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Abstract

In this study we analyzed the topography of induced cortical oscillations in 20 healthy individuals performing simple
attention tasks. We were interested in qualitatively replicating our recent findings on the localization of attention-induced
beta bands during a visual task [1], and verifying whether significant topographic changes would follow the change of
attention to the auditory modality. We computed corrected latency averaging of each induced frequency bands, and
modeled their generators by current density reconstruction with Lp-norm minimization. We quantified topographic
similarity between conditions by an analysis of correlations, whereas the inter-modality significant differences in attention
correlates were illustrated in each individual case. We replicated the qualitative result of highly idiosyncratic topography of
attention-related activity to individuals, manifested both in the beta bands, and previously studied slow potential
distributions [2]. Visual inspection of both scalp potentials and distribution of cortical currents showed minor changes in
attention-related bands with respect to modality, as compared to the theta and delta bands, known to be major
contributors to the sensory-related potentials. Quantitative results agreed with visual inspection, supporting to the
conclusion that attention-related activity does not change much between modalities, and whatever individual changes do
occur, they are not systematic in cortical localization across subjects. We discuss our results, combined with results from
other studies that present individual data, with respect to the function of cortical association areas.
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Introduction

Over the last decades, a major scientific effort has been made in

the attempt to map functions of cortical association areas. We have

used as a basis for such possible mapping, the neuroanatomy of

cortico-cortical connections, as opposed to the tradition of using

purely psychological or behavioral distinctions. The relatively

specific connections between visual areas [3], and other neocortical

areas, particularly prefrontal [4–6] guided our task design, in the

search for (prefrontal) cortical specializations of function, particularly

of selective attention to different visual domains [e.g., 7–9].

However, in the last years we have been providing evidence for

high individual variability, in the sets of cortical association areas active

during non sensory-motor tasks: that is, the very concept that

particular non sensory-motor functions are associated to the same

anatomic areas in all individuals must be revised. This individual

variability was firstly observed with respect to scalp and generator

topography of slow potentials, classical correlates of attention, in

relatively complex tasks [9,10]. But only by analyzing Slow Potentials

(SPs) from a simpler visual attention task we began to consider that

this variability may be inherent to cortical physiology [2]. The

variability was not observed for stimulation-related activity, in an

explicit comparison between SPs and the visual N200s from the

same data set. In a more recent study, we analyzed the topography

of induced beta oscillations during the same simple task, as new

correlates of attention, by corrected latency averaging of band-pass

filtered epochs: this method allows the visualization of actual average

voltage distributions that are not time-locked to stimuli [1]. In this

study of beta oscillations, we observed that the topography of both

baseline (pre-stimulus) oscillations, which increase in amplitude

during the inter-stimulus interval (S1–S2 paradigm), as well as

secondary, task-exclusive components, were also highly variable to

individuals with respect to scalp topography and their generating sets

of cortical areas. In this same study, the topography of frequency

bands more closely related to sensory stimulation such as theta,

proved to be much closer in topography across subjects (as expected,

given the closeness in topography with evoked potentials), in a

quantitative comparison with attention-related beta activity. We

have started to reinterpret our first studies on slow potentials, on tasks

involving explicit memorization, stimulus comparisons, categoriza-

tion and feedback anticipation, where the same multifocal, complex,

highly variable sources of slow potentials were always observed.
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In the present study we further explore this hypothesis of

individual-specific distributions of non-sensory-motor cortical

activity, using the same visual task as in our last studies (where

we analyzed SPs and first analyzed induced beta bands, [1,2,11]),

for a dual purpose: 1) to qualitatively replicate those first beta

localization findings on a slightly larger sample, and mainly 2) to

allow an individually-based comparison with an auditory attention

task. The main current interest was to observe how different would

be the topography of attention correlates after displacement of

attention from the visual to the auditory modality. We used as a

reference for comparison the more purely stimulation-related

frequency bands (theta and delta; along with alpha, [12–16]). In

order to support the comparisons made by visual inspection, we

computed the correlations, within individuals, between the cortical

current distributions obtained for the two modalities, for baseline and

main task-related activity, in all frequency bands. Those correla-

tions were then transformed into Fisher’s Z scores for inter-individual

analysis, which we restricted to attention and stimulation represen-

tative bands (beta1 and theta), or to a combination of bands. Since

we were also interested in the explicit computation of the signifi-

cant part of the topographic difference between modalities, we

complemented the analysis of correlations, by illustrating the

significant part of each individual’s difference of attention

correlates between modalities.

Methods

Subjects
Twenty healthy individuals with normal vision and hearing, 12

male and 8 female, participated in the study. They ranged in age

between 20 and 45 years, with no history of drug or alcohol abuse,

and no current drug treatment. All subjects signed consent forms

approved by the Ethics Committee of the University (Comitê de

Ética em Pesquisa da Universidade Metodista de São Paulo).

