
Frontiers in Immunology | www.frontiersin.

Edited by:
Udo Rudolf Markert,

University Hospital Jena, Germany

Reviewed by:
Nandor Gabor Than,

Hungarian Academy of Sciences
(MTA), Hungary

Federico Jensen,
University of Buenos Aires, Argentina

*Correspondence:
Tailang Yin

reproductive@whu.edu.cn
Yan Zhang

peneyyan@mail.ustc.edu.cn
Longfei Li

lilongfei2005@163.com

†These authors have contributed
equally to this work

‡These authors jointly directed the
study

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 30 November 2021
Accepted: 31 March 2022
Published: 27 April 2022

Citation:
Li J, Wang L, Ding J, Cheng Y, Diao L,

Li L, Zhang Y and Yin T (2022)
Multiomics Studies Investigating

Recurrent Pregnancy Loss: An Effective
Tool for Mechanism Exploration.

Front. Immunol. 13:826198.
doi: 10.3389/fimmu.2022.826198

REVIEW
published: 27 April 2022

doi: 10.3389/fimmu.2022.826198
Multiomics Studies Investigating
Recurrent Pregnancy Loss: An
Effective Tool for Mechanism
Exploration
Jianan Li1†, Linlin Wang1,2†, Jinli Ding1†, Yanxiang Cheng1, Lianghui Diao2, Longfei Li2*‡,
Yan Zhang3*‡ and Tailang Yin1*‡

1 Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan,
China, 2 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for
Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China, 3 Department of Clinical Laboratory,
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Patients with recurrent pregnancy loss (RPL) account for approximately 1%-5% of women
aiming to achieve childbirth. Although studies have shown that RPL is associated with
fai lure of endometrial decidualization, placental dysfunction, and immune
microenvironment disorder at the maternal-fetal interface, the exact pathogenesis
remains unknown. With the development of high-throughput technology, more studies
have focused on the genomics, transcriptomics, proteomics and metabolomics of RPL,
and new gene mutations and new biomarkers of RPL have been discovered, providing an
opportunity to explore the pathogenesis of RPL from different biological processes.
Bioinformatics analyses of these differentially expressed genes, proteins and
metabolites also reflect the biological pathways involved in RPL, laying a foundation for
further research. In this review, we summarize the findings of omics studies investigating
decidual tissue, villous tissue and blood from patients with RPL and identify some possible
limitations of current studies.

Keywords: omics, villus, decidua, blood, recurrent pregnancy loss
INTRODUCTION

Recurrent pregnancy loss (RPL), defined as two or more consecutive clinically recognized
spontaneous pregnancy losses before 20 weeks of gestation and includes embryonic or fetal loss,
is a frequently occurring human infertility-related disease that affects 1-5% of parturients (1).
Various factors have been proven to cause the occurrence and development of RPL, including
chromosomal abnormalities, genital tract anomalies, immunological diseases, endocrine diseases,
antiphospholipid syndrome, thrombophilic disorders and pathogen infections (2). Approximately
40-50% of cases remain unexplained, and the molecular mechanisms have not been fully explored.
These cases are defined as unexplained recurrent pregnancy loss (URPL) (3). Although the
diagnosis of RPL is relatively clear, the lack of standardized definitions, the uncertainties of its
pathogenesis and the variable clinical manifestations still hamper progress in the treatment and
prevention of RPL (4).
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Omics studies generate a large amount of information
concerning the biomarkers, molecular mechanisms and
biological pathways involved in complex diseases (5). More
recently, due to advances in the development and optimization
of high-throughput techniques, numerous studies have applied
omics approaches to the study of RPL (6–8). In this review, we
summarize the results of omics-based studies conducted using
human samples (decidua, villus, and blood) to explain the
pathophysiological processes of RPL. The keywords in the
included references were omics, omics technology, genomics,
epigenomics, transcriptomics, proteomics, metabolomics,
recurrent miscarriage, recurrent pregnancy loss, trophoblast,
villi, decidua, and blood. We also attempted to perform an
integrative analysis of omics data to obtain a global depiction
of the complex relationships within and between different
biological layers in RPL.
OVERVIEW OF OMICS

