
858–865 Nucleic Acids Research, 2009, Vol. 37, No. 3 Published online 22 December 2008
doi:10.1093/nar/gkn1006

Kalign2: high-performance multiple alignment of
protein and nucleotide sequences allowing external
features
Timo Lassmann1, Oliver Frings2 and Erik L. L. Sonnhammer1,2,*

1Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 and 2Stockholm Bioinformatics Centre,
Albanova, Stockholm University, SE-10691 Stockholm, Sweden

Received October 30, 2008; Revised November 27, 2008; Accepted December 1, 2008

ABSTRACT

In the growing field of genomics, multiple alignment
programs are confronted with ever increasing
amounts of data. To address this growing issue
we have dramatically improved the running time
and memory requirement of Kalign, while maintain-
ing its high alignment accuracy. Kalign version 2
also supports nucleotide alignment, and a newly
introduced extension allows for external sequence
annotation to be included into the alignment proce-
dure. We demonstrate that Kalign2 is exceptionally
fast and memory-efficient, permitting accurate
alignment of very large numbers of sequences.
The accuracy of Kalign2 compares well to the best
methods in the case of protein alignments while its
accuracy on nucleotide alignments is generally
superior. In addition, we demonstrate the potential
of using known or predicted sequence annotation to
improve the alignment accuracy. Kalign2 is freely
available for download from the Kalign web site
(http://msa.sbc.su.se/).

INTRODUCTION

Multiple alignments are important to a wide spectrum of
applications in comparative sequence analysis (1). The
focus in the development of alignment programs has
been primarily on increasing their accuracy.
Unfortunately, this has led to a benchmark race that is
generally won by computationally expensive methods that
are impractical for large datasets. It is also not for sure
that just because a method is slightly better on a bench-
mark test, it will always produce the most desirable mul-
tiple alignment. Efficient computational properties
of alignment algorithms have become more and more

important in recent years, perhaps even to a point where
it is reasonable to sacrifice some accuracy for large gains
in running time.

The typical number of sequences to be aligned has
increased in recent years. The Pfam database (2,3) now
contains families with 389.2 sequences on average, a
number that will steadily increase as more genomes
become fully sequenced. Also the number of non-coding
RNAs (ncRNA) available is constantly evolving, consti-
tuting a new challenge in the area of multiple sequence
alignments. By now the Rfam database (4) includes
sequences of 607 families. So is it necessary to align all
members of a sequence family at once? In a review, Cedric
Notredame (5) pointed out that often too many sequences
are present, and therefore users have to make a selection
prior to the actual alignment. Since then alignment pro-
grams and computers have become faster and in 2005
Katoh et al. (6) convincingly demonstrated that alignment
accuracy can be increased by including high numbers of
homologous sequences. In detail, this strategy includes
extra sequences in the alignment procedure itself but
removes them from the final alignment. Clearly, alignment
programs should be able to take advantage of the wealth
of information present in the databases without being hin-
dered by computational concerns. Moreover, programs
should be able to align hundreds rather than tens of
sequences.

We recently introduced the concept of assessing the
quality and overall difficulty of alignments by comparing
alternate alignments of the same sequences (7). Another
approach that uses multiple, multiple sequence alignments
is M-Coffee (8) a meta-alignment algorithm. Both
approaches add value to the field but their shared require-
ment for computing not one but several alignments for
each set of sequences somewhat limits their practical
usage. Here, in particular, fast alignment methods could
be the key to making these approaches more feasible.

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

*To whom correspondence should be addressed. Tel: +46 8 55 37 85 67; Fax: +46 8 55 37 82 14; Email: Erik.Sonnhammer@sbc.su.se

� 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Perhaps the most compelling reason for fast aligners is
related to the persisting problem of selecting appropriate
gap penalties (9–11). That is, since individual sequence
families are under unique evolutionary constraints, default
parameters giving the overall best results on benchmark
sets are often inappropriate for individual cases. It is,
therefore, required to assess alignment quality by hand
or assisted by automatic methods, to tune alignment
parameters and to re-run alignments. Such an iterative
strategy clearly benefits from fast and accurate alignment
methods.

Another issue especially when aligning sequences with
low average pairwise sequence identity (APSI) is the inclu-
sion of external information into the alignment process,
e.g. secondary structure annotation or Pfam domains.
In previous works that apply hidden Markov models
(HMM) to the alignment problem (12,13) or aim to
refine existing alignments (14), it has successfully been
shown that alignment quality can gain from incorporating
additional information into the alignment procedure.