Stimuli and Task
A commercial computer program (Stim, Neurosoft Inc.)

controlled all aspects of the tasks. Visual stimuli composing the

cue-target pairs (S1–S2) consisted in small rectangles (eccentricity

60.8u, S1: 100 ms duration, S2: 17 ms; white background). In half

of the trials, the S2 rectangle contained a grey circle – the task

target - with 60.3u of eccentricity. A masking stimulus had the

same grey level as the target (a ‘checkerboard’ grey and white

square composed by one-by-one pixel size squares), and was

continuously present, along with the fixation point, except during

S1 and S2 presentation. S1 was followed by S2, with onsets

separated in time by 1.6 seconds. The ITI was variable, ranging from

2.3 to 5 seconds. We instructed the subjects that a rectangle would

be presented to indicate that 1.6 seconds later it would flash again

but quickly, containing or not the target circle. The subject

decided whether there was a target inside the S2 rectangle, and

indicated presence of the target by pressing the right button with

the right thumb or absence of the target by pressing the left button

with the left thumb. We explicitly deemphasized reaction time in

the instructions and measured performance by the percent correct

trials (and their derivate false positives and hits), from the total of

96 trials comprising each task. An eye fixation dot was continually

present on the center of the screen, as well as a stimulus-masking

background, to prevent after-images. The parameters of the

second task were identical to the above (even with maintenance of

the visual stimuli but without targets), except for the addition of

auditory stimuli, analogous to the visual, and instructions to detect

auditory targets and ignore the visual stimuli: We placed a pure

tone as auditory S1 stimulus (1000 Hz, 60dB, 100 ms duration) as

close as possible to the visual stimulus in time (given the

stimulation program limitations, there was a 100 ms delay

between visual and auditory stimulus onset, but all subjects

reported simultaneity when asked), and an identical auditory S2,

except that 50% of them ‘contained’ the targets (defined by a

slight, transient intensity reduction 210% for about 10 ms –– of

the pure tone waveform).

EEG Recording and acquisition of MRIs
We used a fast Ag/AgCl electrode positioning system consisting

of an extended 10–20 system, in a 128-channel montage (Quik-

Cap, Neuromedical SuppliesH), and an impedance-reducing gel

which eliminated the need for skin abrasion (Quick-Gel,

Neuromedical SuppliesH). Impedances usually remained below 5

kOhms, and channels that did not reach those levels were

eliminated from the analysis. To know the actual scalp sampling or

distribution of electrodes in each individual with respect to the

nervous system, we used a digitizer (PolhemusH) to record actual

electrode positions with respect to each subject’s fiduciary points:

nasion and preauricular points. After co-registration with

individual MRIs, the recorded coordinates were used for realistic

3D mapping onto MRI segmented skin models, and later used to

set up the source reconstruction equations (distances between each

electrode and each dipole supporting point). Two bipolar

channels, out of the 124-channels in the montage were used for

recording both horizontal (HEOG) and vertical electrooculograms

(VEOG). Left mastoid served as reference only for data collection

(common average reference was used for source modeling) and Afz

was the ground. We used 128-channel DC amplifiers (Synamps,

Neuroscan Inc.) for data collection and the Scan 4.3 software

package (Neurosoft Inc.) for initial data processing (before

computation of averages). The filter settings for acquisition were

from DC to 30 Hz, and the digitization rate was 250 Hz. The

EEG was collected continuously, and epochs for averaging

spanned the interval from 900 ms before S1 to 400 ms after S2

presentation. Baseline was defined as the 300 ms preceding S1.

Epoch elimination was performed visually for eye movements and

muscle artifacts, and then automatic: visual inspection served to

eliminate occasional transient electronic or head movement noise

present in channels other than EOG; epochs containing signals in

either HEOG or VEOG channels above +50 or below 250 mV

were eliminated. In our montage, the VEOG detected, typically,

blinks as deflections above 130 mV in the positive direction.

MRIs were obtained by a 1.5 Tesla GE machine, model

Horizon LX. Image sets consisted in 124 T1-weighed saggital

images of 256 by 256 pixels, spaced by 1.5 mm. Acquisition

parameters were: standard echo sequence, 3D, fast SPGE, two

excitations, RT = 6.6 ms, ET = 1.6 ms, flip angle of 15 degrees,

F.O.V = 26626 cm. Total acquisition time was around 8 minutes.