Omics technologies, including genomics, epigenomics,
transcriptomics, proteomics (9, 10) and metabolomics (11),
provide a holistic and integrative approach toward the study of
biological systems (12). Through genomics technology, we can
collectively characterize and quantitatively analyze all genes of an
organism and then study the structure, function, location, and
editing of the genome and their impact on the organism. In
genomics, genotype arrays and next-generation sequencing are
mostly used to obtain copy number variations, single nucleotide
variations and small insertions or deletions (13, 14). Epigenomics
refers to the study of all epigenetic modifications at the genome
level, and epigenetic modifications are heritable. The most pivotal
epigenetic modifications are DNA methylation, histone
modifications and nucleosome remodeling. The current
epigenetic studies investigating RPL mainly focus on DNA
methylation (15). The main methods of DNA methylation
analyses are bisulfite sequencing, array or bead hybridization,
pyrosequencing, methylation-specific polymerase chain reaction
(PCR), high -performance liquid chromatography-ultraviolet,
and mass spectrometry (MS)-based approaches (16). The
transcriptomics approach, including microarrays, bulk RNA
sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq), is
often used to study gene expression and regulation. Qualitative
and quantitative information concerning mRNA and noncoding
RNA is available due to these approaches (17). Proteomics is the
systematic and holistic study of the types, structures and functions
of proteins expressed in cells or tissues. Proteomics methods
mainly include protein microarray, gel-based approaches [two-
dimensional polyacrylamide gel electrophoresis (2-DE)], MS-
based approaches (18), X-ray crystallography, nuclear magnetic
resonance spectroscopy, SOMAmer-based technology, and
quantitative techniques, including isotope-coded affinity tag
labeling, stable isotope labeling with amino acids in cell culture
and isobaric tags for relative and absolute quantitation (iTRAQ)
(19, 20). However, most proteomics studies investigating RPL
were performed using 2D-DIGE or quantitative techniques, such
Frontiers in Immunology | www.frontiersin.org 2
as iTRAQ combined with MS-based approaches. Metabolomics
usually identifies and quantifies metabolites, such as amino acids,
lipids, sugars and hormones, via nuclear magnetic resonance, gas
chromatography-mass spectrometry and liquid chromatography-
mass spectrometry. By exploring the relative relationship between
metabolites and physiopathological changes, it is possible to find
biomarkers for the diagnosis of disease. By studying and
integrating data obtained using different omics approaches,
knowledge of the underlying molecular interactions and
associated longitudinal effects may be discovered and
understood more deeply (21). In some studies investigating
RPL, omics technologies were used in combination with
bioinformatics analyses, and key genes and molecular pathways
affecting RPL were identified. Upregulated or downregulated
genes have been found to participate in a variety of biological
processes important for embryonic/fetal development and fertility
(22–24).
ESTABLISHMENT AND MAINTENANCE OF
EARLY PREGNANCY

A normal pregnancy starts with the successful implantation of a
promising embryo into the receptive endometrium (25). In
preparation for implantation, the endometrium undergoes
remodeling, which is regulated by estrogen and progesterone.
During this timepoint, the endometrial epithelium becomes
permissive to the adhesion of embryonic trophectoderm cells
(the outer cells of the blastocyst), and then, the embryo
implants into the uterus (26). After embryo implantation, the
endometrium is gradually decidualized under the stimulation
of ovar ian hormones and other inducing fac tors .
Decidualization is the differentiation of endometrial stromal
cells into secretory decidual stromal cells. This process involves
balancing pro- and anti- inflammatory cytokines (27, 28),
angiogenesis, and uterine spiral artery remodeling (29).
Meanwhile, the aggregation of immune cells (including
uterine natural killer cells, macrophages, T cells, and
dendritic cells) in the endometrium is involved in regulating
the microenvironment that sustains pregnancy (30, 31).
Placenta formation is the key process responsible for
maintaining the growth and development of the embryo. During
this process, the trophectoderm cells of the blastocyst differentiate
into the extravillous trophoblast and the villous trophoblast
(comprising the cytotrophoblast and syncytiotrophoblast), which
form the major cell lineages of the placenta. Cytotrophoblasts can
further differentiate into invasive extravillous trophoblasts (32). The
proliferation and invasion of extravillous trophoblast cells into the
decidua and the uterine myometrium are necessary for uterine
spiral artery remodeling and establishing maternal-fetal circulation
(33). The villous trophoblast contacts the maternal blood directly,
which affects the material exchange among the mother, placenta
and fetus (34). Extravillous trophoblast invasion and placental
development are also controlled by decidualization. The
establishment and maintenance of early pregnancy are
represented in Figure 1.
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OMICS STUDIES INVESTIGATING THE
ESTABLISHMENT AND MAINTENANCE OF
EARLY PREGNANCY

During early pregnancy, extravillous trophoblasts move upstream
along the arterial wall and migrate to, invade, and replace vascular
smooth muscle cells and endothelial cells, thereby remodeling the
uterine spiral arteries (35). Several cytokines produced by the
placenta, such as vascular endothelial growth factor-A (VEGF-A),
insulin-like growth factor, Krüppel-like factor 17, atrial natriuretic
peptide may play important roles in the formation of the maternal-
fetal vasculature (35, 36). Amin et al. found that the heterozygous
genotype GA was significantly associated with the overexpression
and underexpression of VEGF mRNA, while the homozygous
variant genotype AA only decreased the VEGF mRNA levels in
RPL patients by genotyping and quantitative real-time PCR (qRT–
PCR-PCR) (37). Another similar study indicated that the 3’-
untranslated region of VEGF resulted in susceptibility to RPL in
Korean women (38). A recent study applying RNA sequencing of
spontaneously hypertensive stroke-prone rats (SHRSP) found that
the gene expression pattern of pregnant SHRSP uterine arteries was
Frontiers in Immunology | www.frontiersin.org 3
dominated by increased reactive oxygen species and downstream
effectors of the renin-angiotensin-aldosterone system. The disrupted
pathway involved may contribute to adverse vascular remodeling
and the resultant placental ischemia and systemic vascular
dysfunction (39). Uterine spiral artery remodeling is essential for
promoting blood flow to the placenta and fetal development, and
omics could help us better understand this process.

