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Abstract: This study analyzed binding and neutralizing antibody titers up to 6 months after standard
vaccination with BNT162b2 (two doses of 30 µg each) in SARS-CoV-2 naïve patients (n = 59) on
hemodialysis. Humoral vaccine responses were measured before and 6, 12, and 24 weeks after the
first vaccination. A chemiluminescent immunoassay (CLIA) was used to quantify SARS-CoV-2 IgG
against the spike glycoprotein. SARS-CoV-2 neutralizing activity was tested against the wild-type
virus. A multivariable binary regression model was used to identify risk factors for the absence of
humoral immune responses at 6 months. At week 6, vaccine-specific seroconversion was detected
in 96.6% of all patients with median anti-SARS-CoV-2 IgGs of 918 BAU/mL. At weeks 12 and 24,
seroconversion rates decreased to 91.5% and 79.7%, and corresponding median binding antibody
titers declined to 298 BAU/mL and 89 BAU/mL, respectively. Neutralizing antibodies showed a
decay from 79.6% at week 6 to 32.8% at week 24. The risk factor with the strongest association
for vanishing immune responses was low serum albumin (p = 0.018). Regarding vaccine-specific
humoral responses 6 months after the standard BNT162b2 vaccination schedule, SARS-CoV-2 naïve
patients receiving hemodialysis must be considered at risk of becoming infected with SARS-CoV-2
and being infectious.

Keywords: BNT162b2; mRNA vaccines; anti-SARS-CoV-2 IgG; COVID-19; hemodialysis; neutralizing
antibodies; chronic kidney disease

1. Introduction

Patients with chronic kidney disease, in particular those being dependent on hemodial-
ysis, are at high risk for fatal outcomes after infection with SARS-CoV-2 [1–3]. Additional
risk factors for severe disease progression such as diabetes, higher age, cardiovascular
diseases, or hypertension are common in these patients. Dialysis dependence is another
important independent risk factor [2,4–6]. Moreover, it is recognized that these patients are
particularly at risk for SARS-CoV-2 infection due to the difficulty of implementing hygienic
concepts and quarantine restrictions in dialysis centers. Dialysis treatments cannot be
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discontinued and patients on hemodialysis are frequently attached to other health care
institutions, such as nursing homes or outpatient services, and have higher hospitalization
rates. Therefore, the scenario of a COVID-19 outbreak in a dialysis center always implies
an involvement of other critical medical infrastructures and high mortality rates of severely
ill patients [4,7]. The reported high morbidity and mortality rates led to a consequent im-
plementation of preventive measures. These included the application measures to reduce
the risk of infection (e.g., mandatory face masks, no food intake during dialysis, constant
screening for COVID-19 symptoms, regular SARS-CoV-2 tests, isolation measures in cases
of suspicious clinical symptoms) and the prioritization of patients on hemodialysis in
vaccination programs, respectively [8].

Even though dialysis dependency is generally associated with hypo-responsiveness to
conventional vaccination strategies [9–12], in April 2021, the first reports described high
initial seroconversion rates after vaccination with the mRNA vaccine BNT162b2 [13,14].
Numerous other studies confirmed these humoral response rates after vaccination. Between
77% [15] to 98% [16] of mRNA-vaccinated patients on hemodialysis showed antibody
responses estimated by binding antibody titers [5,15–33] or neutralizing assays [15,22,26,34].
This is a markedly higher response rate compared to immunocompromised patients with
hematological malignancies or solid organ transplant recipients, who have shown initial
response rates around 20–85% [35–37]. Nevertheless, when compared to healthy, non-
dialysis controls, patients on hemodialysis displayed significantly lower antibody titers
within the first 3 months after vaccination [5,13–15,17,21–26,28,33]. Given the higher age of
dialysis patients (mean age of patients on hemodialysis in Germany is 68 years [38]), the
hypo-responsiveness of these patients can be partly attributed to immune senescence [39].
Recently, however, Labriola and colleagues were able to show that dialysis dependence is
an independent risk factor for reduced vaccine responses [5].

Facing the emergence of new coronavirus variants of concern (VOC), which have
shown increased transmissibility and features of immune evasion such as reduced neutral-
ization by vaccine-induced antibodies [40–42], knowledge about the actual immunoprotec-
tion and the decline of circulating vaccine-specific antibodies after a standard vaccination
schedule is highly important for further decision-making processes concerning booster
procedures. The aim of this study was to compare binding capacity and neutralization
efficacy of vaccine-induced antibodies up to 6 months after vaccination with BNT162b2.

2. Materials and Methods

All patients on hemodialysis over 18 years of age, without immunosuppressive medi-
cation and without a reported prior SARS-CoV-2 infection, were recruited from the dialysis
center in Kronach, Germany. Hygiene and screening measures to prevent COVID-19
outbreaks at this center included routine entry checks with measurement of body tempera-
ture and structured queries of COVID-19-associated symptoms at each dialysis, real-time
PCR assays for SARS-CoV-2 RNA from nasopharyngeal swabs in the event of COVID-19
suspicion, and a complete PCR screening of all patients in May 2021.