Frequency-Time analysis
After artifact rejection, the signal from each channel was

spectrally analyzed by means of a Short Time Fourier Transform

(STFT), to obtain frequency-time charts of the induced spectrum

of the interval from 700 ms previous to S1, to 400 ms after S2. To

obtain the induced power spectrum [17], the time-frequency

decomposition was made for each electrode and each trial, from

DC to 30 Hz, and the resulting charts were then averaged, both

for each electrode and across electrodes. The decomposition was

computed on the EEG tapered by a sliding Hamming window,

256 points in size for frequencies over 5 Hz, and 512 points

between 2 and 5 Hz, with a temporal resolution of N/10 (N being

the number of temporal points of the raw signal), and a frequency

resolution of 4 bins per Hertz. Then, we normalized the average

Visual-Auditory Attention Electrical Correlates
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power for each electrode to obtain Z-scores of increments or

decrements in each frequency bin with respect to the power in the

same frequency during the baseline (,Pj. = (Pj - mj)/sj; given Pj =

spectral power at each time point in electrode j, mj and sj are the

mean and standard deviation, respectively, of the average power

during the baseline for the electrode).

Computation of corrected latency burst averages
We used corrected latency averaging instead of conventional

event-related potential (ERP) averaging or event-related (de-

)synchronization (ERS/ERD), because only in this case we would

be able to analyze task-related potential distributions that are not

time-locked to task-events. Conventional ERP averaging results in

exclusively time-locked activity (e.g., induced beta cannot be

observed), whereas ERS/ERD analysis allows visualization of

‘electrical power’ distribution but not of actual voltages (which

would not allow our further current density reconstruction analysis).

According to the observed induced frequency bands for each

individual (and to results from our previous study, [1]), we chose the

bands for band-pass filtering of the original artifact-free EEG

epochs: Butterworth, 96dB rolloff, 0–1 Hz for SPs, 1–3 Hz for

delta, 3–7 for theta, 7–9 for alpha1, 9–12 for alpha2, 18–23 for

beta1, and 23–29 Hz for beta2). The resulting filtered epochs were

then processed by an algorithm developed by ourselves for

searching the peaks of bursts within the task-time windows of

interest (a detailed schematic representation of the method is found

in Figure 1 of [1]). Filtered epochs were thus cut again starting from

positive voltage peaks, resulting in new epochs, ranging from

400 ms before to 400 ms after the peaks. A minimum of 60 epochs

was the criterion for averaging, for each individual and frequency

band, using each channel in the search for peaks (we included the

typically few error trials, since our main interest was in the ISI, pre-

S2 window). Then, a grand average was computed using the

averages obtained by guidance from each channel. In all cases, we

also computed pre-S1 burst averages (representing the baseline

topography for each frequency band), where the program searched

peaks from 2400 to 0 ms before S1, for comparison with the task-

induced bursts. We computed the total power of corrected latency

average peaks for all bands, and the overall results were tabulated,

after conversion of into SNR values. We also computed Spearman

correlations between SNR in all bands and task performance.

For a systematic visual inspection, we computed realistic three-

dimensional topographic maps of the scalp distribution of averages

for each frequency band and its main ICA components, over the

reconstructed scalp anatomy. To this purpose, we used a

commercial sotfware (Curry V 4.6, Neurosoft Inc.), that co-

registered individual MRI sets (skin model, see below) with the

actual position of each electrode with respect to common

landmarks, and linearly interpolated the instantaneous voltage

values to obtain continuous maps.

Intracranial source reconstruction
The computed averaged bursts, MRI sets and electrode position

digitization files were the raw data for all further source analysis

(Curry V 4.6, Neurosoft Inc.). A detailed description of the

reconstruction procedure, and a discussion on the criteria for

method choice and shortcomings, as well as on critical steps, may

be found in the methods sections of previous publications [2,10].

Noise in the data was defined as the variance of the 20% lowest

amplitude points in each average. For the inclusion of a ‘noise

component’ into the source model, the physical unit-free or

‘standardized’ data (with retained polarity) were decomposed by

Independent Component Analysis (ICA), which searches for the

highest possible statistical independence or redundancy reduction

between components (in this case, space-time averaged data

patterns), a robust method of blind signal decomposition/

deconvolution (for a review, see e.g. [18]). ICA was applied to

each individual’s whole space-time data set, i.e., to the m6n data

matrix (m used channels X 201 time samples corresponding to the

800 ms composing the averaged bursts). Finally, we fed the

reconstruction algorithm with the main ICA component(s) as data

to be fitted, with SNR.1. In practice, in all cases, only two or

three space-time ICA components were then modeled. MRI sets

were linearly interpolated to create 3-dimensional images, and

semi-automatic algorithms based on pixel intensity bands served to

reconstruct the various tissues of interest. A Boundary Element

Model (BEM) of the head compartments was implemented, by

triangulation of collections of points supported by the skin, skull

and cerebrospinal fluid (internal skull) surfaces. Mean triangle edge

lengths for the BEM surfaces were, respectively, 10, 9 and 7 mm.