Given the rapidly increasing number of sequences to be
aligned, computational challenges are becoming a bottle-
neck. To find a good compromise between accuracy and
computational efficiency, the original Kalign program (15)
was optimized in many ways. Most notably, we replaced
the Wu–Manber algorithm with the faster Muth–Manber
string matching algorithm, and implemented the space-
saving Myers and Miller algorithm (16) for dynamic pro-
gramming. In addition we introduced the alignment of
nucleotide sequences and an alignment mode that can
incorporate data from extrinsic heterogeneous sources to
increase alignment accuracy.

Kalign version 2 employs highly efficient algorithms in a
combination that previously has not been applied to the
multiple alignment problem. Each component was opti-
mized to gain computational efficiency as well as high
accuracy. Together, all the improvements resulted in a
multiple sequence aligner that is highly suited to emerging
large-scale alignment problems.

MATERIALS AND METHODS

Distance estimation

The key innovation in Kalign is the use of an approximate
string matching algorithm to estimate pairwise sequence
distances. The original Kalign algorithm employed the
Wu–Manber algorithm (17) for this purpose, primarily
because of its flexibility and computational aspects. In
our previous study (15) we found that using patterns of
length 3 and allowing a single error gave the best results.
We here replace the flexible Wu–Manber algorithm with a
far quicker, but inflexible algorithm by Muth and Manber
(18). This algorithm is limited to find matches containing
only single errors but can search a query with thousands
of patterns simultaneously. The algorithm is described in
detail in Ref. 18.

Just as in the original Kalign algorithm, when a match
is reported between two sequences the positions of both
are used to determine on which diagonal within a dot-plot
representation they fall. Scores are assigned to each

diagonal based on the number of matches occurring
along the entire length. In the original Kalign algorithm
exact and error-containing matches were treated sepa-
rately. Because of the nature of the Muth–Manber algo-
rithm, exact matches between a pattern and sub-strings of
the query are reported multiple times so the two different
types of matches do not have to be treated explicitly
anymore.
In correspondence with the Fasta program (19,20) we

choose to use patterns of length 6 for the alignment of
nucleotide sequences.

Dynamic programming

It is widely recognized that the standard dynamic pro-
gramming algorithm with affine gap penalties (21) is not
appropriate for the alignment of long genomic sequences,
due to its quadratic space complexity. The memory effi-
ciency of protein alignment programs is often overlooked
since it is assumed that the alignment of relatively short
protein sequences will require little memory. However,
many of the new algorithms published recently, especially
the consistency based ones (22–24), require large amounts
of memory. Even progressive methods such as ours start
to use too much memory when aligning hundreds of
sequences because profiles generated close to the root of
the guide tree can become very long, especially when low
gap penalties are used, and the quadratic space require-
ment becomes just as limiting as for long genomic
sequences. Unfortunately, it is very hard to predict the
memory usage in advance since conserved protein families
will give alignments where the number of columns corre-
sponds to the length of the longest member sequence while
a divergent family may lead to much longer alignments.
To address this growing issue for protein sequences and

facilitate the alignment of long nucleotide sequences we
followed ClustalW’s (25) example and replaced the
dynamic programming approach outlined in our first
paper by the space saving Myers and Miller algorithm
(16). For two sequences of length n and m the Myers
and Miller algorithm runs in O(nm) time and requires
O(n) space.
Early on in the progressive strategy, particularly when

single sequences are aligned, it is very common for alter-
nate alignments to achieve the same score. Previously,
Kalign arbitrarily picked one of these alignments.
Kalign2 now takes advantage of the divide and conquer
approach used in the Myers and Miller algorithm, and
picks in the case of equally scoring alignments the one
closer to the center of the dynamic programming matrix.
For optimization reasons we adopted a strategy out-

lined by Robert Edgar (26) whereby separate subroutines
are used for the alignment of two sequences, a sequence to
a profile and the alignment of two profiles.