Originally, 72 patients were enrolled for prospective analysis. In the further course
of our evaluation, eight patients dropped out due to death, whereby only one of these
cases was related to SARS-CoV-2-related disease (patient without seroconversion after two
BNT162b2-vaccinations). One patient dropped out due to kidney transplantation. After
screening for antibodies against the nucleocapsid protein at week 24, we excluded four
patients who had signal-to-cutoff (S/CO) ratios over 0.8, which was considered indicative
of previous occult or asymptomatic SARS-CoV-2 infections.

All subjects were vaccinated with the mRNA-based SARS-CoV-2 vaccine BNT162b2
(Pfizer–BioNTech) at a vaccination center in Kronach, Germany, according to the standard
protocol (two doses of 30 µg administered 3–4 weeks apart) [43]. After informed con-
sent from all participants was obtained, blood samples (7.5 mL S-Monovette® Serum Gel,
Sarstedt AG, Nümbrecht, Germany) for measurement of humoral vaccine responses were
collected at the beginning of dialysis sessions at the following time points: before, as well as
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6 weeks, 12 weeks, and 24 weeks after the first vaccination. The whole-blood samples were
then centrifuged (medifuge 1215, Heraeus, Hanau, Germany) at 3500 rounds per minute
for 30 min at a centrifugation temperature of 20 ◦C to collect serum. Patient characteris-
tics, diagnoses, and laboratory values generally associated with low seroconversion rates
after vaccination of patients with end-stage renal disease were recorded before the first
vaccination. For this purpose, whole-blood samples (potassium EDTA for determination of
leukocytes and hemoglobin, serum-gel for determination of C-reactive protein (CRP), vita-
min D, serum albumin, parathormone, anti-HBs’ antibody titers; Sarstedt AG, Nümbrecht,
Germany) were taken as part of the routine quality measurements of dialysis patients
in Germany. For automated measurement of these laboratory parameters, the following
devices were used: ARCHITECT Anti-HBs’ assay (Abbott Laboratories, Sligo, Ireland) for
anti-Hbs-titers, ADVIA1 1800 Clinical Chemistry System (Siemens Healthcare Diagnostic,
Erlangen, Germany) for CRP and serum albumin, ADVIA Centaur® XPT Immunoassay-
System (Siemens healthcare GmbH, Erlangen, Germany) for vitamin D and parathormone,
and XN-1000 Pure (Sysmex, Norderstedt, Germany) for hemoglobin and leukocytes.

2.1. SARS-CoV-2 IgG Quantification Assays

For quantitative determination of the binding capacity of vaccination-induced anti-
SARS-CoV-2 IgG, we used the chemiluminescent immunoassay (CLIA) LIAISON® (Dia-
sorin, Saluggia, Italy). This assay detects IgG antibodies against the anti-Trimeric Spike
Glycoprotein of the SARS-CoV-2. According to the manufacturer’s recommendations, a
binding antibody units’ (BAU/mL) ratio of <33.0 was considered to be negative and ≥33.8
to be positive. Note that 2080 BAU/mL is the upper limit of quantification of the CLIA. The
CLIA was performed on all collected serum samples. Antibodies against the SARS-CoV-2
nucleocapsid protein were measured at week 24 with an enzyme-linked immunosorbent
assay (ELISA) (Euroimmun Medizinische Labordiagnostika, Lübeck, Germany). According
to the manufacturer’s recommendations, an S/CO ratio of <0.8 was considered negative,
≥0.8 to <1.1 borderline, and ≥1.1 positive. Only patients with S/CO < 0.8 were carried
forward to further analysis.

2.2. SARS-CoV-2 Neutralization Assay

The neutralizing capability of antibodies against SARS-CoV-2 was quantified using a
previously described method [44,45]. The SARS-CoV-2 wild-type virus used in this study
was isolated from a COVID-19 patient in April 2020 and included the D614G mutation.
Serial dilutions (1:20–1:2560) of serum samples were incubated with 100 TCID50 of SARS-
CoV-2 for 1 h at 37 ◦C and subsequently added to confluent Vero E6 cells cultured in
96-well microtiter plates. On day 2 after infection, cells were stained with crystal violet
(Roth, Karlsruhe, Germany) and analyzed for the appearance of virus-induced cytopathic
effects (CPE) by light microscopy. The neutralizing titer was defined as the reciprocal of the
highest serum dilution at which no CPE breakthrough was observed in any of the triplicate
cultures. The neutralization assays were conducted with the serum samples collected at 6
and 24 weeks after the first vaccination.