Successful decidualization is necessary for a normal pregnancy.
By using DNA microarray and cytological verification, Lucas et al.
demonstrated that in RPL, the loss of an epigenetic signature was
related to the reduced expression of endometrial HMGB2
[associated with replicative senescence of human fibroblasts (40)],
and then perturbed decidualization (41). Recently, scRNA-seq data
of highly proliferative mesenchymal cells (hPMCs) in the midluteal
human endometrium indicated that hPMC depletion was relevant
to RPL. Vascular transmigration- and decidualization -related
genes, including interleukin 1 receptor like 1 (42) and prolactin,
were highly expressed in hPMC (43). hPMCs play an integral role in
decidualization in pregnancy (44). A proteomic analysis also
confirmed that decidualization in RPL patients differed from that
in normal pregnant women. Dhaenens et al. identified 1416
FIGURE 1 | Establishment and Maintenance of Early Pregnancy. EEC, Endometrial Epithelial; Cell ESC, Endometrial Stromal Cell; DSC, Decidual Stromal Cell; CTB,
Cytotrophoblast; STB, Syncytiotrophoblast; EVT, Extravillous Trophoblast; MF, Macrophages; Mo, Monocyte; NK, Natural Killer Cell; EC, Endothelial Cell; RBC, Red
Blood Cell.
April 2022 | Volume 13 | Article 826198

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Recurrent Pregnancy Loss and Multiomics
differentially expressed proteins (DEPs), revealing the higher
expression of serotransferrin in RPL samples compared with
those in normal fertile samples (45). Another study by Harden
et al. showed significant differences in endometrial metabolic
profiles between decidualized and nondecidualized endometrium,
which may be essential for successful embryo implantation (46).

The imbalance of immune tolerance at the maternal-fetal
interface is an important factor for the occurrence of RPL (47).
The immunologic events occurring at the maternal-fetal interface in
early pregnancy are extremely complex and involve numerous
immune cells and molecules with immunoregulatory properties
(47). A genome-wide transcriptome profiling of splenic B cells in
pregnant and nonpregnant mice found revealed 625 upregulated
and 511 downregulated transcripts in B cells from pregnant mice
compared with nonpregnant mice, suggesting that B cells acquire a
state of hypo-responsiveness during gestation (48). Researchers
performing single-cell transcriptomic profiling of decidual tissue
revealed a dramatic difference in immune cell subsets andmolecular
properties in RPL cases (49). In RPL patients, a decidual NK (dNK)
subset that supports embryonic growth was diminished in
proportion, while the ratio of another dNK subset with cytotoxic
and immune-active signatures (such as pro-inflammatory
CD56+CD16+ dNK subset) was significantly increased (50). Chen
et al. found that a subpopulation of CSF1+CD59+ KIR-expressing
Frontiers in Immunology | www.frontiersin.org 4
dNK cells was decreased in URPL decidua (51). Treg cells constitute
another important immune cell type at the maternal-fetal interface,
and the transcriptional and protein expression profiles of
endometrial Tregs in RPL differ from those in normal pregnant
women (52).

During early pregnancy, the changes in different genes, RNAs,
proteins and metabolites associated with vascular remodeling, the
abnormal expression of decidualized genes and phenotypic changes
in various uterine immune cells all increase the possibility of the
occurrence of RPL by affecting embryo implantation and blastocyst
development (Figure 2). Although the pathogenesis of RPL is
known to some extent, specific diagnostic biomarkers and
candidate regulatory targets of RPL have not yet been identified.
Thus, researchers have conducted various omics studies using
decidual tissue, villi tissue, and blood from patients with RPL.
OMICS STUDIES OF DECIDUA IN
RECURRENT PREGNANCY LOSS

It is of great significance to study the growth, degradation and
functional regulation of maternal decidual tissue to clarify the
mechanism of embryo implantation and fertility regulation.
FIGURE 2 | The application of omics techniques in recurrent miscarriage. Ovals of different colors represent different omics studies. VEGF, vascular endothelial
growth factor; HMGB, high mobility group box; IL1RL1, interleukin 1 receptor-like 1; PRL, prolactin; ISG15, interferon stimulated gene 15; SPINK1, serine peptidase
inhibitor Kazal-type 1; CREB5, cAMP responsive element binding protein5; CAPS, calcyphsine; PRDM1, positive regulatory domain 1; YY1, yin and yang 1
transcription factor; NDUFB3, NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3; E2F, one transcription factor family; IL1, interleukin 1; IL8, IL1, interleukin 1;
CD56+CD16+dNK/CSF1+CD59+dNK, transcriptomics via single cell sequencing; TRAIL, TNF-related apoptosis-inducing ligand; lnc-SLC4A1-1, solute carrier family
4, anion exchanger, member 1; DEFB1, defensin beta 1; Succ, succinate; CALU, calumenin; F2, coagulation factor II.
April 2022 | Volume 13 | Article 826198

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Recurrent Pregnancy Loss and Multiomics
Epigenomics has verified that RPL is associated with abnormal
DNA modification in decidual cells. In an animal model, the
abnormal methylation of the decidua has been demonstrated to
be associated with pregnancy failure (53). Li et al. conducted a
genome-wide screening of DNAmethylation in decidual samples
from women with RPL (54). The findings showed that the
differentially methylated genes (PRDM16, HLA-E, HLA-G, and
ISG15) were closely related to embryonic development (55–57).
QRT-PCR verification showed that the mRNA expression levels
of ISG15,HLA-E, andHLA-G were increased in RPL. Li et al. also
verified the upregulated expression of ISG15 in RPL by utilizing
RNA-seq technology, and these authors found that ISG15 was
involved in the type I interferon signaling pathway by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses (54). CREB5 regulates cell
growth, proliferation, differentiation and the cell cycle and
belongs to the cAMP response element (CRE)-binding protein
family (58). The upregulation of CREB5 has been shown to
promote the invasion of tumor cells (59). Yu et al. conducted an
analysis of DNA methylation and gene expression, and found
that hypomethylation in the GREB5 promoter regions
upregulated the mRNA and protein expression levels of CREB5
in RPL (60). These authors further proved that CREB5 increased
migration and apoptosis in the HTR8-S/Vneo (human chorionic
trophoblast ce l l l ine in vi tro) and JEG-3 (human
choriocarcinoma cell) cell lines and prolonged the cell cycle
(61). Some studies have shown that CREB5 expression and
methylation are related to the plasma interleukin-6 levels.
Moreover, reduced CREB5 expression in monocytes could
cause immunosuppression by increasing the tumor necrosis
factor alpha (TNF-a) levels and decreasing the interleukin-10
levels in plasma (62, 63). However, the immune regulation of
CREB5 at the maternal-fetal interface and its contribution to RPL
require further verification.

