11,�12, ... , �pmÞ ¼

Pp

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k1
þ�2

k2
þ���þ�2

km

p
, which reduces to

the group Lasso penalty. However, the computation of
group Lasso relies on a shooting algorithm, and the cost
of computation is very high (24). We instead elected to use
the following CAP:

penð�11,�12, . . . ; �pmÞ ¼
Xp
k¼1

maxð �k1
�� ��, �k2�� ��, . . . ; �km

�� ��Þ 6

which is the penalty used in (23). For each motif, the
corresponding m coefficients are grouped through their
maximum absolute values. As l is increased, the group
of motif coefficients � shrink simultaneously; a motif
whose group of coefficients have shrunk to zero falls out
of the model.

Since minimizing Equation (5) is a convex optimiza-
tion problem, a solution satisfying the Karush-
Kuhn–Tucker conditions is a global minimum (26,27). A
beneficial feature of the proposed method Equation (5)
with penalty Equation (6) is that the solution has a piece-
wise linear solution path for all values of l. We adopt
the homotopy algorithm (28,29), also known as the
LARS/Lasso algorithm (30) to find the solutions for all
values of l. Even though the solution path for all values
of l can be effectively computed, it is still highly desirable
that one solution is given for a fine-tuned value of l.
To choose a value of l with a good balance of good-
ness-of-fit of the model and model parsimony, we mini-
mize the BIC (22),

nm ln
Xn
i¼1

Xm
j¼1

ðyij � xi1�̂1jðlÞ � � � � � xip�̂pjðlÞÞ
2

nm

þ pAðlÞ � lnðnmÞ

7

where �̂1jðlÞ, �̂2jðlÞ, . . . , �̂pjðlÞ are CAP estimates of �1j,
�2j, . . . ,�pj, pA(l) is the number of estimated active
motifs, i.e. nonzero coefficients, and they all depend on
l. Since the solution path is piecewise linear, the smallest
BIC can be found by comparing Equation (7) for a
number of l values.
To test the significance of the selected motif, we cal-

culate a pooled P-value for each selected motif by com-
bining all P-values of corresponding m coefficients using
Stouffer’s method (31,32).

Functional annotation of discovered motifs

To verify identifications and further elucidate biological
relationships, manual analysis and functional annotation
was carried out on discovered motifs. Results were vali-
dated where possible by comparison to known TF-binding
sites by ChIPCodis (33). Discovered motifs were further
putatively identified by Tomtom (34) against the
MacIsaac et al. yeast TFBM dataset (3) as well as addi-
tional STAMP (35) comparison to the common ribosome-
associated RRPE and PAC motifs (36).

RESULTS

Simulation results

Extensive simulations were carried out to examine the
effectiveness of MotifExpress in identifying active motifs.
We set number of genes, n=5000, and number of the
motif candidates as 100, among which 10 motifs were
active. We generated motif scores xik from N(0, 1) and
random error from N(0, �"). We gradually increased the
standard deviation of random error from �"=1 to 5.
Gene expression was generated as the summation of
linear combinations of the active motif scores and
random error as in Equation (2). We let m=3, 4, 5. We
generated 100 datasets for each setting, i.e. each combina-
tion of �" and m. The Matthews correlation coefficient
(MCC) (37), was calculated for each dataset, where a
value of 1 indicates perfect selection of active motifs and
rejection of spurious motifs, while a value of 0 is average
random selection.
The summary statistics of the resulting MCCs are given

in Table 1. It can be seen that our proposed method con-
sistently performs very well across all settings. Since AIC
with second order correction (AICc) was also suggested
as an alternative criterion to choose the regularization
parameter, we tested the performance of our proposed
method using AICc. MotifExpress with BIC-minimization
consistently outperformed that with AICc-minimization;
average MCCs were significantly higher across all simula-
tion regimes. MotifExpress with AICc was observed to
identify more motifs spuriously; its performance was
robust as �" increased, but had a lower MCC throughout
the settings (Figure 2). In comparison, the performance of
MotifExpress with BIC did degrade as �" increased, but
still had much higher MCC as we see in Figure 2. We also
ran Motif Regressor one-response-at-a-time and com-
bined the identified motifs.
The mean MCCs of Motif Regressor are con-

sistently higher than those of MotifExpress with
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AICc-minimization, but lower than those of MotifExpress
with BIC-minimization. Moreover, as number of response
m increase, we notice that the MCC of Motif Regressor
drops since the number of false discovery goes up
(Figure 2).