Fixed conductivities were attributed to the regions enclosed by

those surfaces, respectively, 0.33, 0.0042 and 0.33 S/m. Finally, a

reconstructed brain surface, with mean triangle side of 3 mm,

served as the model for dipole positions, corresponding to a range

from around 9 to 23 thousand points, depending on the head size.

The electrode positions were projected onto the skin’s surface

following the normal lines to the skin. The detailed description of

the assumptions and methods used by the ‘‘Curry 4.6’’ software for

MRI processing and source reconstruction may be found

elsewhere (e.g., [19–21]). The analysis program then calculated

the lead field matrix that represents the coefficients of the set of

equations which translate the data space (SNR values in the set of

channels per time point) into the model space (the thousands of

dipole supporting points). The source reconstruction method itself

was Lp norm minimization, with p = 1.2 both for data and model

terms. The regularization factor, or l values to be used, typically

converged after repeating the fitting process two to three times (l
gives the balance between goodness of fit and model size).

Statistics of reconstruction results
In order to quantitatively compare inter-individual or group

results between the visual and auditory conditions, we used inter-

modality correlations as the measure of similarity between the identically

ordered sets of dipoles obtained for (representative) chosen

frequency bands or their combinations: 1) based on an analogous

comparison from previous studies between stimulus versus

attention correlates (N200 versus SPs, [2]; theta versus beta, [1]),

we here chose the inter-modality correlations (their Fisher’s Z

transforms) of the second ICA components of theta versus beta1

bands: we chose theta as the main ‘stimulus-related’ band based on

previous findings and current induced power analysis, since in

most subjects its distribution is virtually identical to the visual

N200 or auditory N100 topographies, whereas beta 1, represent-

ing ‘attention-related’ activity, was observed to be stronger than

beta 2, more uniform in peak frequency across modalities); and

then 2) we also used the average of the Fisher’s Z transforms of

correlations in theta combined with delta versus the transforms of

correlations in beta1 combined with beta2 and with SPs (pooled

sets of bands mainly related to stimulation or attention).

Complementarily, to evaluate the intra-individual differences in

cortical topography of attention correlates between modalities,

we computed a point-by-point dipole strength difference vector.

First, each data pair to be compared was adjusted or ‘normalized’

to became of equal total strength or mean (the weaker set of

dipoles was multiplied by a scalar number so that its average

would match the stronger set; this method is analogous to the

scaling of voltages to a common global mean field power, to

emphasize topographic differences and deemphasize mere differ-

Visual-Auditory Attention Electrical Correlates
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Figure 1. Task-related EEG Power. Time course of power (converted to z-score with respect to baseline) in one example subject. At left, visual
task, right, auditory. From top to bottom, beta2, beta1, alpha2, alpha1, theta and delta.
doi:10.1371/journal.pone.0015022.g001
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ences in amplitude, which proved useful in a inter-individual

comparison in a clinical application; [22]). Second, we trans-

formed the difference vector distribution into z-score values.

Finally, we considered the points of major contribution to

condition differences as absolute individual Z values, correspond-

ing to global Z = 2.57, which depending on the individual’s

number of point-to-point comparisons (i.e., the number of dipole

supporting points, in proportion to head size), ranged from

Z = 3.48 to Z = 3.68. The cortical distribution of such points of

Z-score beyond the individual’s threshold was thus known a

posteriori, by using the corresponding current density cutoff value as

the minimum current to be plotted. Finally, we also checked

current distributions for a very low cutoff value of Z = 1.96.

Results

Task Performance
All subjects reported that performance was relatively easy,

provided that they were strongly attending during the critical time

of S2 presentation. The overall average performance in the visual

task was 83.2% correct responses (standard deviation 15.1%) and

89.6% in the auditory task (standard deviation 11.7%). Neither

this difference was statistically significant (t-test, p = 0.08), nor for

false positives (p = 0.73) or correct hits (p = 0.21).

Topography by visual inspection and Correlations of
source reconstruction results

Table 1 shows the baseline and task-related root mean global

field power changes, converted to SNR values, for both tasks,

averaged across subjects. Significant task-related power changes

(always increases) are indicated in the bands where it occurs.

Notice the lack of increases in the theta band (and alpha1 in

auditory task), which as in previous studies, mainly concentrates

power (phase-locking to stimuli) in the immediate post-stimulus

windows, peaking close to the N200. Only the alpha2 baseline

power during the auditory task correlated significantly with

performance in the same task (negatively; 20,563, p = 0.01).