The upregulation of matrix metallopeptidase 26 and the
serine peptidase inhibitor Kazal-type 1 (64) are crucial for
trophoblastic invasion by regulating the degradation of the
extracellular matrix (65). Furthermore, Krieg et al. found that
all genes in the interleukin-1 pathway (downregulated) and
interleukin-8 pathway (upregulated) were differentially
expressed (64), suggesting that the dysregulation of genes
related to immunity might contribute to RPL. Transcriptomic
data also suggest that the alteration of noncoding RNA (ncRNA)
expression profiles in the decidua is related to RPL. NcRNAs
refer to RNAs that do not have the potential to encode proteins,
including microRNAs (miRNAs), long noncoding RNAs
(lncRNAs) and circular RNAs (circRNAs). NcRNAs have
complex types and functions that regulate cell activity by
controlling gene expression, transcription, and translation
processes (66). In the decidua of RPL patients, GO and KEGG
pathway analyses suggest that differentially expressed miRNAs
are involved in the ErbB signaling pathway and p53 signaling
pathway. LncRNAs are involved in the peroxisome proliferator-
activated receptor pathway. These signaling pathways participate
in the progression of RPL (67, 68). However, the function of
ncRNAs in decidual cells has not been further verified.
Frontiers in Immunology | www.frontiersin.org 5
Transcriptomics data have shown the abnormal expression of
genes related to embryo invasion, implantation, and
development, and immune responses of decidual cells. RPL
may be the result of the coregulation of these differentially
expressed genes (DEGs). Unfortunately, the regulatory
mechanisms of most genes or regulatory factors have not been
further explored. In addition, the function of some DEGs in the
decidua was further verified in HTR8-S/Vneo and JEG-3 cell
lines rather than decidual cells, which is less rigorous.

Proteomics studies investigating decidua also revealed
numerous DEPs and pathways involved in the pathogenesis of
RPL. The complex I subunit NDUFB3 was involved in
mitochondrial respiratory chain function (69), which was
significantly increased in the decidua of RPL. The
overexpression of NDUFB3 induced oxidative stress and
apoptosis in decidual stromal cells by participating in the
process of oxidative phosphorylation and affecting
mitochondrial function (70). Xiong et al. suggested that 50
DEPs in the decidua were important for embryonic
development and revealed that angiotensinogen (AGT) was the
most important upstream regulator (71). A proteomic analysis
suggested changes in protein levels related to decidual cell
growth and embryonic development in decidual tissue of RPL
patients, identified more biomarkers of RPL, and helped us better
understand the pathogenesis of RPL.

Metabolomics provides an opportunity to study the metabolic
state of tissues. Metabolic abnormalities in the decidua could
result in immune dysfunction and nutritional disorders, leading
to pregnancy complications, including RPL. A recent study
found differentially expressed metabolites, including lipids,
amino acids and organic acids, in the decidua of RPL (72),
indicatingabnormalities in glucose, lipid and amino acid
metabolism in decidual cells. Metabolomics studies of RPL
decidua are currently limited. However, differentially expressed
metabolites in patients with RPL and subsequent functional
analyses could be helpful for identifying biomarkers of RPL.
Omics studies investigating decidual tissue in RPL are shown
in Table 1.
OMICS STUDIES OF VILLUS IN
RECURRENT PREGNANCY LOSS

Placental trophoblast cells can promote embryo implantation,
uterine spiral artery remodeling and placentation via their
proliferation, invasion, and migration. Furthermore, these cells
secrete numerous active substances to regulate maternal-fetal
interactions to ensure the normal growth and development of the
embryo and fetus (17). It is important to understand the changes
in trophoblast cell function in RPL to explain its pathogenesis.
Whole-exome sequencing of villi indicate that different
pathogenic genes played a vital role in RPL. For example, one
patient was found to have compound heterozygous mutations in
dynein cytoplasmic 2 heavy chain 1, while another patient
exhibited compound heterozygous variants in arachidonate 15-
lipoxygenase (74). Mutations in these genes may be individually
April 2022 | Volume 13 | Article 826198
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or jointly involved in the occurrence of RPL by affecting
inflammation, the oxidative stress response and angiogenesis
(75, 76) at the maternal-fetal interface.,

Changes in DNA methylation affect the levels of gene
expression. Positive regulatory domain 1 (PRDM1) is a
transcription inhibitor that plays a role in embryonic
development (95). In RPL, hypomethylation near the
transcription start site of PRDM1 can upregulate the
expression of PRDM1, leading to increased apoptosis and
migration of trophoblast cells (78). PRDM1 hypomethylation
plays a regulatory role by recruiting transcription factors, such as
Forkhead boxA1 and GATA binding protein 2, and then
regulating the differentiation and development of trophoblast
cells (96). Another study found that in placental villus tissue of
RPL patients, the b-defensinb1 gene involved in the innate
immune response had decreased methylation at the promoter
region (77, 97).

