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Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve
computationally expensive simulation programs. The accuracy of metamodels is strongly affected by the sampling methods. In
this paper, a new sequential optimization sampling method is proposed. Based on the new sampling method, metamodels can
be constructed repeatedly through the addition of sampling points, namely, extrema points of metamodels and minimum points
of density function. Afterwards, the more accurate metamodels would be constructed by the procedure above. The validity and
effectiveness of proposed sampling method are examined by studying typical numerical examples.

1. Introduction

In engineering, manufacturing companies strive to produce
better and cheaper products more quickly. However, engi-
neering systems are fairly large and complicated nowadays. In
addition, design requirements are rigorous and stringent for
such systems, especially multidiscipline design optimization
systems such as aerospace. For example, in aircraft, the design
is intrinsically a daunting optimization task often involving
multiple disciplines, multiple objectives, and computation-
intensive processes for product simulation. Just taking the
computation challenge as an example, it is reported that it
takes Ford Motor Company about 36–160 h to run one crash
simulation [1], which is unacceptable in practice. Despite
the fact that the capacity of computer keeps increasing, the
complexity of analysis software, for example, finite element
analysis (FEA) and computational fluid dynamics (CFD),
seems to keep pace with computing advances [2]. Tomeet the
challenge of increasing model complexity, design engineers
are seeking new methods. As a result, metamodel which
is often called surrogate model or response surface as a
widely used approximation model to replace the expensive
simulation is proposed and improved by researchers. In fact,
in everyday life we try to save time and make predictions
based on assumptions. The literature [3] describes a vivid

example to strengthen understanding of metamodel. When
travelling on a road we will predict the rate of turn of a
bend based on the entry and surrounding landscape.Without
accurately evaluating it, in our mind we are constructing
metamodels using the direction of the road, its derivatives
with respect to distance along the road, and local elevation
information. This information is coupled with assumptions
based on our experience of going round many bends in the
past. Then we will calculate a suitably safe speed based on
our prediction of curvature and considering a safety error. In
engineering design we are also faced with different problems,
but we try to do with a surrogate model essentially what we
do every day in our mind: make useful predictions based
on limited information and assumptions. In the past two
decades, the use of metamodel [4–7] has attracted intensive
attention. It is found to be a valuable tool to support a wide
scope of activities in modern engineering design, especially
design optimization.

Metamodeling which means the process of constructing
metamodels involves two important aspects: (a) choosing a
sampling method to generate sampling points and (b) choos-
ing an approximation method to represent the data, which
influence the performance of metamodels. An important
research issue associated withmetamodeling is how to obtain
good accuracy of metamodels with reasonable sampling
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methods and approximationmethods. Accordingly, sampling
methods and approximation methods are intensively studied
in recent years. As one of the most effective approximation
methods, radial basis functions (RBF) [8–10] interpolation
has been gained popularity for model approximation because
of their simplicity and accurate results for interpolation
problems. RBF is becoming a better choice for constructing
metamodels or finding the global optima of computationally
expensive functions by using a limited number of sampling
points. Other types of approximation methods including
Kriging [11], multivariate adaptive regression splines (MARS)
[12], response surface methodology (RSM) [13], and support
vector machines (SVM) [14], and so forth, are discussed
broadly as well. Mullur et al. proposed an improved form
of the typical RBF approach, that is, extended radial basis
functions (E-RBF) which offers more flexibility in the meta-
model construction process and provides better smoothing
properties. In general, it is expected to yield more accurate
metamodels than the typical RBF. So this paper uses E-RBF
to construct the metamodels.

The sampling method is another important factor of
affecting accuracy for a given metamodel. The sampling
method can be divided into the classical sampling method,
“space-filling” sampling method, and sequential sampling
method according to the type. Classic sampling methods
are developed from design of experiments (DOE). These
methods focus on planning experiments and tend to spread
the sample points around boundaries of the design space for
eliminating random error. The classical experiment designs
contain alphabetical optimal design [15], factorial or frac-
tional factorial design [16], Box-Behnken [17], central com-
posite design (CCD) [18], and so forth. However, Sacks et al.
[19] stated that classic experiment designs can be inefficient or
even inappropriate for deterministic optimal problems. Jin et
al. [20] confirmed that experiment designs for deterministic
computer analyses should be spaced filling. The space-filling
sampling methods which are correspondingly more often
used in the literature are Latin hypercube design (LHD)
[21], orthogonal arrays design [22], Hammersley sequences
(HS) [23], and uniform designs [24]. The sampling methods
above are generated all at once, or, in other words, at one
stage. It is difficult for the one-stage sampling methods to
forecast the number of sampling points. On the contrary,
the sequential sampling approach generates sampling points
one after another according to the particular criteria instead
of generating all points at once. In sequential sampling
technique, the new sampling points are added to the sample
by taking the advantage of information gathered from the
existing (earlier created) metamodel and then correspond-
ing response surface is updated. Therefore, the sequential
sampling recently has gained popularity for its advantages of
flexibility and adaptability over other methods. Jin et al. [25]
stated that sequential sampling allows engineers to control
the sampling process and it is generally more efficient than
one-stage sampling. Deng et al. [26] proposed a sequential
sampling design method based on Kriging. Wei et al. [27]
proposed a sequential sampling method adopting a criterion
to determine the optimal sampling points, which maximized
the value of the product of curvature and square of minimum