Alignment parameters

In addition to the standard gap open and close penalties
(which are equal for symmetry reasons) Kalign2 allows
users to specify three additional parameters: a terminal
gap penalty, a gap_inc parameter, and a bonus score to
be added to each field of the substitution matrix. The first

Nucleic Acids Research, 2009, Vol. 37, No. 3 859



one is used to penalize N/C-terminal gaps in proteins or
50/30 gaps in nucleotide sequences. The second one can be
used to increase gap open and extension penalties depend-
ing on the number of existing gaps, i.e. gaps will be penal-
ized harder if there are no or only few gaps. The new gap
costs are calculated according to the following formula:

GAP new ¼ GAP default � ð1þ ððcount res� 1Þ=

count seqÞ � gap incÞ

where GAP_default is equivalent to the default penalties
for opening gaps, extending gaps, or terminal gaps. The
parameter count_res equals the number of residues at a
certain position, count_seq denotes the actual number of
sequences, and gap_inc can be set by the user to define the
degree of gap increase. The partial increase of gap penal-
ties was not observed to significantly increase alignment
quality on benchmark sets in terms of alignment scores;
however, this parameter might help to make large
sequence alignments more compact and readable. The
bonus score can be used to force Kalign2 to align distantly
related sequences. Essentially, the higher this bonus score
the more residues will be aligned. Kalign2 uses a default
bonus score of 28.3 for nucleotide alignments and a bonus
of 0.02 for protein alignments. These values were derived
by cross validation as given below.
Often default gap penalties are adjusted by over training

on a particular benchmark set in order to give optimal
results. This constitutes a widely recognized problem
when benchmarking alignment programs. Direct parame-
ter optimization can, and should be, easily avoided by
testing and training on different sets of alignments (6).
However, even without this type of direct over-fitting it
is difficult to avoid making choices during the develop-
ment of an alignment program that favor certain bench-
mark sets—once a new feature is introduced, it is desirable
to assess its potential benefits in terms of accuracy.
Therefore, choices made during the development phase
of an alignment program inadvertently lead to some
degree of over-fitting. Unfortunately, it is almost impossi-
ble to guard against this type of over-fitting or quantify its
overall effect on alignment accuracy.
To estimate alignment parameters, we split benchmark

sets into non-overlapping subsets and performed standard
cross-validation analysis. Within each set we optimized
alignment parameters using an evolutionary algorithm.
Final alignment parameters were derived by taking the
average of the individual parameter settings for each
subset.

Alignment accuracy

The performance of the alignment programs was evalu-
ated using the sum of pairs score (SPS) and the structure
conservation index (SCI). The SPS reflects the percentage
of correctly aligned residues between a reference alignment
and a test alignment, whereas the SCI score accounts for
consensus secondary structure information. We used the
tools CompalignP, SCIF, and BaliScore that are distribu-
ted with the BraliBase2.1 (27) and Balibase3.0 (28)
packages to derive SPS and SCI scores.

Feature alignment

We have added support for the inclusion of extrinsic infor-
mation into the alignment procedure. In particular, we
wanted to make this inclusion as general and flexible as
possible without incurring an excessive cost to the running
time of Kalign.

Our strategy is as follows: each sequence is treated as a
profile containing a sequence and an annotation string
of arbitrary symbols. During the alignment, the sequence
part of the profile is treated as before but the annota-
tion strings are also aligned using a default separate
annotation substitution matrix or user-specified scores
for matching same or dissimilar features. The score of
an alignment then becomes the linear combination
of the default sequence-based alignment score (substitu-
tion costs minus gap penalties) plus the sum of feature
substitution costs of the annotation alignment. The main
difference is that the progressive alignment now starts with
profiles at the leaves of the guide tree rather than just
single sequences.

In our study we used default scores of 75 for matching
residues with the same annotation and �5 for matching
residues with dissimilar annotation. Other parameter set-
tings were tested as well, but did not affect the results
significantly.

A major benefit of this simple approach is that contra-
dictory annotation can be supplied and resolved by the
dynamic programming. No extra consistency check, such
as the one needed to determine a set of consistent matches
in Kalign1, is required. In addition, it is also possible to
include a combination of annotations, such as secondary
structure, Pfam domains and known active sites. Residues
which share all these annotations will be more likely to be
aligned than residues sharing only one or two types of
annotation.

We tested the influence of secondary structure annota-
tion on alignment accuracy for both RNA sequences and
protein sequences. For proteins we used known existing
annotations. Whereas for RNA we used minimum free
energy structures predicted by the method RNAfold in
the ViennaRNA package (29). Structures predicted by
RNAfold are provided in the bracket notation. Each
structure is represented as a string of length equal to
that of the nucleotide sequence consisting of matching
brackets (for basepairs) and dots (for unpaired bases).

For aligning sequences in combination with extrinsic
information we used the Macsim XML file format (30).
In addition to the single sequences each file included avail-
able feature annotations. For RNA sequences we simply
attached for each sequence position the corresponding
annotation, i.e. ‘(‘,’)’, or ‘.’.