Transcriptomics is widely used in the study of villi tissue of
RPL. RNA sequencing results showed that Yin Yang 1 (YY1)
mRNA expression was reduced in the trophoblasts of RPL (83).
YY1 is a transcription factor involved in embryogenesis. YY1 can
enhance the invasion and proliferation of trophoblasts by
directly binding the promoter region of the matrix
metalloproteinase 2 gene, which is involved in extracellular
matrix remodeling during trophoblast invasion (83, 98, 99).
The mRNA expression levels of placental TNF-related
apoptosis-inducing ligand and S100 calcium binding protein
A8 were confirmed to be elevated in RPL (84). Both genes are
Frontiers in Immunology | www.frontiersin.org 6
associated with cell apoptosis and the immune response (100,
101), and their increased expression levels indicate fetal rejection
and abnormalities in trophoblasts. Another study found that
most of DEGs in trophoblastic cells of RPL could bind the
transcription Factor E2F (82). E2F plays an important role in
maintaining trophoblastic cell function and placental
development, and the absence of E2F causes disruption in the
placental transcriptional network and leads to fetal death (102).
Other studies have focused on the role of ncRNAs in RPL, and
the differentially expressed ncRNAs participate in biological
pathways, including immunity, apoptosis and hormonal
regulation (79, 80). Huang et al. identified increased lnc-
SLC4A1-1 expression in URPL patients, which activated
interleukin-8 (IL-8), and then exacerbated the inflammatory
response of trophoblastic cells by enhancing the release of
TNF-a and IL-1b (81).Transcriptome studies have revealed
that the altered expression of genes or regulatory factors was
associated with trophoblast proliferation, invasion, migration,
and apoptosis, resulting in placental dysfunction and embryo
failure to survive. In addition, the function of trophoblasts
during pregnancy is affected by the immune response at the
maternal-fetal interface. DEGs involved in the balance between
pro- and anti-inflammatory responses also contribute to the
development of RPL.

Recently, researchers have attempted to use proteomics
technology to screen proteins associated with RPL in villous
tissue. Compared with the normal condition, numerous DEPs in
RPL, including AGT, mitogen-activated protein kinase14
TABLE 1 | Omics studies on decidual tissue of recurrent pregnancy loss patients and controls.

Reference(s) Cell model Omics strategy Gestational age Samples size Main findings

Li et al., 2020 (54) Decidua- Epigenomics (DNA methylation chip) 6 to 12 weeks RM vs NP 15 vs
15

↑ ISG15, ABR, HLA-E, HLA-G

Yu et al., 2018 (60) Decidua Epigenomics(DNA methylation chip) 7.715 ± 0.572
weeks

RPL vs NP 20 vs
20

↑ CREB5, RBM24, IRF4, DPYSL4

Wang et al., 2016
(67)

Decidua and
villus

Transcriptomics (Small RNA deep-
sequencing)

8.33 ± 1.80
weeks

RM vs NP 18 vs
15

↑ In decidua: hsa-mir-516a-5p, -517a-3p, -519a-
3p and -519d
↑ In villus: hsa-mir-100 and -146a-5p
↓ In villus: hsa-mir-1 and -372

Li et al., 2021 (73) Decidua Transcriptomics (RNA sequencing) 28 to 82 days RPL vs NP 15 vs
12

↑ IFI27, ISG15, MX1, TNFRSF21

Krieg et al., 2012
(64)

Decidua Transcriptomics (RNA sequencing) 7 to 11 weeks RPL vs NP 10 vs
6

↑ MMP-26, SPINK1, IL8, IL17, SCGB2A1, HLA-
DRB5
↓ ZNF

Huang et al., 2021
(68)

Decidua Transcriptomics (RNA sequencing) First trimester URPL vs NP 50
vs 50

↑ Lnc-CES1-1

Dhaenens et al.,
2019 (45)

Decidua Proteomics (LC-HDMS) 6 to 12 weeks RPL vs NP 3 vs
4

↓ TF

Yin et al., 2021 (70) Decidua Proteomics (iTRAQ technology, LC-
MS/MS)

57.25 ± 9.16
days

RPL vs NP 6 vs
6

↑ COX-2, NDUFB3

Wang et al., 2021
(72)

Decidua Metabolomics (LC-ESI-MS/MS
system)