2.3. Statistical Analysis

Statistical analysis was performed using SPSS (version 21.0; SPSS Inc., Chicago, IL,
USA) and GraphPad Prism (version 5.00; GraphPad Software Inc., San Diego, CA, USA).
For descriptive statistics, absolute and relative frequencies were calculated for categorical
parameters, whereas continuous parameters were characterized using the median (MD)
as well as the first and third quartiles (Q1, Q3). Three groups were defined to compare
humoral responses at 24 weeks after the initiation of the standard vaccination schedule with
BNT162b2 as follows. Patients with anti-SARS-CoV-2 IgG < 33.8 BAU/mL and neutralizing
antibody titer < 1:20 were classified as non-responders. Patients with anti-SARS-CoV-2 IgG
≥ 33 BAU/mL but neutralizing antibody titer efficacy < 1:20 were classified as insufficient
responders. Patients with anti-SARS-CoV-2 IgG ≥ 33 BAU/mL and neutralizing antibody
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titer ≥ 1:20 were classified as responders. Inferential statistics to compare non-responders,
insufficient responders, and responders included Fisher’s exact test for categorical variables
and the Kruskal–Wallis test for continuous variables. Strength and direction of correla-
tion between the quantified SARS-CoV-2 IgG antibody titers 24 weeks after the primary
vaccination and different risk factors for low seroconversion rates were calculated using
Spearman’s and Eta(n) correlation coefficients. The applied statistical tests were two-sided,
and results were considered statistically significant when p < 0.05.

2.4. Analysis of Risk Factors

The risk factors of age, dialysis vintage, serum albumin as a surrogate parameter
for malnutrition, CRP and leukocytes as surrogate parameters for inflammation, vitamin
D, dialysis efficiency (Kt/V), body mass index (BMI), diabetes mellitus, parathormone,
hemoglobin, and response to hepatitis B vaccination were selected according to previous
studies on humoral vaccination responses of dialysis patients to hepatitis B, pneumo-
coccus, or influenza vaccination [9,11]. Kt/V was calculated using the Daugirdas for-
mula [46]. Hepatitis-B adequate vaccine response was defined at anti-HBs’ antibody titers
of >10 U/L [47]. Diabetes mellitus was defined via antidiabetic medication (oral antidia-
betics or insulin therapy). BMI was defined as dry weight in kilograms divided by height
in square meters. Variables that correlated with p < 0.2 with anti-SARS-CoV-2 IgG level
24 weeks after the first vaccination were carried forward to binary logistic regression mod-
els to further analyze the association between these variables and negative vaccination
responses in either the quantification or the neutralization assay. The risk factors were
thereby analyzed separately from the SARS-CoV-2 IgG antibody levels at 6 and 12 weeks,
since the measurement of antibody titers were not yet routinely recorded, in contrast to the
hereby described patient characteristics.

2.5. Ethics

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the ethics committee of the Medical Faculty of the University Duisburg-
Essen (20-9753-BO).

3. Results

All 59 patients on hemodialysis who were evaluated had undetectable anti-SARS-
CoV-2 IgG against the spike protein directly before the first vaccination as well as lacking
anti-SARS-CoV-2 IgG against the nucleocapsid protein at week 24 (Figure 1 and Table 1).
At the time of the first vaccination, the median [Q1; Q3] age of the finally included patients
was 68 [59; 77] years, the median [Q1; Q3] dialysis vintage was 4 [2; 12] years, and the
median [Q1; Q3] BMI was 27.1 [22.4; 30.3] kg/m2 (Table 2). The most common comorbidity
was diabetes, which was diagnosed in 29 patients (49.2%). Response to prior Hepatitis B
vaccination (titer of at least 1:10 U/L) was detectable in 16 patients (27.1%) at the time of
enrollment (Table 2).

3.1. SARS-CoV-2 Binding Serum Antibody Titers after Vaccination with BNT162b2

Six weeks after the first dose of BNT162b2, 57 patients (96.6%) showed a vaccine-
specific seroconversion with median anti-SARS-CoV-2 IgG [Q1; Q3] of 918 [322; 1505]
BAU/mL. After 12 weeks, 54 patients (91.5%) showed measurable anti-SARS-CoV-2 IgG,
with a median [Q1; Q3] of 298 [111; 605] BAU/mL (Figure 1, Table 1). Compared to the
antibody titers 6 weeks after the first dose, five patients (8.0%) had a slight increment
(maximum 1-fold increase in titer) and seven patients (11.3%) had an unchanged antibody
titer. All others showed decreased antibody titers, most frequently a 2–2.9-fold decline
(17/59 patients, 28.8%).

After 24 weeks, the number of patients with positive anti-SARS-CoV-2 IgG decreased to
47 (79.7%) and the median [Q1; Q3] dropped to 89 [38; 224] BAU/mL (Figure 1). Compared
to the corresponding antibody titers 6 weeks after the first dose of BNT162b2, only one
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patient showed an increased and two patients showed an unchanged antibody titer. All
other patients showed a significant decline of SARS-CoV-2 IgG levels. A total of 29 patients
(49.2%) had a 7-fold or greater decrease in their titers compared to the antibody levels at
week 6. All patients with anti-SARS-CoV-2 IgG > 918 BAU/mL at week 6 kept a positive
antibody response in the quantification assay at week 24.