distance to other design sites. Kitayama et al. [28] presented a
sequential approximate optimization (SAO) algorithm using
the RBF network with sequential sampling methods. A novel
sequential sampling method based on the maximin distance
criterion was proposed by Zhu et al. [29].

In this paper, a new sequential optimization sampling
method with extended radial basis functions is proposed.
In order to utilize the geometrical feature of metamodels,
extrema points of the response surface, as new optimization
sampling points, are added to the sample. Through using the
metamodeling functions constructed by extended radial basis
functions, the extrema points of metamodels can be achieved
expediently. Moreover, an effective function [28, 30] called
the density function for determining the sparse region in
the design variable space is considered. The density function
constructed by using the RBF is to discover a sparse region in
the design space. It is expected that the addition of sampling
points in the sparse region will improve the accuracy of
approximation model. Thus, a new metamodeling algorithm
integrating a sequential optimization sampling method is
presented. To illustrate the accuracy and efficiency of the
proposed algorithm, the measure performance and several
numerical examples will be tested.

The remainder of this paper is organized as follows. In
next section, the RBF and E-RBF are described briefly. In
Section 3, a new sequential optimization sampling method
is proposed. In addition, the density function [28, 30] is
introduced. In Section 4, the numerical examples, assessment
measures, test results and discussions, and so forth will be
provided.The last section is the closure of the paper where we
summarize the important observations made from our study.

2. Radial Basis Functions

2.1. Learning of Classical Radial Basis Functions. The RBF
metamodel was originally developed by Hardy [31] in 1971
to fit irregular topographic contours of geographical data.
It has been known tested and verified for several decades
and many positive properties have been identified. Mullur
and Messac [32] made radial basis functions more flexible
and effective by adding so-called nonradial basis functions.
Krishnamurthy [33] added a polynomial to the definition
of RBF for improving the performance. Wu [34] provided
criteria for positive definiteness of radial functions with
compact support which produced series of positive definite
radial functions.

An RBF network is a three-layer feed-forward network
shown in Figure 1. The output of the network ̂

𝑓(𝑥), which
corresponds to the response surface, is typically given by

𝑦 =

̂
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Figure 1: Three-layer feed-forward RBF network.

Table 1: Commonly used basis functions.

Name Radial function 𝑟 = ‖𝑥 − 𝑥

𝑖
‖

2

Linear 𝜙(𝑟) = 𝑐𝑟

Cubic 𝜙(𝑟) = (𝑟 + 𝑐)

3

Thin-plate spline 𝜙(𝑟) = 𝑟

2 log (𝑐𝑟

2
)

Gaussian 𝜙(𝑟) = exp (−𝑐𝑟

2
)

Multiquadric 𝜙(𝑟) = (𝑟

2
+ 𝑐

2
)

1/2

c is a constant.

basis function. The approximation function 𝑦 is actually a
linear combination of some RBF with weight coefficients 𝜆

𝑖
.

Themost commonly used radial classical radial functions are
listed in Table 1. The radial basis functions multiquadric and
Gaussian are the best known and most often applied. The
multiquadric is nonsingular and simple to use [35]. Hence,
radial basis function multiquadric is used in this paper.

2.2. Learning of Extended Radial Basis Functions. The
extended radial basis functions approach is a combination
of radial and nonradial basis functions which incorporate
more flexibility in the metamodels by introducing additional
degrees of freedom in the metamodels definition. It provides
better smoothing properties, and, in general, it is expected to
yieldmore accuratemetamodels than the typical RBF.Mullur
andMessac [32, 36] found that the E-RBF approach results in
highly accurate metamodels compared to the classical RBF
and Kriging. Under the E-RBF approach, the approximation
function takes the form:
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(2)

where 𝑛 is the number of design variables; 𝛼𝐿
𝑖𝑗
, 𝛼𝑅
𝑖𝑗
, 𝛽
𝑖𝑗
are

coefficients to be determined for given problems; 𝜓𝐿, 𝜓𝑅, 𝜓𝛽
are components of the so-called nonradial basis functions
defined in Table 2. Nonradial basis functions are functions of
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Figure 2: Definition of coordinate 𝜉.
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Figure 3: Nonradial basis functions.