63.83 ± 7.09
days

RPL vs NP 23 vs
30

↑ l-citrulline, SM
↓ NAAGA, CAR, PC, PE, PS, PG, LPC, LPE
RM, recurrent miscarriage; RPL, recurrent pregnancy loss; URPL, unexplained recurrent pregnancy loss; TA, elective terminations; NP, normal pregnancy; PI, primary infertility; ABR,
activator of RhoGEF and GTPase; HLA-E, major histocompatibility complex, class I, E; HLA-G, major histocompatibility complex, class I, G; RBM24, RNA binding motif protein 24; IRF4,
interferon regulatory factor 4; DPYSL4, dihydropyrimidinase like 4; IFI27, interferon alpha inducible protein 27; MX1, myxovirus resistance 1; TNFRSF21, tumor necrosis factor receptor
superfamily, member 21; MMP-26, matrix metallopeptidase 26; SCGB2A1, secretoglobin family 2A member 1; HLA-DRB5, major histocompatibility complex, class II, DR beta 5; RPS25,
40S ribosomal protein S25; ACADVL, very long-chain specific acyl-CoA dehydrogenase; TF, serotransferrin; COX2, cytochrome c oxidase subunit 1; SM, sphingomyelin; NAAGA, N-
acetylaspartylglutamic acid; CAR, carnitine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PG, phosphatidylglycerol; LPC, lysophosphatidylcholine;
LPE, lysophosphatidylethanolamine.
↑, upregulation; ↓, downregulation.
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(MAPK14) and Prothrombin (F2), were associated with early
embryonic development (85). Among these proteins, AGT
belongs to the renin-angiotensin system, MAPK14 participates
in MAPK pathways, and defects in F2 lead to susceptibility to
thrombosis. All these biological pathways play a role in RPL
(103–105). Proteins related to regulating the function of
endothelial cells and coagulation, including calumenin (CALU)
and enolase 1 (ENO1), were also differentially expressed in villi
(86). Defects in CALU promote coagulation and thrombosis, and
a lack of ENO1 renders the placenta intolerant to hypoxia,
eventually resulting in RPL (106, 107).

Research concerning the metabolomics of villous tissue in
RPL is limited. A recent study showed that low succinate
accumulation in villi participated in the occurrence of RPL by
reducing the invasion and migration of trophoblastic cells (87).
Omics of the villi of RPL patients indicated new biomarkers for
the diagnosis and treatment of RPL; however, further research is
needed to reveal how these differential molecules work and how
they are regulated. Omics studies investigating villous tissue in
RPL are shown in Table 2.
Frontiers in Immunology | www.frontiersin.org 7
OMICS STUDIES OF BLOOD IN
RECURRENT PREGNANCY LOSS

To explore the mechanism of RPL, researchers have conducted
omics studies using maternal blood from RPL patients to find
disease-causing genes and biomarkers of RPL. Genomics data
show that a homozygous frameshift mutation in calcyphosine
(CAPS) might be the potential pathogenesis of RPL (90). CAPS
encodes a Ca2+-binding protein and is involved in the crosstalk
between Ca2+ signaling and cAMP-protein kinase A pathways,
which is crucial for embryo implantation and pregnancy
maintenance (108, 109). Another molecule associated with
embryo adhesion, trophinin, has also been found to be
mutated in RPL. Functional defects in trophinin led to failed
implantation and eventually evolved into RPL (110, 111).
Genomics is a good way to identify potential targets or
biomarkers for the diagnosis and treatment of RPL. These
mutated genes are involved in various pathways, including cell
adhesion between trophoblasts and the endometrium, embryo
implantation, angiogenesis, and extracellular matrix remodeling.
TABLE 2 | Omics studies on villous tissue of recurrent pregnancy loss patients and controls.

Reference(s) Cell
model

Omics strategy Gestational
age

Samples
size

Main findings

Qiao et al.,
2016 (74)

Villus Genomics (Whole exome sequencing) First trimester RPL vs NP 7
vs 2

Compound heterozygous mutations in DYNC2H1 and
ALOX15

Hanna et al.,
2013 (77)

Villus Epigenomics(DNA methylation chip) 9.5 ± 2.4
weeks

RM vs TA 33
vs 16

↑ CYP1A2, AXL, H19/IGF2, ICR1
↓DEFB1 (marginally)

Du et al., 2019
(78)

Villus Epigenomics, Transcriptomics (DNA
methylation chip, RNA sequencing)

7.826 ±
0.630 weeks

RPL vs NP
27 vs 25

↑ PRDM1

Wang et al.,
2016 (79)

Villus Transcriptomics (lncRNA array) 3 to 6 weeks RPL vs NP 5
vs 5

↑ SCARNA9, DIO3OS, H2AZ2-DT, RP11-379F4.4
↓ PRINS, BMP1, TCL6, CTA833B7.2, RPINS

Tang et al.,
2015 (80)

Villus Transcriptomics (miRNA microarray) 3 to 6 weeks RPL vs NP
15 vs 15

↑ MiR-149-3p, miR-4417, miR-4497 and miR-3651
↓ MiR-181d, miR-29b-1-5p, miR-24-1-5p

Huang et al.,
2018 (81)

Villus Transcriptomics (RNA sequencing) 9.83 ± 1.25
weeks

URPL vs NP
50 vs 50

↑ Lnc-ERGIC1-4, lnc-MRPS30-5, lnc-RCAN1-1, lnc-
SLC4A1-1, lnc-TMEM135-8, lnc-CES1-1
↓ Lnc-FGGY-4, lncPBK-2, lnc-SOX4-1, lncAC106873.4.1-8

Sõber et al.,
2016 (82)

Villus Transcriptomics (RNA sequencing) 44 to 67
days

RPL vs NP 2
vs 8

↑ ATF4, C3, PHLDA2, GPX4, ICAM1, SLC16A2
↓ HIST1H1B, HIST1H4A

Tian et al.,
2016 (83)

Villus Transcriptomics (mRNA microarray) 6 to 12
weeks

RPL vs NP
31 vs 36

↑ CDC20, CTSF, CCR7, NUF2
↓ IGFBP1, YY1, FGF7, CCNA2

Rull et al.,
2012 (84)