Since corrected latency averages partially collapse task-time course

information, leading do independent components mainly separat-

ed by phase, we exemplify task-related electrical power changes in

two subjects in Figures 1 and 2, from delta to beta 2 bands, and the

similar contributions from separate groups of electrodes to three

bands, by scalp region, in one subject (figure 3). Visual inspection

of topographic isopotential maps and source reconstruction results

supported a qualitative replication of our main recent findings: 1-

Scalp topographic characteristics and the corresponding current

density distributions were variable across subjects, for first ICA

components, and especially so for second or task-related

components, in both visual and auditory conditions; 2- the

baseline activity voltage distribution was again identical to the first

ICA component during the ISI, and similar across all frequency

bands for all subjects (but typically a little more complex – less

smooth isopotential lines - in the beta bands), with three

exceptions, all of which also previously observed: a) the task-

related pattern in the delta band was stronger (ranked as first ICA

component instead of second) than the baseline pattern in 10

subjects; b) a different, peculiar alpha2 pattern was stronger than

the one common across frequencies in three subjects (the

remaining subjects also had a resting or baseline alpha proper

pattern, but secondary to the baseline pattern common to other

frequencies); and c) slow potentials are purely task-related, having

no topographic similarity with all other frequencies.

Regarding the results of our main present interest, similarity or

difference between secondary components in auditory versus

visual conditions in chosen frequency bands, visual inspection was

compatible with our expected results: 1- first ICA component

topographic patterns were virtually indistinguishable between

conditions, in all including the beta bands. We count the baseline

beta activity among the attention-related components, since it

systematically increased in power from pre-S1 activity both in the

previous and present study (by 39% in the present study), as

opposed to theta and delta baseline components, that even

decrease in amplitude in some subjects; 2- secondary component

patterns of stimulus-related bands, theta and delta, were clearly

different between conditions. But the most interesting result was

the 3- inter-modal similarity between task-related or secondary

beta components.

Figure 4 shows the topographic patterns obtained in three

example individuals, selected for representing the lowest, median

and highest audio-visual topographic correlations in the attention-

related bands. It may be noticed that in all cases the first

components are similar across bands, with increased topographic

complexity in the beta bands. One may also notice the overall

similarity between secondary beta components, in spite of the

difficulty in simultaneously controlling the number of isopotential

lines to illustrate component maps, due to the much stronger first

components. Major differences can be seen particularly between

auditory and visual theta band secondary components. Figure 5

shows the source reconstruction results (along with main steps of

analysis) in the example subject of median audio-visual correla-

tions in the attention-related bands. The thin rectangles depict the

results for secondary or ‘task-exclusive’ components in the main

bands for which inter-modal correlations were compared, theta

and beta1.

Given the confirmed normal distribution of our data, we

computed parametric correlations between audio and visual

cortical current distributions, and they quantitatively supported

the observations by visual inspection (figure 6 shows the average

audio-visual topographic correlations across subjects in various

bands). First, by considering an arbitrary cutoff value of Pearson’s

r = 0.5, stimulus versus attention-related bands could be separated

in the following way: at least one of the attention-related bands

had their second ICA components with high significant audio-

visual correlations in all but one subject, whereas in no case was

there a high significant correlation between theta or delta task-

related components. Second, the actual correlation values,

according to visual inspection, were highest in all frequency bands

Table 1. Grand average of root mean global field power
(computed at peak of corrected latency averages) converted
into SNR, by frequency band (V = visual task; A = auditory
task).

SNR baseline task

V A V A

Beta 2 5.60 5.67 7.21** 6.83**

Beta 1 6.54 6.66 7.72** 7.50**

Alpha 2 5.18 5.15 6.19** 5.80**

Alpha 1 4.93 5.57 5.94** 6.04

Theta 5.76 5.50 5.36 5.65

Delta 3.32 3.15 8.89** 6.43**

Significant increases in power with respect to baseline are indicated by asterisks
(p,0.01, paired t-tests).
doi:10.1371/journal.pone.0015022.t001
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Figure 2. Task-related EEG Power. Same as figure 1, but in example subject presenting a single alpha band.
doi:10.1371/journal.pone.0015022.g002
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for first ICA components, intermediary in value for Slow

Potentials and secondary beta bands, and minimal for delta and

theta bands.

Inter-individual comparison between attention and
stimulation-related audio-visual topographic correlations

After conversion of correlations between auditory and visual-

related current density distributions into Fisher’s Z transforms, we

performed paired t-tests that resulted in highly significant

differences, both in the comparison between the transformed

correlations in theta and beta1 bands (t = 22.99, p,0.01), and

between the Fisher’s Z scores averaged across theta and delta

bands, and the scores averaged across beta1, beta2 and slow

potentials (t = 25.885, p,0.0001). Figure 7 illustrates the pooled

Fisher’s Z scores representing the stimulus and attention-related

bands.