Vaccines 2022, 10, x  5 of 15 
 

 

 
Figure 1. Dynamics of humoral immune responses in patients on hemodialysis after standard vac-
cination with two injections of 30 µg of BNT162b2. (a) Binding serum antibody titers determined 
after 0, 6, 12, and 24 weeks after the first vaccination. (b) Neutralizing antibody titers assessed after 
6 and 24 weeks after the first vaccination. Circles represent the antibody titers of each subject; black 
bars represent median antibody titers with their corresponding interquartile ranges. Statistical anal-
ysis: Kruskal–Wallis Test followed by Dunn’s multiple comparison test; * = p < 0.05, *** = p < 0.001; 
ns = non-significant. 
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Figure 1. Dynamics of humoral immune responses in patients on hemodialysis after standard
vaccination with two injections of 30 µg of BNT162b2. (a) Binding serum antibody titers determined
after 0, 6, 12, and 24 weeks after the first vaccination. (b) Neutralizing antibody titers assessed
after 6 and 24 weeks after the first vaccination. Circles represent the antibody titers of each subject;
black bars represent median antibody titers with their corresponding interquartile ranges. Statistical
analysis: Kruskal–Wallis Test followed by Dunn’s multiple comparison test; * = p < 0.05, *** = p < 0.001;
ns = non-significant.

Table 1. Quantified antibodies of patients on hemodialysis throughout 24 weeks after the
first vaccination.

Variable
All Non-Responder Insufficient

Responder Responder
Subgroup
Compari-

son

Correlation with
Anti -SARS-CoV-2 IgG
24 Weeks after 1st Vac

MD [Q1;Q3], (Range: Min–Max) or n (% of Subgroup)

Patients 59 12 28 19 NA NA

SARS-CoV-2 IgG against the nucleocapsid protein, S/CO ratio

24 weeks after 1st vac
0.05 [0.03; 0.10], 0.07 [0.04; 0.11], 0.05 [0.04; 0.15], 0.04 [0.04; 0.06], p = 0.463 * −0.175; p = 0.194 †

(0.02–0.47) (0.02–0.17) (0.02–0.47) (0.03–0.23)

SARS-CoV-2 IgG against the spike protein, BAU/mL

before 1st vac
5 [5; 5], 5 [5; 5], 5 [5; 5], 5 [5; 5], p = 0.844 * 0.089; p = 0.506 †
(5–22) (5–6) (5–12.5) (5–22)

6 weeks after 1st vac
918 [322; 1505], 172 [58; 586], 823 [364; 1127], 1794 [1222; 2080], p < 0.001 * 0.669; p < 0.001 †

(5–2080) (5–871) (132–1672) (117–2080)

12 weeks after 1st vac
298 [111; 605], 44 [5; 85], 265 [175; 414], 723 [497; 1275], p < 0.001 * 0.918; p < 0.001 †

(5–2080) (5–132) (54–1040) (130–2080)

24 weeks after 1st vac
89 [38; 224], 13 [5; 23], 78 [57; 172], 292 [183; 482], p < 0.001 * NA(5–1150) (5–30) (34–362) (82–1150)

Non-responder = anti-SARS-CoV-2 IgG < 33.8 BAU/mL and neutralizing antibody titer < 1:20; insufficient
responder = anti-SARS-CoV-2 IgG ≥ 33.8 BAU/mL but neutralizing antibody titer efficacy < 1:20; responder =
anti-SARS-CoV-2 IgG ≥ 33.8 BAU/mL and neutralizing antibody titer ≥ 1:20; vac = vaccination; MD = median;
Q1 = 1st quartile; Q3 = 3rd quartile; n = count; NA = not applicable; * = Kruskal–Wallis test. † = Spearman’s
correlation coefficient.
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Table 2. Characteristics of patients on hemodialysis at time point of first vaccination and their further
serological responses throughout the following 24 weeks.

Variable
All Non-Responder Insufficient

Responder Responder Subgroup
Comparison

Correlation with
Anti -SARS-CoV-2 IgG
24 Weeks after 1st Vac

MD [Q1;Q3], (Range: Min–Max) or n (% of Subgroup)

Patients 59 12 28 19 NA NA

Gender, n (%)
♀22 (37.3%) ♀6 (50.0%) ♀7 (25.0%) ♀9 (47.4%) p = 0.156 ◦ 0.112, p = 0.401 ‡
♂37 (62.7%) ♂6 (50.0%) ♂21 (75.0%) ♂10 (52.6%)

Age, years 68 [59; 77], 76 [66; 78], 68 [57; 76], 62 [54; 70], p = 0.034 * −0.411; p < 0.001 †
(50–90) (63–85) (53–83) (50–90)