GCN2 constitutive activation analysis

The protein kinase GCN2 has drawn attention in recent
years due to its extensive regulatory impact. The Gcn2p
homodimer associates with the large ribosome subunit in
the cytosol, and when activated, phosphorylates Ser-52 of
eIF2a (38). In yeast, this has two immediate effects; firstly,
the repression of general translation by sequestration
of eIF2b, and secondly the derepression of GCN4 transla-
tion. Gcn4p then acts as a TF that modulates the expres-
sion of numerous stress- and starvation-related genes (39).
Gcn2p may be activated by numerous signals via multiple
pathways, including the drug rapamycin (40).

We elected to use constitutively active Gcn2 as a means
of validating our method. As active Gcn2p results in
Gcn4p activation, consequentially leading to an activation
of downstream genes, it follows that the presence of
the GCN4 motif should be strongly correlated with gene
expression under the condition of constitutively active
Gcn2p. A four-sample dataset of cDNA microarrays,
which hybridized four biological replicates of GCN2c con-
stitutively active mutant samples to a common reference
wild-type sample, was retrieved from GEO (GSE8111)
(41). The data is the log transformed gene expression
ratios between mutant and wild-type, and was used by
MotifExpress as the response to fit multivariate regression
model. Three motifs were selected by MotifExpress, iden-
tified by STAMP as GCN4, PAC and RAP1.

The results obtained by MotifExpress were compared
with those obtained by running Motif Regressor (14)
separately on each sample. In contrast to three motifs
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Figure 2. Summary plot of MCC for Motif Regressor (MR) and MotifExpress with regularization parameters selected through AICc-minimization
and BIC-minimization as the random error’s standard deviation �" and the number of samples m are varied in the simulation study. Motif Regressor
performance in the same simulation was computed by pooling results from independent runs.

Table 1. Mean (Ave.) and standard deviation (SD) of MCC for MotifExpress with regularization parameters selected through AICc-minimization

and BIC-minimization as the random error’s standard deviation �" and the number of samples m are varied in the simulation study

s" m=3 m=4 m=5

MCC (AICc) MCC (BIC) MCC (AICc) MCC (BIC) MCC (AICc) MCC (BIC)

Ave. SD Ave. SD Ave. SD Ave. SD Ave. SD Ave. SD

1 0.582 0.143 0.928 0.056 0.620 0.159 0.933 0.057 0.587 0.143 0.940 0.058
2 0.590 0.158 0.923 0.068 0.572 0.147 0.918 0.058 0.639 0.156 0.939 0.057
3 0.580 0.142 0.895 0.069 0.591 0.150 0.904 0.072 0.614 0.148 0.922 0.068
4 0.577 0.149 0.872 0.077 0.556 0.132 0.854 0.073 0.609 0.139 0.864 0.086
5 0.576 0.150 0.839 0.091 0.575 0.135 0.831 0.081 0.598 0.144 0.838 0.078

5250 Nucleic Acids Research, 2009, Vol. 37, No. 16



discovered by MotifExpress, Motif Regressor discovered
130 motifs. For Motif Regressor running on each sample,
the smallest P-value of the motifs identified by STAMP
(35) as GCN4 and the highest rank of the GCN4 motifs
sorted by P-values in the result is reported in Table 2.
MotifExpress analysis resulted in a parsimonious set of
results, where the GCN4 motif had the lowest P-value
and ranked first, while analyzing individual samples in
the dataset by Motif Regressor yielded highly heteroge-
neous results. The P-value was much lower in the
MotifExpress results than in any of the Motif Regressor
results.

The presence of the PAC and RAP1 motifs is likewise
unsurprising; the RP regulon (strongly associated with the
RAP1 motif) and the RRB regulon (strongly associated
with the PAC motif) (42) are both known to be repressed
by treatment with rapamycin, which is also known to
induce Gcn4p synthesis (40). The GSE8111 dataset
shows a transcription profile quite similar to rapamycin
treatment, with the RRB and RP genes downregulated,
and amino-acid biogenesis genes upregulated. Analysis
of genes used for motif discovery via ChIPCODIS
revealed a significant overrepresentation of genes to
which Gcn4p binds under rapamycin treatment, with a
pooled P-value of 1.56� 10�18.

Heat shock analysis

The heat shock response is a conserved and concerted
cellular program in eukaryotes. Temperature changes
above the physiological optimum induce the synthesis of
heat shock proteins, a diverse class of proteins that have
effects on protein folding, metabolism and antioxidant
response. Expression of the genes coding for these proteins
is regulated by a set of stress-related TFs, most impor-
tantly Hsf1p and Msn2/4p.