𝜉

𝑗

𝑖
, which is the coordinate vector of a generic point 𝑥 in the

design space relative to a data point 𝑥
𝑖
, defined as 𝜉

𝑖
= 𝑥 − 𝑥

𝑖
.

Thus, 𝜉𝑗
𝑖
is the coordinate of any point 𝑥 relative to the data

point 𝑥
𝑖
along the 𝑗th dimension.The difference between the

Euclidean distance 𝑟 used in RBF and the relative coordinates
𝜉 used for N-RBF for a two-dimensional case is depicted in
Figure 2. Four distinct regions (I–IV) are depicted in Figure 3,
each corresponding to a row in Table 2.

In matrix notation, the metamodel defined in (2) can be
written as

[𝐴] {𝜆} + [𝐵] {(𝛼

𝐿
)
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(𝛼
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𝑇
}
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(3)

Equation (3) can be compactly written in matrix form as

[𝐴] {𝛼} = {𝑓} , (4)

where [𝐴] = [𝐴𝐵], {𝛼} = {𝜆
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)
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, and 𝑓 = 𝑓(𝑥

𝑖
).

The coefficients𝛼 can be evaluated by using the pseudoin-
verse approach to solve the underdetermined system of (4) as
follows:

{𝛼} = [𝐴]

+

{𝑓} ,
(5)

where [𝐴]

+ denotes the pseudoinverse of [𝐴].
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Table 2: Nonradial basis functions 𝜓(𝜉
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𝛾, 𝜂 are prescribed parameters; refer to [32, 36].

After obtaining the coefficients 𝛼 using E-RBF, one can
evaluate the metamodels to construct response surface using
(2). The resulting metamodel is one that is guaranteed to be
convex andhighly accurate [32, 36]. In the following section, a
series of mathematical examples are approximated by E-RBF
based on the sampling method proposed in next section.

In this section, we introduce the metamodel approach
E-RBF briefly due to space limitations. A more complete
description and discussion are presented in articles [32, 36].

3. The Sequential Optimization
Sampling Method

As it is known, the metamodels are approximation models of
realmodels which are commonly complex and unknown.The
accuracy of metamodels owes to the approximation methods
and sampling methods primarily [37]. The sampling method
proposed in this paper includes two parts. The first part is
the procedure of adding optimization sampling points and
the second part is the procedure of adding points of sparse
regions [28, 30].

3.1. The Optimization Sampling Points. The optimization
sampling points should have two important properties as
follows: adaptive and sensitive.The focus on sampling should
shift to how to generate a reasonable number of sampling
points intelligently so that the metamodel can reflect the real
“black-box functions” in areas of interest. General knowledge
tells us that sampling points at the site of valley andpeak of the
response surface would improve the accuracy at the greatest
extent. The valley and peak are extrema points of functions.

In mathematics, the points which are the largest or
smallest within a given neighborhood are defined extrema
points. McDonald et al. [38] found the radial basis functions
models created with (1) are twice continuously differentiable
when employing multiquadric function as basis function for
all 𝑐 ̸= 0. The first approximation model is constructed with
initial sampling points through using radial basis functions.
Thus the function evaluations, analytic gradients, and the
Hessian matrix of second partial derivatives can be obtained
from the initial functions.

Considering the RBF model with 𝑛 dimensions in (1), the
gradients of the equation are

𝜕
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=
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The Hessian matrix can be calculated from (6) as
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−3/2. 𝐼 is a unit vector.
Let (6) be equal to zero and solve

𝜕
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𝜕x
= 0, x = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
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(8)

Then, the critical point x
𝑒
can be obtained. Upon substitution

of the critical point x
𝑒
into Hessian matrix, we can judge the

definition of the matrix𝐻(x
𝑒
).The critical point is maximum

or minimum when the matrix is definite positive or definite
negative. Figures 4 and 5 separately show the extrema points
in the case of 2D, 3D. The red square and blue pentagon
indicate maxima points; meanwhile, the green dot and red
asterisk indicate minima points. Once an approximation
model has been created, we can obtain coordinates of extrema
points.

3.2. Density Function with the RBF. It is necessary to add
new sampling points in the sparse region for global approx-
imation. To achieve this, a new function called the density
function which is proposed by Kitayama et al. [28, 30] is
constructed using the RBF network in this paper. The aim
of the density function is to discover a sparse region in the
design space.This density function generates local minima in
the sparse region, so that theminimumof this function can be
taken as a new sampling point.The addition of new sampling
points in the sparse region will improve the accuracy of
approximation model and help to find the global minimum
of metamodels.

To explore the sparse region, every output 𝑓of the RBF
network is replacedwith+1. Let𝑁 be the number of sampling
points.The procedure for constructing the density function is
summarized as follows.