Body Mass Index, kg/m2 27.1 [22.4; 30.3], 27.6 [23.5; 30.3], 26.8 [21.5; 29.9], 27.0 [23.5; 31.6], p = 0.819 * 0.037; p = 0.786 †
(17.9–46.3) (19.0–36.7) (18.4–42.8) (17.9–46.3)

Dialysis vintage, years 4 [2; 12], 4 [1; 10], 4 [2; 9], 4 [1; 26], p = 0.892 * 0.118; p = 0.376 †
(0–46) (0–46) (0–31) (0–38)

HepB- vac responders 16 (27.1 %) 2 (16.7 %) 6 (21.4 %) 8 (42.1 %) p = 0.239 ◦ 0.268; p = 0.042 †

Diabetes mellitus 29 (49.2 %) 7 (58.3 %) 13 (46.4 %) 9 (47.4 %) p = 0.838 ◦ −0.256; p = 0.053 †

C-reactive Protein, mg/dL 3.4 [1.8; 9.4], 4.9 [2.4; 22.6], 4.5 [2.0; 10.7], 2.3 [0.9; 4.5], p = 0.036 * −0.319; p = 0.015 †
(<0.4–60.7) (2.2–22.6) (0.6–60.7) (<0.4–11.2)

Leukocytes, e3/µL
6.7 [5.6; 8.0], 6.8 [5.7; 9.4], 6.8 [5.4; 8.1], 6.6 [5.8; 7.8], p = 0.729 * −0.081; p = 0.544 †

(1.6–11.7) (5.3–11.7) (1.6–11.0) (4.3–10.7)

Vitamin D, ng/mL 23.4 [16.2; 32.0], 15.2 [11.0; 22.6], 24.3 [16.5; 30.5], 27.0 [20.8; 35.0], p = 0.015 * 0.361; p = 0.006 †
(9.4–45.7) (9.4–37.9) (9.6–45.7) (15.4–45.3)

Serum albumin, g/dL 3.9 [3.8; 4.2], 3.7 [3.1; 3.9], 3.9 [3.8; 4.2] 4.2 [3.9; 4.3], p = 0.007 * 0.466; p < 0.001 †
(2.6–4.5) (2.6–4.3) (3.5–4.4) (3.6–4.5)

Kt/V
1.47 [1.22; 1.70], 1.45 [1.13; 1.67], 1.45 [1.19; 1.66], 1.58 [1.24; 1.92], p = 0.564 * 0.168; p = 0.207 †

(0.91–2.19) (0.99–1.81) (0.91–2.05) (0.94–2.19)

Parathormone, pmol/L 19.3 [11.5; 30.3], 22.5 [14.2; 32.2], 18.8 [14.0; 30.2], 14.8 [8.2; 27.3], p = 0.706 * −0.121; p = 0.367 †
(1.1–59.7) (3.4–42.6) (4.7–46.2) (1.1–59.7)

Hemoglobin, g/dL 11.5 [10.8; 12.6], 10.9 [10.4; 11.9], 11.3 [11.0; 12.2], 12.1 [11.2; 12.7], p = 0.104 * 0.219; p = 0.098 †
(9.2–13.9) (10.0–13.9) (9.2–13.7) (10.5–13.3)

Non-responder = anti-SARS-CoV-2 IgG < 33.8 BAU/mL and neutralizing antibody titer < 1:20; insufficient
responder = anti-SARS-CoV-2 IgG ≥ 33.8 BAU/mL but neutralizing antibody titer efficacy < 1:20; responder =
anti-SARS-CoV-2 IgG ≥ 33.8 BAU/mL and neutralizing antibody titer ≥ 1:20; vac = vaccination; MD = median;
Q1 = 1st quartile; Q3 = 3rd quartile; n = count; NA = not applicable; * = Kruskal–Wallis test; ◦ = Fisher’s exact test;
‡ = Eta(n) correlation coefficient; † = Spearman’s correlation coefficient.

The measured binding antibody titers at weeks 6 and 12 both correlated significantly
with antibody levels at 24 weeks (Table 1). However, only the anti-SARS-CoV-2 IgG
recorded at week 12 was significantly associated with lacking antibody responses after
24 weeks, both for non-detectable binding antibody titer (odds ratio 0.955 per 1 BAU/mL;
95% CI 0.913–0.998; p = 0.039) and for non-detectable neutralizing activity (odds ratio 0.996
per 1 BAU/mL; 95% CI 0.993–1.000; p = 0.037) (Table 3). Overall, a decrease of anti-SARS-
CoV-2 IgG in this cohort was 67.5% between weeks 6 and 12 and 90.3% between weeks 6
and 24 after the initial vaccination with BNT162b2.

Table 3. SARS-CoV-2 IgG 6 and 12 weeks after the first vaccination and their associated risk for
negative humoral responses.