A three-sample dataset of cDNA microarrays, com-
paring wild-type cells in midlog-phase grown at 308C to
wild-type cells heat-shocked at 398C for 15min, was
downloaded from GEO (GSE7665) (43). The data
was the log-transformed gene expression ratios between
heat shock and control conditions, and was used by
MotifExpress as the response to fit a multivariate regres-
sion model. A set of 15 active motifs was selected
by MotifExpress, among them HSF1, RPH1, MSN2/4,
SFP1, FHL1 and PAC; of these, the HSF1 motif
was the most significant, with a pooled P-value of

7.8� 10�37. In contrast, Motif Regressor discovered 113
motifs, many of which were redundant.
It is known that many of the genes regulated by Hsf1p

encode chaperones, proteins responsible for inducing
and maintaining protein conformation and preventing
unwanted protein aggregation, such as HSP82 (44). It
would be expected that cells undergoing heat shock
would experience an up-regulation of genes regulated by
Hsf1p and Msn2/4p; analysis by MotifExpress analysis
demonstrates the detection of this response. The PAC
motif, as mentioned in the previous example, is a signature
of the RRB regulon, which is down-regulated under heat
shock conditions (45). The genes in the dataset were con-
firmed to be significantly overrepresented for Hsf1p,
Msn2/4p, Fhlp, and Sfp1p binding under stress conditions
by ChIPCODIS (P-values ranging from 8.82� 10�62 to
3.63� 10�18).
It is interesting to note that the HSF1 motif is known

to consist of repeats of a 5-bp consensus sequence
50-NGAAN-30 and its reverse complement 50-NTTCN-30

(46). In Figure 3, we plotted the motif logos of the most
significant HSF1 motifs discovered by MotifExpress, by
Motif Regressor via analyzing each sample independently,
and that discovered using ChIP-chip and phylogentic
methods in MacIsaac et al. (3). The HSF1 motif discov-
ered by MotifExpress is the closest to the consensus
sequence reported in (46) among the five motifs (Figure 3).

DISCUSSION

In this article, we developed a novel method,
MotifExpress, for identifying TFBMs strongly associated
with multiple samples of gene expression. Existing meth-
ods for identifying TFBMs correlate sequence information
to a single sample of gene expression, one sample at a
time, which results in a redundant set of active motifs
with many spurious results (47). Additionally, existing
methods rely on classical variable selection techniques
such as stepwise regression, which is highly unstable and
can only explore a small portion of all the possible models
as the number of candidate motifs is usually in the hun-
dreds. Our method is designed to integrate multiple sam-
ples of gene expression via multivariate regression. Using
the CAP approach and selecting the regularization param-
eter using BIC, we can effectively identify a parsimonious
set of active motifs. We examined the performance
of MotifExpress using synthetic data under an array of
settings with different numbers of samples and various
variance magnitudes of random error. MotifExpress per-
formed consistently well throughout all settings. We then
analyzed two real experiments using MotifExpress, identi-
fying active motifs correlated with expression. The set of
discovered motifs agreed well with current literature.
The MotifExpress framework is easily extensible to

support other TF–DNA-binding discovery methods,
especially cis-regulatory module discovery methods.
Statistically, penalized multivariate regression with CAP
is ready to incorporate additional structural information
about motifs. Likewise, as high-throughput transcrip-
tomic studies transition from hybridization-based

Table 2. GCN4 motif discovery on constitutively activated Gcn2

mutant dataset by MotifExpress on all samples simultaneously and

by Motif Regressor, on each sample individually

Analysis Number
of Motifs
Identified

GCN4 motif
with smallest
P-value

Rank of
Result

MotifExpress 3 1.73� 10�40 1st in 3
MotifRegressor Sample 1 42 8.86� 10�3 9th in 42
MotifRegressor Sample 2 15 4.37� 10�4 3rd in 15
MotifRegressor Sample 3 55 1.22� 10�3 7th in 55
MotifRegressor Sample 4 18 8.28� 10�12 2nd in 18
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microarrays to rapid whole-transcriptome sequencing, this
new data is easily integrated in MotifExpress.
Aside from motif selection, another challenge is to

identify the regulatory targets of a TF. In principle,
given the motifs (including promoter sequence) and esti-
mated coefficients, we can predict gene expression. Then
the genes with significant high or low expressions could be
considered as potential regulatory targets. However, such
prediction in practice typically has too large prediction
uncertainty to be used for identifying regulatory targets.
A possible alternative is to build a prediction model with
gene cluster membership as the response, e.g. Beer and
Tavazoie (48). The variable selection method that we
employed in this article can be adapted to that model.
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