Cortical distribution of significant contribution to within
individual differences between visual and auditory
attention correlates

The Z-score transformation of the point-by-point audio-visual

differences in dipole strength distributions were computed for the

Figure 3. Task-related EEG Power. Time course in three bands (top to bottom: beta2, beta1 and theta) separated by electrode groups,
representing scalp regions: black = all electrodes; green = temporal; red = parietal; magenta = occipital; blue = frontal.
doi:10.1371/journal.pone.0015022.g003

Visual-Auditory Attention Electrical Correlates
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Figure 4. Audio-visual topographic comparisons. Examples of topographic maps (three-map sets represents first or baseline (I), second (‘task-
exclusive’ used for comparisons- II) and third (III) ICA components in each frequency band (indicated at left of each auditory = A visual = V pair; nasion
on top of maps). Each of the three line sets is labeled according to each representative subject (‘‘high’’, subject that presented the highest inter-
modality correlations of attention-related results; ‘‘medium’’, subject of median correlations; ‘‘low’’, subject of lowest correlations in the group). Hot
versus cold colors indicate opposite polarity of purely spatial patterns (temporal patterns were complex, always with phase differences between
components).
doi:10.1371/journal.pone.0015022.g004

Figure 5. Audio-visual cortical generators comparisons. Example of source reconstruction results, for which further analyses were performed
(correlations for similarity and significant differences for distinction between auditory and visual activity), in the subject with median inter-modality
correlations. At extreme of both sides, z-score transformed frequency-time plots of task-related power changes (bars below represent stimuli).
Processing steps indicated for the auditory beta1 (peak averaging of band-pass filtered epochs, ICA decomposition of resulting averages, and Current
Density Reconstruction – CDR - of single ICA filtered components – only first and second: e.g., b1_1 = main or resting beta1 component;
b1_2 = second or task-related beta1 component). CDR results for the second ICA components were used both to compute significant audio-visual
differences (example for b1 in this subject on top of the figure) and correlations between those tasks. Bottom half of CDR results exemplify results for
the theta band.
doi:10.1371/journal.pone.0015022.g005
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task-exclusive beta1 and beta2 components, and for the SPs. In

none of the three cases did any single cortical cytoarchitectonic

area contain foci of (differential) current density common across

subjects. Figure 8 shows the localization of the significant portion

of differences in current distribution between tasks, in the beta1

band, in all subjects. The task differences for SPs were not

localized in the same areas as beta1, but the two beta bands were

typically very similar, as previously observed [1]. The inspection of

current distributions after a very permissible cutoff value, of course

increased the extent of current density foci, but in all cases (three

bands) resulted in the same overall conclusion: not a single

cytoarchitectonic area containing current foci was common to all

subjects.

Discussion

The present work reproduced previous findings of high inter-

individual variability of cortical activity patterns during the visual

attention task [1,2]: varying sets of cortical areas and current

density distribution explain the direct electrophysiological atten-

tion correlates, both induced beta bands and slow potentials across

individuals (we left the alpha band out of the analysis on purpose,

due to the complexity of relations with task events, variable set of

sub-bands across subjects, and controversial functional interpre-

tations, previously discussed in an analysis of the visual task,

[1,11]). The literature that presents individual data, mainly using

functional magnetic resonance imaging (fMRI), corroborates our

findings on high individual variability, whenever non sensory-

motor tasks are studied, and consistently adverts against ‘brain

averaging’ (e.g., [23–29]). Occasionally, this variability has been

observed even in the case of passive (cutaneous) stimulation (e.g.,

[26,27]). Those reports are in accordance with our own

unpublished fMRI data from 60 individuals performing auditory

and visual memory recognition tasks, where a high individual

variability was seen, as opposed to their simpler, predictable and

common patterns of activity following passive audiovisual

stimulation. Taken together, all those observations challenge the

validity of our search for predetermined functions of cortical

association areas, of course depending on the definition of

functions. We distinguish (expecting) attention proper from

consequences of attention on stimulation and detection, whose

correlates are the well known modulation of evoked and

endogenous potentials, for instance. In our anatomy-based search

of regional cortical specialization of function, we used the concept

of function as the mentally dealing (e.g. comparing, associating)

with different sensory materials within a modality, such as spatial

Figure 6. Audio-visual correlations. The similarity in current density distributions between visual and auditory tasks was measured by the
correlations between the identically ordered sets of dipole strengths, in each frequency band and ICA component (Inter-subject averages are shown
only for illustration; Comparisons were performed between Fisher’s Z transformed correlations; first components: ‘‘band’’_1; secondary components:
w/o extension; bars: 95% confidence interval of the mean). Thick rectangles depict attention-related bands, and thin rectangle, stimulus-related
bands. However, first beta components were not used in comparison due to their trivial high correlations, common to most bands (see text).
doi:10.1371/journal.pone.0015022.g006
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versus non-spatial ‘mental operations’. Excepting the sensory-

motor components, individuals seem to implement such common

‘functions’ using varying cortico-cortical circuits. On the other

hand, putative functions abstracted exclusively from behavioral

measures, may or may not correspond to distinct physiological

correlates or implementation, at least in the present, macro-

anatomical sense: different timing or accuracy of response may not

necessarily correspond to implementation by differing (cortical)

circuits.