Villus Transcriptomics (RNA microarray) 67.7 ± 6.6
days

RPL vs NP
13 vs 23

↑ S100A8, TRAIL

Pan et al.,
2017 (85)

Villus Proteomics (iTRAQ labeling, LC-ESI-MS/MS) 6 to 10
weeks

RPL vs NP 4
vs 4

↑ AGT, APOC1, SLC1A3, GOLT1B, PRELP
↓ REEP6, DNTTIP2, NOLC1, SEC11C, SRSF3

Gharesi et al.,
2014 (86)

Villus Proteomics (2D-PAGE, MALDI TOF/TOF
technique)

14.8 ± 2.6
weeks

RPL vs NP 5
vs 5

↓ CALU andENO1
↑CTSD, TUBB, TUBA1, GST, PHB, ACTB

Wang et al.,
2021 (87)

Decidua
and villus

Metabolomics (Nuclear magnetic resonance) First trimester RPL vs NP
30 vs 30

↓ Succinate
↑ SDHB
DYNC2H1, dynein cytoplasmic 2 heavy chain 1; ALOX15, arachidonate 15-lipoxygenase; CYP1A2, cytochrome P450 family 1 subfamily A member 2; AXL, receptor tyrosine kinase, H19,
imprinted maternally expressed transcript; IGF2, insulin like growth factor 2; DEFB1, defensin beta 1; SCARNA9, small Cajal body-specific RNA 9; DIO3OS, opposite strand upstream
RNA; PRINS, psoriasis associated non-protein coding RNA induced by stress; BMP1, bone morphogenetic protein 1; TCL6, T cell leukemia/lymphoma 6; PRINS, psoriasis associated
non-protein coding RNA induced by stress; ATF4, activating transcription factor 4; C3, component 3, PHLDA2, pleckstrin homology like domain family A member 2; GPX4, glutathione
peroxidase 4; ICAM1, intercellular adhesion molecule 1; SLC16A2, solute carrier family 16 member 2; HIST1H, H1.5 linker histone, cluster member; HIST1H4A, H4 clustered histone 1;
CDC20, cell division cycle 20; CTSF, cathepsin F; CCR7, C-C motif chemokine receptor 7; NUF2, NUF2 component of NDC80 kinetochore complex; IGFBP1, insulin like growth factor
binding protein 1; FGF7, fibroblast growth factor 7; CCNA2, cyclin A2; S100A8, S100 calcium binding protein A8; APOC1, apolipoprotein C1; SLC1A3, solute carrier family 1 member 3;
GOLT1B,golgi transport 1B; PRELP, proline and arginine rich end leucine rich repeat protein; REEP6, receptor accessory protein 6; DNTTIP2, deoxynucleotidyltransferase terminal
interacting protein 2; NOLC1, nucleolar and coiled-body phosphoprotein 1; SEC11C, homolog C, signal peptidase complex subunit; SRSF3, serine and arginine rich splicing factor 3;
CTSD, cathepsin D; TUBB, tubulin beta; TUBA1, tubulin alpha 1; GST, glutathione S-transferas; PHB, prohibitin; ACTB, actin beta; SDHB, succinate dehydrogenase B.
↑, upregulation; ↓, downregulation.
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However, the extent to which these genes play a role in RPL has
not been further verified.

The study of epigenomics in the maternal blood of RPL
females is limited. Only one study showed that the
methylenetetrahydrofolate reductase (MTHFR) gene was
specifically hypermethylated in RPL (91). MTHFR is a
thrombophilic marker involved in global DNA methylation.
The methy l a t i on o f the MTHFR gene a l t e r s the
transmethylation cycle and leads to other gene methylation
abnormalities, ultimately contributing to the development of
RPL (112).

Using a proteomics approach, researchers have found that
DEPs, including CD45, pregnancy-specific glycoprotein 1, and
peroxiredoxin-2, act as predictive and diagnostic biomarkers of
RPL (92). These proteins affect the invasiveness of trophoblastic
cells through the Fc gamma R-mediated phagocytosis pathway,
and the regulation of reactive species oxygen. Furthermore,
proteins, such as insulin-like growth factor-binding protein-
related protein 1, dickkopf-related protein 3 and angiopoietin-
2, are significantly decreased in RPL, but the mechanism by
which these proteins contribute to RPL is unclear (93).

The study of metabolomics in patients with RPL is limited.
The only data available show that the levels of metabolites related
to the tricarboxylic acid cycle and phenylalanine metabolism in
RPL females significantly differ from those in normal controls.
Lactic acid was increased, while 5-methoxytryptamine was lower
in RPL patients (94). Testing metabolomics in blood provides
new clues for the understanding of disease. The dysfunction of
glucose, lipid and amino acid metabolism in RPL can be revealed
by comparing the metabolic profiles of blood in RPL with those
in normal pregnant women. This disorder might cause
dysfunction of the uterus and placenta and further inhibit the
growth and development of the embryo. Additionally, analyzing
biomarkers in blood could to some extent reflect the condition of
the decidua and villi of females and provide a new perspective for
Frontiers in Immunology | www.frontiersin.org 8
explaining the abnormal function of trophoblasts and decidual
cells in RPL patients. Omics studies investigating blood in RPL
are shown in Table 3.