Problems might occur when two sequences contain
unequal numbers of the same annotation features, possi-
bly due to repeats, the features in the feature-poor
sequence can get stretched out to cover all feature in the
feature-rich sequence. For example, if sequence A contains
two alpha helices and sequence B only one, residues within
that helix might be aligned to both helices in sequence A.
However, this effect can be easily controlled by manually
lowering the scores for matching similar features.

860 Nucleic Acids Research, 2009, Vol. 37, No. 3



Minor practical improvements

We have added support for Clustal, Pileup, MSF,
Stockholm, Uniprot, Swissport and Macsim alignment
formats. To allow for easy integration of different data
sources, Kalign2 can read sequences from multiple files.

In addition, Kalign2 can align alignments by turning
them into profiles.

A relatively minor but much demanded improvement is
the sorting of output sequences. Like most other align-
ment programs, Kalign2 can sort sequences according to
the initial guide tree or according to similarity to an indi-
vidual query sequence.

RESULTS

Running time

We tested the computational properties of Kalign2 by
simulating alignments with varying average sequence

length and number of sequences using ROSE (31). The
analysis was conducted using the same parameters as
used by Katoh et al. (6). Out of the alignment programs
tested, Kalign2 was almost as fast as the speed oriented
methods like the PartTree option of MAFFT (32) or the
fast mode of Muscle (26), but significantly faster than the
rest of the methods tested (Figure 1A–C). Just as the pre-
vious version of Kalign, the running time of the new ver-
sion is unaffected by the evolutionary distance of the input
sequences.
The comparison to the previous version indicates a

modest improvement in running time when considering
the sequence length and a dramatic reduction in running
time when the number of input sequences is considered.
The former indicates the efficiency of our implementation
of the Myers and Miller algorithm, especially when con-
sidering that it should be approximately twice as slow,
whereas the latter can be attributed primarily to the
Muth and Manber algorithm. Kalign2 aligns 1500

Figure 1. Running time of several multiple alignment methods on four scenarios with simulated alignments of varying evolutionary distance
(PAM=100 and PAM=250), increasing sequence length (L=10–2000), and number (N=10–1500). For each case one parameter was varied
(x-axis) while two parameters were kept constant (plot heading). Kalign2 scales much better than most of the methods, especially with increasing
number of sequences. All tests were carried out on an AMD64 3200+processor with 2GB of RAM running Linux.

Nucleic Acids Research, 2009, Vol. 37, No. 3 861



sequences of length 300 in around 30 s (Figure 1A) or 6650
sequences in 1000 s (the upper limit of our test; data not
shown).

Memory benchmark

We evaluated the memory requirement of several align-
ment programs using 11 alignments with increasing
number of sequences generated by ROSE (Table 1)
using a length of 300 and an evolutionary distance of
100. Among the programs tested, Kalign2 uses the least
amount of memory. The improvement in memory require-
ment over the previous version of Kalign is dramatic. The
reason is primarily due to the Myers and Miller algorithm,
and also to an oversight in our initial implementation that
caused too much memory to be allocated for the storage
of the initial string matches.
Since desktop computers are commonly equipped with

1 GB of memory or more it is questionable whether this
improvement will have any impact when only aligning
small numbers of sequences. However, low memory
requirement can be advantageous when running Kalign2
on servers shared by many users or when using Kalign2
for a public web server.
Furthermore, most common methods in default mode

are only applicable to a couple of hundreds of sequences,
and start to allocate huge amounts of memory when
applied to extensive datasets. In a more severe test we
used the alignment methods MAFFT, Muscle, Probcons,
T-Coffee and Kalign2 to align the more than 8000
sequences of the Rfam family Intron-gpII on a standard
desktop computer with 2 GB of memory. Most default
methods either ran out of memory or aborted after the
start due to the large number of sequences. Only fast
aligners like Kalign2, Mafft-FFT-NS-2/NS-i or T-Coffee
and Muscle in the fast mode were applicable here. We then
tried to align the more than 20000 sequences of the Rfam
family Intron-gpI. Out of the methods tested only Kalign2

and the Mafft-Parttree variant were able to align the com-
plete dataset. However, Mafft-Parttree was less accurate in
our benchmarks. Here Kalign2 clearly benefits from its
high speed and its memory efficiency.