Variable
Absence of SARS-CoV-2 IgG

24 Weeks after 1st Vac
Absence of Neutralizing Antibodies

24 Weeks after 1st Vac

Adjusted Odds Ratio (95% CI);
Significance

Adjusted Odds Ratio (95% CI);
Significance

SARS-CoV-2 IgG, 6 weeks after 1st vac
per 1 BAU/mL 1.002 (0.996–1.008); p = 0.540 0.998 (0.997–1.000); p = 0.120

SARS-CoV-2 IgG, 12 weeks after 1st vac
per 1 BAU/mL 0.955 (0.913–0.998); p = 0.039 0.996 (0.993–1.000); p = 0.037

SARS-CoV-2 IgG = Severe Acute Respiratory Syndrome-Corona Virus type-2 Immunoglobulin G; vac = vaccination.
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3.2. SARS-CoV-2 Neutralizing Antibody Titers after Vaccination with BNT162b2

Six weeks after the first dose of BNT162b2, 43 of 54 patients (79.6%) harbored neutral-
izing antibodies against SARS-CoV-2 with a median [Q1; Q3] neutralization titer of 1:80
[1:20; 1:160]. The quantified anti-SARS-CoV-2 IgG and the neutralizing titer at week 6 were
related as follows (Figure 2). Neutralizing activity was not measurable in any patient with
anti-SARS-CoV-2 IgG < 132 BAU/mL (0 of 7 patients). In patients with anti-SARS-CoV2 IgG
between 132 to 1360 BAU/mL, neutralizing antibodies were detectable in 29 of 33 patients
(87.8%). In all patients with anti-SARS-CoV-2 IgG ≥1505 BAU/mL, neutralizing antibodies
were detectable (14 of 14 patients).
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Figure 2. Association between binding and neutralizing antibodies at week 6 (a) and week 24 (b).
Areas below the lower dashed lines indicate binding antibody titers without neutralizing activities
(<132 BAU/mL at week 6 and <82 BAU/mL at week 24). Areas above the upper dashed lines indicate
antibody titers definitely neutralizing the virus (≥1505 BAU/mL at week 6 and ≥380 BAU/mL at
week 24). Areas between the dashed lines represent binding antibody levels for which no complete
neutralizing activities can be assumed. At week 6, 87.8% of all patients with binding antibody levels
between 132 to 1360 BAU/mL showed neutralizing activities against SARS-CoV-2. At week 24, 43.5%
of all patients with binding antibody levels between 82 to 362 BAU/mL neutralized the virus. Red
circles indicate no neutralizing activity, gray circles indicate neutralizing activity.

Twenty-four weeks after initial vaccinations with BNT162b2, neutralizing antibodies
were detected in only 19 of 58 patients (32.8%) and the median [Q1; Q3] neutralization
titer for the overall patient cohort decreased to 0 [0; 1:20]. The anti-SARS-CoV-2 IgG and
the neutralization titers showed the following associations at week 24 (Figure 2). None
of the patients with anti-SARS-CoV-2 IgG < 82 BAU/mL had neutralizing antibodies
(0 of 27 patients). For patients with anti-SARS-CoV-2 IgG between 82 and 362 BAU/mL,
neutralizing antibodies were detectable in 43.5% (10 of 23 patients). All patients with
antibody titers ≥ 380 BAU/mL harbored neutralizing antibodies (8 of 8 patients).

3.3. Risk Factors for Antibody Titers <33.8 BAU/mL 24 Weeks after the First Vaccination

Based on clinical data and laboratory values at the time of the first vaccination, age
(−0–411; p < 0.001), diabetes mellitus (−0.256; p = 0.053), and CRP (−0.319; p = 0.015)
correlated inversely, and vitamin D (0.361; p = 0.006), positive response to hepatitis B
vaccination (0.268; p = 0.042), hemoglobin (0.219; p = 0.098), and serum albumin (0.466;
p < 0.001) correlated correspondingly with the detection of anti-SARS-CoV-2 IgG at week 24
(Table 2). However, in a regression model, serum albumin showed the strongest association
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with negative anti-SARS-CoV-2 IgG at week 24 (odds ratio 0.0.965 per 0.1 g/L; 95% CI 0.937
to 0.994; p = 0.017), while none of these factors was significantly associated to negative
results in the neutralization assay (Table 4).

Table 4. Clinical and laboratory factors and their associated risk for negative humoral responses.