In this review, we attempted to show the common genes,
proteins and metabolites by integrating and analyzing data from
references (Table 4). However, due to the limited research
available and the incomplete data provided in some references,
the results we obtained are not optimistic. The commonly altered
genes and proteins shown in Table 4 were derived from the
results of two or more studies.
ADVANTAGES AND LIMITATIONS OF
OMICS STUDIES OF RECURRENT
PREGNANCY LOSS

With the development of high-throughput technology, different
omics technologies have been continuously improved, providing
a new perspective for the mechanistic study of RPL. The
genomics technique accurately identifies the disease-causing
genes of RPL and discovers the types of defective genes.
Epigenomics studies do not change the DNA sequence but
allow us to understand the mechanism of RPL from the
perspective of gene modification. Transcriptomics suggests the
regulatory mechanism of RPL-related RNA. Proteomics and
metabolomics provide new biomarkers and analyze the
biological pathways, in which these molecules participate. By
combining these omics findings, we infer that most differentially
expressed molecules associated with RPL are involved in the
processes of decidualization, embryo implantation, trophoblast
cell differentiation, invasion and apoptosis, placental
development, fetal development, the immune response, and
coagulation. Omics research investigating RPL is an emerging
field, and there are still some shortcomings in the related
TABLE 3 | Omics studies on blood of recurrent pregnancy loss patients and controls.

Reference(s) Cell model Omics strategy Gestational
age

Samples size Results

Quintero et al., 2017
(88)

Blood
leucocytes

Genomics (Whole exome
sequencing)

Before 20
weeks

RPL: 49 Mutations in MMP10 and FGA

Maddirevula et al.,
2020 (89)

Blood Genomics (Whole exome
sequencing)

First trimester RPL vs PI 61
vs 14

Homozygous variant in CCDC68, CBX3, CENPH, PABPC1L,
PIF1, PLK1, and REXO4

Pan et al., 2018 (90) Blood Genomics (Whole exome
sequencing)

First trimester RPL vs NP 5
vs 5

The homozygous mutation in CAPS

Mishra et al., 2019
(91)

Blood Epigenomics (DNA methylation
chip)

Before 24
weeks

RPL vs NP 28
vs 39

↑ MTHFR

Cui et al., 2019 (92) Blood Proteomics (iTRAQ technology,
LC-MS/MS)

55.80 ± 5.85
days

RPL vs NP 30
vs 30

↓ B4DTF1, PSBG-1
↑ B4DF70

Wu et al., 2017 (93) Blood Proteomics (Antibody array
assay)

First trimester RPL vs NP 60
vs 20

↓ IGFBP-rp1/IGFBP-7, Dkk3, ANGPT2

Li et al., 2018 (94) Blood Metabolomics (GC-MS, LC-MS) Less than 10
weeks

RPL vs NP 50
vs 51

↑ Lactic acid
↓ 5-methoxytryptamine
MMP-10, matrix metallopeptidase 10; FGA, fibrinogen alpha chain; CCDC68, coiled-coil domain containing 68; CBX3, chromobox 3; CENPH, centromere protein H; PABPC1L, poly(A)
binding protein cytoplasmic 1 like; PIF1, 5’-to-3’ DNA helicase; PLK1, polo like kinase 1; REXO4, REX4 homolog, 3’-5’ exonuclease; B4DTF1, highly similar to Pregnancy-specific beta-1-
glycoprotein 9; PSBG-1, pregnancy-specific beta-1-glycoprotein 1; B4DF70, highly similar to peroxiredoxin-2; IGFBP 7, insulin-like growth factor-binding protein 7; Dkk3, dickkopf-related
protein 3; ANGPT2, angiopoietin-2.
↑, upregulation; ↓, downregulation.
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research. First, the sample sizes in most studies are small, the
reproducibility of the data is poor, and it cannot be ruled out that
these experimental results are caused by individual differences.
Therefore, further studies with a larger sample size are needed to
support the current results. Second, most studies were only
performed with omics combined with a bioinformatics
analysis. The results only show the potential pathways or
regulation modules in which these molecules participate. To
illustrate the specific mechanisms of these molecules in RPL,
more basic research is needed. Third, most current studies were
conducted at the single-omics level, and few studies integrated
multiomics to verify the pathogenesis of RPL. Subsequent studies
should perform multiple omics tests in patients with RPL,
integrate information from different omics, and delve deeper
into the pathogenesis of RPL. Finally, no studies performed
proteomics in RPL to determine the posttranslational
modifications of proteins, such as phosphorylation,
ubiquitination, acetylation, and glycosylation, which can verify
the biological processes more precisely. In addition, isotope
labeling in differential metabolites can be used in a metabolic
flux analysis to better understand the dynamics of metabolic
systems in RPL. In summary, there is still a long way to go for
research investigating the etiology, treatment and prevention of
RPL based on high-throughput omics.
CONCLUSION

The pathogenesis of RPL is complex, and related to hormonal,
environmental, and genetic factors. Furthermore, the causes of
approximately 50% of RPL cases are unknown, and its incidence
Frontiers in Immunology | www.frontiersin.org 9
rate is increasing. Although assisted reproductive technology can
be used to promote the pregnancy rate, the success rate is not
very satisfactory. RPL patients are often under tremendous
physical and psychological pressure. Therefore, in future
studies, it is indispensable to comprehensively analyze the
pathogenesis of RPL from different biochemical and
biophysical processes. As omics investigates pathomechanisms
from multiple dimensions, such as DNA, RNA, proteins, and
metabolites, we hope that multiomics could provide more clues
regarding the diagnosis and treatment of PRL.
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