Accuracy on protein alignments

The accuracy of Kalign on protein alignments was demon-
strated in (15) and is therefore only briefly discussed here.
To ensure that the high accuracy of our first version is
maintained we evaluated Kalign2 on the Balibase3 (28)
benchmark set. The gap penalties for protein alignments
were derived via cross validation on Balibase3.0 applying
a genetic algorithm approach.

Kalign2 achieved an average SPS score of 82.7% on
Balibase which represents a 2.4% improvement over the
previous version of Kalign. Compared with other pro-
grams Kalign2 is more accurate than other progressive
methods, e.g. ClustalW at 75.4% or Muscle in the fast
mode at 77.8%. It is about as accurate as some iterative
methods, e.g. Muscle at 82.2%, but less accurate than
consistency-based methods, e.g. G-INS-i option of Mafft
84.5% (progressive methods< iterative methods,
Kalign2< consistency-based methods; see Table 2 for
the individual command line options used for each
method). Our measured accuracies of the other methods
correspond well to those reported by Katoh et al. (33).

Accuracy on nucleotide alignments

We used the Bralibase2.1 (27) test set to benchmark
Kalign2 against other sequence-based alignment programs
for nucleotide sequences. The updated version now con-
tains alignments of 36 RNA families from the Rfam data-
base. Totally, it comprises 18,990 alignments with a
varying APSI between 20% and 95%. The alignments
are grouped into sets of 2, 3, 5, 7, 10 and 15 sequences.
Because we were interested in alignments representing a

Table 1. Memory requirement in megabytes for several alignment programs as a function of the number of sequences (N)

N 10 50 100 150 200 250 300 350 400 450 500

Kalign2 6.6 7.1 7.4 7.7 7.8 7.9 8.3 8.5 8.5 8.8 9.3
Kalign1 8.6 20.6 38.0 60.6 80.5 100.3 127.1 151.6 176.0 193.5 225.6
ClustalW 7.9 8.1 8.3 8.8 9.2 9.5 10.4 10.9 11.4 12.2 13.1
ClustalWqt2 7.9 8.1 8.4 8.8 9.2 9.5 10.4 10.9 11.4 12.2 13.1
Muscle 17.6 25.1 34.3 43.0 52.7 60.2 70.4 79.8 89.2 98.3 108.2
Muscle_fast 17.3 24.8 33.6 42.8 52.3 59.8 69.7 80.0 89.0 97.7 107.2
T_Coffee_fast 17.5 25.1 34.3 43.0 52.7 60.2 70.4 79.8 89.2 98.2 108.2
G_INS_i 146.9 149.6 153.4 161.7 169.9 179.0 199.2 206.4 213.8 246.4 266.2
L_INS_i 146.9 149.5 153.2 161.0 168.6 177.8 195.7 203.8 211.8 241.4 260.8
FFT_NS_2 140.1 140.4 141.2 141.7 142.8 142.7 144.5 144.9 145.3 145.7 146.9
FFT_NS_i 146.0 147.5 149.8 153.2 157.0 159.1 168.1 171.2 174.0 181.0 188.7
Parttree-1-1000 140.2 140.5 141.5 142.0 143.0 143.4 144.8 144.8 145.3 145.8 147.4
Parttree-2-1000 140.2 140.5 141.5 142.0 143.0 143.4 144.8 145.3 145.8 146.5 147.5
Dialign 6.7 13.1 30.5 59.6 99.7 146.0 – – – – –
Dialign_fast 8.7 13.0 30.8 60.5 101.4 147.0 – – – – –
Probcons_fast 12.2 21.4 58.1 120.6 207.6 315.6 – – – – –
Probcons 12.2 21.3 58.1 120.6 207.6 – – – – – –
T_Coffee 20.9 129.1 464.5 – – – – – – – –

No measurement could be obtained for some method test set combinations due to excessive time or memory requirements (dashes). Kalign2 requires
the least amount of memory followed by ClustalW.

862 Nucleic Acids Research, 2009, Vol. 37, No. 3



wide spectrum of test cases we decided to merge all test
sets to assess alignment accuracy.

Gap penalties for nucleotide alignments were derived
using 5-fold cross validation on a separate data set, i.e.
data set 1 of the previous Bralibase benchmark set 2.0. For
scoring matches and mismatches Kalign2 uses the HOXD
substitution matrix (34).