Variable
No SARS-CoV-2 IgG
24 Weeks after 1st Vac

No Neutralizing Antibodies
24 Weeks after 1st Vac

Adjusted Odds Ratio (95% CI);
Significance

Adjusted Odds Ratio (95% CI);
Significance

Age per 1 year 1.056 (0.962–1.160); p = 0.249 1.026 (0.960–1.096); p = 0.450
CRP per 1 mg/dL 1.017 (0.952–1.087); p = 0.617 1.127 (0.948–1.341); p = 0.176

Serum albumin per 0,1 g/dL 0.965 (0.937–0.994); p = 0.017 0.988 (0.963–1.014); p = 0.356
Vitamin D per 1 ng/mL 0.912 (0.816–1.019); p = 0.105 0.963 (0.893–1.039); p = 0.334

Positive hepatitis B vac response 0.514 (0.061–4.338); p = 0.541 0.263 (0.057–1.201); p = 0.085
Hemoglobin per 1 g/L 1.217 (0.513–2.888); p = 0.656 0.732 (0.364–1.471); p = 0.381

Diabetes mellitus 1.517 (0.280–8.207); p = 0.629 0.467 (0.107–2.034); p = 0.311

SARS-CoV-2 IgG = Severe Acute Respiratory Syndrome-Corona Virus type-2 Immunoglobulin G; vac = vaccination;
CRP = C-reactive protein.

4. Discussion

The present study demonstrates that the measurable humoral responses after vaccina-
tion with BNT162b2 decreased consecutively over time in patients on hemodialysis. Six
months after the initial vaccination with BNT162b2, humoral protection was diminished
significantly in the majority of patients on hemodialysis with only 32.8% of patients having
neutralizing antibodies. Furthermore, anti-SARS-CoV-2 IgG levels declined sharply with
negative binding antibody responses in 20.3% of all patients. Thus, it must be assumed that
6 months after first vaccination, patients on dialysis are at risk for SARS-CoV-2 infection
and, thus, being infectious.

To date, long-term data on SARS-CoV2-vaccinated patients are scarce, especially in
the vulnerable group of patients on hemodialysis. A progressive decline over time of
circulating SARS-CoV-2-specific antibodies has been described in several other patient
cohorts. Convalescent patients on hemodialysis have shown significant decays of SARS-
CoV-2-specific antibodies, but still 85% of these patients kept seropositivity 6 months
after infection [48,49]. Likewise, non-dialysis-dependent subjects have shown declining
but persistent humoral responses of binding and functional antibodies against different
SARS-CoV-2 variants over 6 months after mRNA vaccinations against COVID-19 [50–54].
Risk factors that appear to contribute to greater decline in antibody titers 6 months post-
vaccination are older age [55,56] and a combination of more than two chronic conditions
such as diabetes, smoking, obesity, heart disease, or chronic lung diseases [56], which are
common comorbidities in patients on hemodialysis.

However, waning of antibody levels in patients on hemodialysis after a standard
vaccination schedule with two doses of BNT162b2 appears particularly fast as indicated
by our study data. The recently reported data by Davidovic et al. [57] can be confirmed
by our findings. The authors used the same CLIA (LIAISON®, Diasorin, Saluggia, Italy)
and measured a decrease of the median anti-SARS-CoV-2 IgG from 1110 BAU/mL at week
4 to 85.6 BAU/mL at week 24 after the second vaccination with BNT162b2. Their rate of
patients with detectable virus neutralization reached 50.6% at 6 months after application of
the second dose of BNT162b2.

Our study is a first follow-up of an mRNA-vaccinated dialysis cohort over 6 months
describing vaccine-specific binding and neutralizing antibody responses at different time
points. By excluding factors such as immunosuppressive medication, heterologous vacci-
nation, or prior SARS-CoV-2 infections, which all are known to have a great influence on
immune responses after vaccination [16,17,22,24,26–28,30,36], this study focused particu-
larly on the interaction between vaccination and hemodialysis dependence. The recruitment
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of this homogenous patient cohort comes at the expense of the smaller sample size. While
previous exposure to SARS-CoV-2 significantly increases the immunogenicity of subsequent
vaccinations and contributes to a long-term persistency of humoral responses [5,18,19],
patients on immunosuppressants after kidney transplantation have shown low vaccination
response rates over 4 months post-vaccination [58,59]. To the best of our knowledge, this
is the first study that excluded occult and inapparent SARS-CoV-2 infections in patients
on hemodialysis at several levels and over time. It is a strength of our study that we
described a SARS-CoV-2 naïve cohort that had not been infected with SARS-CoV-2 and
whose humoral responses can be interpreted as vaccine induced.

One key aspect of our study is the functional assessment of antibodies in a neu-
tralization assay. In this assay, neutralization activity against the wild-type strain was
tested and the majority of patients lost neutralization capacity over time. Against different
variants of concern (VOC), such as the currently prevalent B.1.617.2 (also termed Delta
variant), vaccine-generated antibodies have shown lower efficacy [34,40,60], which is also
expected for the variant B.1.1.529 (Omicron variant) [61]. Thus, it must be assumed that,
in the current pandemic dynamics, our neutralizing assay rather overestimates the actual
vaccine-induced humoral immune protection in our cohort.

The success of vaccination is of utmost importance for the control of SARS-CoV-2
infections in dialysis centers. As it became increasingly recognized that vaccine-induced
neutralizing antibodies can be associated with protection against initial infections [62], vac-
cination became a prioritized measure to create immunity against SARS-CoV-2 infection in
the complex care setting of dialysis centers. However, the well-known hypo-responsiveness
of patients on hemodialysis to other vaccines, such as hepatitis B, pneumococcus, or in-
fluenza [9–12], led to skepticism about the actual efficacy of COVID-19 vaccines in dialysis
settings in general and for the use of novel mRNA vaccines in particular.