A second qualitative replication was the observation of the

topographic similarity of baseline activity between frequency

bands in each individual, with the same exceptions of slow

potentials, and a main alpha component in some subjects.

The new contribution was the explicit, within subjects compar-

ison between the generators of correlates of the visual task, and

those obtained when attention was displaced to additional

auditory stimuli. Measures of similarity between correlates of

both modalities, the point-by-point correlations between dipole

strength distributions, had an overall correspondence with visual

inspection. They were clearly higher for attention correlates

(induced beta oscillations and SPs) than for more closely stimulus-

related activity (theta and delta bands). Thus, even the secondary

or ‘task-exclusive’ induced beta oscillations were significantly

closer to each other in topography between modalities than theta

and delta topographic patterns. The baseline beta1 and beta2

topography, corresponding to the main induced attention

correlate due to its strength and increase during the ISI, is

virtually indistinguishable between conditions, and present the

highest inter-modality correlations. Those highest correlations

correspond to practically indistinguishable patterns at visual

inspection. However, they may be considered trivial, since they

happen to the baseline components in all frequency bands (we

have data showing pre-S1 baseline topography also to be

indistinguishable from quiet resting), only in lesser degree in the

beta band.

Our findings indicate that attention, at least in the broad sense

that we use, is related to activity in distributed sets of cortical areas

peculiar to each individual. Even in the case of the present major,

modality change in attention, the known electrophysiological

correlates do not appear to significantly change, suggesting an

individual-specific, but modality unspecific cortico-cortical net-

work. Given the high number of compared dipole strengths, on the

order of 104, we complemented our analysis of similarity by an

explicit treatment of the intra-individual condition differences as

well. We illustrated the loci of the portion of current distribution

by a rigorous cutoff value of the z-transform of the difference

vector between conditions (but also inspected results after a non-

rigorous threshold), for the attention-related frequencies. We were

interested in knowing whether any inter-individual systematic

trend in anatomical localization occurred, however small the

Figure 7. Audio-visual correlations. Pooled Fisher’s Z averages, separating stimulus from attention-related activity.
doi:10.1371/journal.pone.0015022.g007
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Figure 8. Auditory-visual attention differences. Significant part of difference in dipole strength distributions between auditory and visual tasks,
in all subjects. Illustrated are the differential currents of absolute z-score value beyond a global z = 2.57, adjusted to number of dipole supporting
points in each individual (range: z = 3.48 to z = 3.62). Relative local current density (to individual maximum) is represented by red arrows and
proportional to arrow size (due to wide differences between maximum and minimum individual values, actual arrows can be noticed entering –or
arrow heads exiting- the brain only in a few cases of high local current density, e.g., first and second subjects on top of right column).
doi:10.1371/journal.pone.0015022.g008
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overall changes following the displacement of attention could be

considered after the correlation analysis.

Once more, no common area across individuals showed to be

specifically related to the shift of attention to the auditory

modality, even when the low significance threshold was used.

This occurred in the case of the bands that we consider more

directly related to attention: the baseline components of beta1 and

beta2 bands, that are enhanced and thus along with SPs form the

major attention correlates, and the second ICA beta1 and beta2

components (‘‘task-exclusive’’ since their topography is not present

during baseline activity). This latter method may be considered

analogous to ‘task-subtraction’, and more exclusively sensitive to

the variable of interest, the displacement of attention, minimizing

the effects of other factors that could interfere with inter-individual

variability. For instance, although based on a still insufficient

number of replication cases, we do suspect of a significant change

even in the baseline topography in the course of years, as opposed

to a few months. In any case, if confirmed, this instability would be

one more ‘uncontrollable’ source of individual variability. Thus,

idiosyncratic cortical activity seems to be a robust phenomenon,

even when those other factors are considered, such as: task

complexity and corresponding individual strategies of execution

(whose minimization of variability was the main intent of the

present task design, a simplification of Posner’s task, [30,31];

discussed in [2]); the unavoidable inclusion of some degree of

memorization in any task; some extent of stimulus evaluation in

any voluntary action; even the extreme possibility of a lack of

relation between our measures and behavior [2,9]; or a

‘‘methodological threshold’’ limitation [1]. Regarding the thresh-

old problem, we may place our studies in one extreme, of a case-

by-case description of occurrence of activity foci in estimated

cytoarchitectonic areas, where the other extreme is represented by

spatial grand averaging studies, which may occasionally present

results that are not shared by all individuals. However, exactly due

to the inconsistency in active areas between individuals, some

groups of authors may be placed in an intermediary position

between those extremes. They are developing interesting methods

to account for such variability, with accompanying theoretical

interpretations. One example is the application of the concept of

‘biological degeneracy’ to functional studies and Neuropsychology

(‘many-to-one’ mapping of areas-funtion) and the ‘multisubject

network’ method (e.g., [32,33]), and ‘fuzzy clustering’ [34].