In our tests Kalign2 outperformed many other align-
ment programs (Figure 2A and 1A, Supplementary
Data). In particular, for alignments with low APSI,
Kalign2 performed significantly well, both in terms of
SPS score as well as SCI score. From this we conclude
that Kalign2’s fuzzy string matching algorithm is as ben-
eficial in terms of accuracy for nucleotide sequences as it is
for protein sequences. With increasing APSI most of the
tools tested performed equally well (Figure 2B and 1B,
Supplementary Data). Besides Kalign2, especially the
tools ProbConsRNA (22), Muscle, and the MAFFT vari-
ant G_INS_i performed well.

Accuracy of feature alignments

A new capability in Kalign2 is the use of extrinsic infor-
mation such as structure or domain annotations to
improve alignments. To demonstrate the benefit of
Kalign2 feature alignments we discuss two examples of
how to increase alignment accuracy with feature
alignments.

We used RNAfold to predict secondary structures for
all sequences in the Bralibase2.1 benchmark set. Supplying
the predicted secondary structure as an additional input to
Kalign2 increased the average accuracy from 51.7% to
55.31% for alignments with an APSI below 40%. Above
40% the average accuracy increased slightly from 87.5%
to 88.1%.

Further we tested the new feature alignment function
using Balibase 3 in combination with the existing second-
ary structure annotation. With the feature mode enabled
Kalign2 obtained an average accuracy of 84.8%, an
increase of 2.1 percentage points.

The coverage of structural annotation varies greatly
for individual Balibase alignments. To determine whether
an increased annotation coverage corresponds to an
increase in accuracy we plotted the feature coverage of
each alignment case against the difference in accuracy
between the default and structure-enhanced Kalign2
mode (Figure 3). There is a noticeable trend supporting
the assumption that more annotation results in an increase
in accuracy.
Annotation present in areas that are misaligned with

default parameters is clearly more useful than annotation
present in areas that are trivial to align. In the most
extreme case—BB11025—the sequences are so divergent
(average sequence identity 15%) that Kalign2 using
sequence alone obtained an SPS score of only 11%,
while the structure-enabled Kalign2 scored 62%.

Figure 2. Accuracy on RNA alignments using the SPS score. Boxplots
for the accuracy measured using the Bralibase2.1 benchmark set. (A)
Alignments with an average pairwise sequence identity (APSI) <40%.
(B) Alignments with an APSI >40%. Kalign2 was the most accurate
method, especially in regions with low APSI.

Table 2. Command-line arguments for each alignment method tested

Method Command

ClustalW Clustalw
ClustalWqt2 clustalw –quicktree
Dialign Dialing
Dialign_fast dialign –o
FFT_NS_2 Mafft –retree 2
FFT_NS_i Mafft –maxiterate 1000
G_INS_i Mafft –globalair –maxiterate 1000
Kalign2 kalign2
Kalign1 kalign1
L_INS_i Mafft –localpair –maxiterate 1000
Muscle muscle
Muscle_fast muscle -maxiters 1 -diags -sv -distance1 kbit20_3
Parttree-1-1000 mafft –retree 1 –parttree –partsize 1000
Parttree-2-1000 mafft –retree 2 –parttree –partsize 1000
Probcons_fast probcons -ir 0
Probcons Probcons
ProbconsRNA probconsRNA
T_Coffee t_coffee
T_Coffee_fast t_coffee -special_mode quickaln

Nucleic Acids Research, 2009, Vol. 37, No. 3 863



Combining Kalign2 with additional annotations like
predicted secondary structure for RNA constitutes an
easy but powerful way to enhance alignment accuracy.
Since the reference alignments in Balibase3 are derived
from the structural annotation themselves, this test is cir-
cular and the reported accuracy cannot be used for com-
parison to other methods. Nevertheless, it underlines the
usefulness of the simple method introduced here.

DISCUSSION

This article describes several key improvements to our
alignment algorithm Kalign. We have improved the com-
putational properties of Kalign, making the second
version a versatile tool for the alignment of multiple bio-
sequences. The combination of high speed and extremely
low memory requirement means that Kalign2 can be
applied to very big alignment problems, even on small
computers. In large scale studies where thousands of align-
ments are required, Kalign2 can dramatically reduce
the computation time while retaining high prediction
accuracy.
The accuracy of Kalign2 on nucleotide alignments is

notable and the accuracy on protein alignments is better
than for comparable algorithms and not much less than
the best. We do not believe that the excessive running
times of more accurate programs are worth the 1–3%
increases in average alignment accuracy reported recently.
Another factor to be considered is that high average
accuracies on benchmark sets do not necessarily translate
into optimal performance for individual cases. Indeed,
even the worst method according to a benchmark study
can yield the best alignment in a few cases. In our experi-
ence the strategy that yields the best result in practice is to
re-run an alignment program multiple times, adjusting its

parameters along the way. The speed of Kalign2 makes it
well suited for this approach.