A variety of factors have been discussed as being responsible for the anergic immune
reactions of patients receiving dialysis, leading to impaired responses of the innate (neu-
trophil and monocyte function) and adaptive (B- and T-cell-mediated responses, antigen
processing) immune system [63–66]. Uremic toxins interfere with the immune system by,
for example, altering physiological processes of hormones, enzymes, antibodies, lipopro-
teins, or transport proteins, which leads to complexly disturbed metabolic activities [66].
Low-grade inflammatory processes are permanently activated due to reduced renal elimi-
nation of pro-inflammatory cytokines as well as recurrent infections, increased oxidative
stress, volume overload, bioincompatibility of dialysis products, or dialysate-associated
endotoxin exposures [63,66,67]. Both inflammation and uremia are not only associated
with perturbed immune responses but also to malnutrition and protein-energy wasting in
patients on hemodialysis [63,66,68]. Accordingly, serum albumin as a surrogate parameter
for malnutrition has been repeatedly identified as a risk factor for poor seroresponses
after vaccination against SARS-CoV-2-related diseases [27,29,33]. Similarly, we identified
serum albumin as the most substantial factor in determining negative anti-SARS-CoV-2
IgG 6 months later with a risk increase of 3.5% per 0.1 g/L drop. However, inflammatory
processes were only described on the basis of CRP and leukocytes. There may be more
suitable parameters for this purpose (e.g., IL-6, IL-1, TNF alpha).

Under consideration of waning antibody levels, we must assume that patients on
hemodialysis can be infected and be infectious again the longer it has been since their last
vaccination. Therefore, non-pharmacological measures, such as physical distancing, regular
testing, generous spatial isolation in suspicious cases, or wearing of facial masks remain
mainstays of preventing SARS-CoV-2-related diseases in routine clinical practice [69].

As recommended for other vaccination schedules [70], a modification of the standard
strategy must also be taken into account to prolong the mRNA vaccine’s protective an-
tibody effects in patients on hemodialysis. Vaccination strategies including three doses
of BNT162b2 were carried out in France. It was shown that, compared to the median
anti-S IgG antibodies after the second dose, a third dose enhanced humoral responses
again by a 6- to 10-fold increase. Furthermore, in almost half of initial non-responders, the
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application of a third dose of BNT162b2 elicited detectable humoral responses [19,20,32,71].
A dose–response relationship, which shows that the more vaccine is inoculated, the higher
the immunogenicity, can also be reasoned from substance comparisons between BNT162b2
and mRNA-127. In addition to aspects such as better thermostability, lipid formulations, or
mRNA modifications [72,73], above all the three times higher dose of mRNA-172 (100 µg
vs. 30 µg of mRNA content) might explain the higher immunogenicity observed in patients
on hemodialysis vaccinated with the standard vaccination schedules [27,28].

The long-term persistence of humoral protection and actual efficacy of such modi-
fied vaccination strategies still needs to be investigated. However, such data imply that
booster immunizations can counteract the waning of vaccine-specific immunity over time
in patients receiving dialysis.

To date, decision-making processes regarding COVID-19 vaccination schedules and the
estimation of vaccine responsiveness are primarily driven by assessments of antibodies. In
healthy subjects, the decline of antibody titers seems faster than the actual decline of vaccine
efficacy [43,52,74], implicating further immune functions beyond the humoral responses
as being relevant for vaccine-induced immunoprotection. It has already been suggested
that activated T-cells still could limit disease progressions even when neutralizing activities
are low [75,76]. Recently, the determination of spike-specific CD4+ T cells and spike-
specific T follicular helper cells were connected to viral neutralizing capacities, showing
that these cells are crucial to differentiate B cells into antibody-producing plasma cells [71].
Furthermore, the profiling of spike-specific memory B-cells was suggested to more precisely
indicate the capacity of humoral responses in the case of a pathogen encounter [50]. The
evaluation of such complex immune responses could help to better predict the vaccine-
induced immunogenicity more comprehensively and better classify antibody thresholds
that will protect against severe SARS-CoV-2-related diseases.

5. Conclusions

The measurable humoral response after vaccination with BNT162b2 with a two-shot
standard vaccination schedule decreased consecutively over time in patients on dialysis. Six
months after initial vaccination, only 32.8% of patients showed persistence of neutralizing
antibodies combined with a sharp decline of anti-SARS-CoV-2 IgG levels as measured by
CLIA. Thus, SARS-CoV-2 naïve patients receiving hemodialysis are at risk for infection
with SARS-CoV-2 and, thus, being infectious if a vaccination scheme with two doses of
30 µg of BNT162b2 is applied.
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