Another example is the data-driven delimitation of distributed

‘‘partially segregated networks of brain areas’’ to be re-approached

to individual, fMRI and EEG data [35,36]. Both example efforts

represent a compromise between the pure presentation of

individual data and grand spatial averaging. But we believe they

cannot still replace the first extreme, since some methodological

steps somewhat remove their final spatial results from actual

physiological changes, such as the occasional stress in ‘regions of

interest’ (all subjects included in an area, even when ‘extreme’ or

‘outliers’ in original measures), or statistical clustering of ICA

extracted individual patterns and use of very low correlations

between fMRI and EEG results.

But we must still contrast our conclusions with those from other

psychophysiological studies presenting individual data, mainly

those using fMRI. Most reports are concerned with intersubject

variability, but in the extent or intensity of activation in pre-chosen

regions of interest (e.g, [37,38]). Studies explicitly showing the

variability in the actual sets and distribution of active areas are less common

[23–29]. Our findings, along with the last mentioned studies and

our own unpublished fMRI results on visual and auditory

recognition tasks versus mere stimulation, suggest that non

sensory-motor cortical cytoarchitectonic areas cannot be expected

to implement any pre-established physiological function, at least

when function is conceived as classical, general psychological

processes such as expecting attention, perception or target

detection, conception, effort of memorization or evocation. Of

course, among the infinitude of non-physiologically or descrip-

tively-driven constructs of contemporary Psychology, if considered

‘functions’, may prove to be rather localized in cortical domains (as

believed to be the case for ‘error detection’ or auditory ‘change-

detection’, when considered as outside of the sensory domain). The

commonplace observation from clinical practice in Neuropsychol-

ogy, of variable symptomatology and degrees of impairment

following lesions on common areas across subjects, corroborates

this view. Most cases of functional claims regarding particular

cortical areas, but based on group averages, neglect the fact that a

percentage of subjects do not show any activation at all in those

areas. Finally, it is worth mentioning once more (as discussed in

[9]), that whatever the concept of function may be, an unrestrained

literature search will lead to an enormous number of functional

studies involving most cortical areas, and reciprocally, searches

merely using any given cortical association area will result in

functional hypotheses difficult to reconcile with each other, and

especially so with a general biological theoretical framework.

A limitation of our studies is the restriction of observations to

cortical activity. Circuits implementing whatever psychological

process to be considered in the future as in fact basic or

elementary, may essentially involve the interaction between

individually variable functional cortico-striato-pallido-thalamo-

cortical circuits (CSP ‘loops’) and invariable subcortical structures.

Among the latter, a critical role must be ascribed to the structures

mediating the interaction between the telencephalon and effector

systems (somatomotor, vegetarive and endocrine), and between the

telencephalon and the (aminergic) nuclei and cell fields of

relatively diffuse ascending projections. Those structures are the

extended amigdala, the lateral septum, and the habenulo-

interpeduncular and mamillo-tegmental axes [39]. Thus, it may

be the case that an absolutely universal part of circuits across

subjects may only be found on the highly convergent interactions

between CSPs and such mediating structures, which in principle

are inaccessible to EEG/MEG and probably so to fMRI, given

their minute proportions.

In sum, the patterns of cortical electrical activity observed even

during relatively simple mental tasks appear to reflect the high

inter-individual variation that we intuitively perceive in human

associative thinking. Ever present and very general psychological

facts in voluntary action such as ‘association’ or ‘problem-solving’,

may one day prove to be the actual correlates of the

topographically variable electrophysiological measures reported

here. Whatever proves to be the case, individual-case mapping of

task-related neurophysiological measures, independent from

preconceived expectations, seems essential to both clinical and

physiological understanding of human mental functioning.
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da cocaı́na.’’ In: Guerra de Andrade A, e Leite MC, eds. ‘‘Cocaı́na e Crack-

Abuso e Dependência: dos fundamentos ao tratamento’’ Artes Médicas, Porto
Alegre, Brazil [chapter in portuguese].

Visual-Auditory Attention Electrical Correlates

PLoS ONE | www.plosone.org 13 December 2010 | Volume 5 | Issue 12 | e15022