The feature alignment extension presented here is
intriguing. We have shown that combining Kalign2 with
structural annotations can obviously increase the predic-
tion accuracy, both for nucleotide sequences as well as for
protein sequences. Apart from the obvious benefit of
increased accuracy, the feature alignment can also be
used to contrast and compare different alignment alterna-
tives. For example, users may wish to compare a structur-
ally motivated alignment to one that is based on Pfam
annotation and decide which one is more suitable for
their purposes.

Future direction

As far as the authors are concerned, the future of align-
ment programs lies in two main areas: the combination of
heterogeneous data sources to improve accuracy, and
taking advantage of alternate alignments of the same
sequences, i.e. meta aligners. Kalign2 is ideally suited for
both avenues: the newly introduced feature alignment is
simple and expandable, and Kalign’s speed is crucial for
meta aligners.

We can imagine an iterative method which trawls
through the search-space by generating several multiple
alignments at each step, assessing their accuracy and
then alters alignment parameters to generate a more accu-
rate set of alignments in the next set. Kalign2 is particu-
larly suited for such an iterative strategy due to its
computational efficiency, which ultimately determines
the practical usefulness for large-scale applications in
this field.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Funding for open access charges: Swedish Graduate
School for Functional Genomics and Bioinformatics.

Conflict of interest statement: None declared.

REFERENCES

1. Lecompte,O., Thompson,J.D., Plewniak,F., Thierry,J. and Poch,O.
(2001) Multiple alignment of complete sequences (MACS) in the
post-genomic era. Gene, 270, 17–30.

2. Bateman,A., Birney,E., Cerruti,L., Durbin,R., Etwiller,L.,
Eddy,S.R., Griffiths-Jones,S., Howe,K.L., Marshall,M. and
Sonnhammer,E.L.L. (2002) The Pfam protein families database.
Nucleic Acids Res., 30, 276–280.

3. Finn,R.D., Mistry,J., Schuster-Böckler,B., Griffiths-Jones,S.,
Hollich,V., Lassmann,T., Moxon,S., Marshall,M., Khanna,A.,
Durbin,R. et al. (2006) Pfam: clans, web tools and services. Nucleic
Acids Res., 34, D247–D251.

4. Griffiths-Jones,S., Moxon,S., Marshall,M., Khanna,A., Eddy,S.R.
and Bateman,A. (2005) Rfam: annotating non-coding RNAs in
complete genomes. Nucleic Acids Res., 33, D121–D124.

5. Notredame,C. (2002) Recent progress in multiple sequence align-
ment: a survey. Pharmacogenomics, 3, 131–144.

Figure 3. External feature alignment using protein secondary structure
generally improves accuracy on the Balibase benchmark. An increase in
the SPS score is seen mostly for cases with high structural coverage.

864 Nucleic Acids Research, 2009, Vol. 37, No. 3



6. Katoh,K., Kuma,K., Toh,H. and Miyata,T. (2005) MAFFT version
5: improvement in accuracy of multiple sequence alignment. Nucleic
Acids Res., 33, 511–518.

7. Lassmann,T. and Sonnhammer,E.L.L. (2005) Automatic assessment
of alignment quality. Nucleic Acids Res., 33, 7120–7128.

8. Wallace,I.M., O’Sullivan,O., Higgins,D.G. and Notredame,C.
(2006) M-Coffee: combining multiple sequence alignment methods
with T-Coffee. Nucleic Acids Res., 34, 1692–1699.

9. Vingron,M. and Waterman,M.S. (1994) Sequence alignment and
penalty choice. Review of concepts, case studies and implications.
J. Mol. Biol., 235, 1–12.

10. Qian,B. and Goldstein,R.A. (2001) Distribution of Indel lengths.
Proteins, 45, 102–104.

11. Qian,B. and Goldstein,R.A. (2002) Optimization of a new score
function for the generation of accurate alignments. Proteins, 48,
605–610.

12. Do,C.B., Gross,S.S. and Batzoglou,S. (2006) CONTRAlign: discri-
minative training for protein sequence alignment. In Apostolico,A.
et al. (eds), RECOMB, LNBI 3909, Springer-Verlag Berlin,
Heidelberg, pp. 160–174.

13. Karchin,R., Cline,M., Mandel-Gutfreund,Y. and Karplus,K. (2003)
Hidden Markov models that use predicted local structure for fold
recognition: alphabets of backbone geometry. Proteins: Struct.
Funct. Genet., 51, 504–514.

14. Chakrabarti,S., Lanczycki,C.J., Panchenko,A.R., Przytycka,T.M.,
Thiessen,P.A. and Bryant,S.H. (2006) Refining multiple sequence
alignments with conserved core regions. Nucleic Acids Res., 34,
2598–2606.

15. Lassmann,T. and Sonnhammer,E.L.L. (2005) Kalign—an accurate
and fast multiple sequence alignment algorithm. BMC
Bioinformatics, 6, 298.

16. Myers,E.W. and Miller,W. (1988) Optimal alignments in linear
space. Comput. Appl. Biosci., 4, 11–17.

17. Wu,S. and Manber,U. (1992) Fast text searching: allowing errors.
Commun. ACM, 35, 83–91.

18. Muth,R. and Manber,U. (1996) Approximate multiple string search.
Proceedings of the7th Annual Symposium on Combinatorial Pattern
Matching. Vol. 1075, Springer, Berlin, Laguna Beach, CA, pp. 75–86.

19. Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biologi-
cal sequence comparison. Proc. Natl Acad. Sci. USA, 85,
2444–2448.

20. Pearson,W.R. (1990) Rapid and sensitive sequence comparison with
FASTP and FASTA. Meth. Enzymol., 183, 63–98.

21. Gotoh,O. (1982) An improved algorithm for matching biological
sequences. J. Mol. Biol., 162, 705–708.

22. Do,C.B., Mahabhashyam,M.S.P., Brudno,M. and Batzoglou,S.
(2005) ProbCons: probabilistic consistency-based multiple sequence
alignment. Genome Res., 15, 330–340.

23. Notredame,C., Higgins,D.G. and Heringa,J. (2000) T-Coffee: a
novel method for fast and accurate multiple sequence alignment.
J. Mol. Biol., 302, 205–217.

24. Morgenstern,B. (1999) DIALIGN 2: improvement of the segment-
to-segment approach to multiple sequence alignment.
Bioinformatics, 15, 211–218.

25. Larkin,M.A., Blackshields,G., Brown,N.P., Chenna,R.,
McGettigan,P.A., McWilliam,H., Valentin,F., Wallace,I.M.,
Wilm,A., Lopez,R. et al. (2007) Clustal W and Clustal X version
2.0. Bioinformatics, 23, 2947–248.

26. Edgar,R.C. (2004) MUSCLE: a multiple sequence alignment
method with reduced time and space complexity. BMC
Bioinformatics, 5, 113.

27. Wilm,A., Mainz,I. and Steger,G. (2006) An enhanced RNA align-
ment benchmark for sequence alignment programs. Algorithms Mol.
Biol., 1, 19.

28. Thompson,J.D., Koehl,P., Ripp,R. and Poch,O. (2005) BAliBASE
3.0: latest developments of the multiple sequence alignment bench-
mark. Proteins, 61, 127–136.

29. Hofacker,I.L., Fontana,W., Stadler,P.F., Bonhoeffer,L.S.,
Tacker,M. and Schuster,P. (1994) Fast folding and
comparison of RNA secondary structures. Monatsh. Chem., 125,
167–188.

30. Thompson,J.D., Muller,A., Waterhouse,A., Procter,J., Barton,G.J.,
Plewniak,F. and Poch,O. (2006) MACSIMS: multiple alignment of
complete sequences information management system. BMC
Bioinformatics, 7, 318.

31. Stoye,J., Evers,D. and Meyer,F. (1998) Rose: generating sequence
families. Bioinformatics, 14, 157–163.

32. Katoh,K. and Toh,H. (2007) PartTree: an algorithm to build an
approximate tree from a large number of unaligned sequences.
Bioinformatics, 23, 372–374.

33. Katoh,K., Kuma,K., Miyata,T. and Toh,H. (2005) Improvement in
the accuracy of multiple sequence alignment program MAFFT.
Genome Inform Ser Workshop Genome Inform, 16, 22–33.

34. Chiaromonte,F., Yap,V.B. and Miller,W. (2002) Scoring
pairwise genomic sequence alignments. Pac. Symp. Biocomput., 7,
115–126.

Nucleic Acids Research, 2009, Vol. 37, No. 3 865