(1) The output vector 𝑓

𝐷 is prepared at the sampling
points:

𝑓

𝐷
= (1, 1, . . . , 1)

𝑇

𝑁∗1
. (9)
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(2) The weight vector 𝜆

𝐷
of the density function 𝐷(𝑥) is

calculated as follows:
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(3) The addition of sampling point𝑥𝐷 in the sparse region
is explored as the globalminimumof density function
with the RBF:

𝐷(𝑥

𝐷
) =

𝑁

∑

𝑗=1

𝜆

𝐷

𝑗
𝜙

𝑗
(𝑥

𝐷
) → min . (12)

3.3. Summary of the Proposed Algorithm. The detailed algo-
rithm for sequential optimization samplingmethodwith RBF
network is described below. Figure 6 shows the proposed
algorithm. The proposed algorithm is roughly divided into
two phases. The first phase is used to construct the response
surface and add the extrema points of response surface as
new sampling points. The second phase is used to construct
the density function and add the minimum of the density
function as a new sampling point. These two phases are
described particularly as follows.
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Figure 6: Proposed algorithm.

First phase:𝑚 initial sampling points are generated using
the Latin hypercube sampling design. All functions are
evaluated at the sampling points, and the response surface
̂

𝑓(𝑥) is constructed. The extrema points of response surface
can then be found and directly taken as the new sampling
points. The more accurate metamodel would be constructed
by repeating the procedure of adding extrema points to the
sample adaptively and sequentially.

Second phase: the density function is constructed to find
the sparse region.Theminimumpoint of the density function
is taken as a new sampling point. This step is repeated while
a terminal criterion (count ≤ 𝑑) is satisfied. Parameter
𝑑 controls the number of sampling points obtained by the
density function. Kitayama et al. [28] advised 𝑑 = int(𝑛/2). In
this paper, parameter 𝑑 = int(𝑛/2)+1, where int( ) represents
the rounding-off. The new sampling point would be gained
if the parameter count is less than 𝑑, and it is increased as
count = count + 1.

The terminal criterion of the integrated algorithm is
determined by the maximum number of sampling points
𝑚max. If the number of sampling points is less than 𝑚max,
the algorithm proceeds. Otherwise, the algorithm is termi-
nated. In the algorithm, the response surface is constructed
repeatedly through the addition of the new sampling points,
namely, extrema points and minimum point of density
function. Afterwards, the more accurate metamodel would

be constructed by repeating the procedure of adding points
to the sample adaptively and sequentially.

4. Numerical Examples

In this section, we would test the validity of the proposed
sampling method through some well-known numerical
examples and one engineering optimization problem. All
these functions are approximated with the E-RBF model.
The response surfaces are constructed through one-stage
sampling methods (i.e., LHD and RND) and sequential
sampling methods (i.e., CV [25], Kitayama et al. [28], SLE
[29], and SOSM proposed in this paper) with the same
sampling size. In order to visualize the comparison between
approximated model and actual model, two design variables
of numerical examples listed in Table 3 are tested.

4.1. Sampling Strategies. Two types of samplingmethods used
in this paper separately are one-stage sampling methods and
sequential sampling methods. One-stage sampling methods
include Latin hypercube sampling design (LHD) and Ran-
dom sampling design (RND). Sequential sampling methods
include cross-validation samplingmethod (CV) [25], sequen-
tial samplingmethodproposed byKitayama et al. [28] termed
KSSM in this paper, successive local enumeration sampling
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Table 3: Numerical function and global minimum.

Number Function Design domain Global minimum
1 𝑓(𝑥) = −10 sin 𝑐 (𝑥

1
) ⋅ sin 𝑐 (𝑥

2
) −2 ≤ 𝑥 ≤ 2 𝑥 = (0, 0), 𝑓min = −10

2 𝑓(𝑥) = 4𝑥

1
⋅ 𝑒

−𝑥
2

1
−𝑥
2

2
−2 ≤ 𝑥 ≤ 2 𝑥 = (−

√
2/2, 0), 𝑓min = −1.72

3 𝑓(𝑥) = 𝑥

2

1
+ 𝑥

2

2
− 10 ∗ [cos (2𝜋𝑥

1
) + cos (2𝜋𝑥

1
)] + 20 −0.8 ≤ 𝑥 ≤ 0.8 𝑥 = (0, 0), 𝑓min = 0

4
𝑓(𝑥) = 3(1 − 𝑥

1
)

2
⋅ 𝑒

−𝑥
2

1
−(𝑥2+1)

2

− 10 (

𝑥

1

5

− 𝑥

3

1
− 𝑥

5

2
)

⋅ 𝑒

−𝑥
2

1
−𝑥
2

2
−

1

3

𝑒

−(𝑥1+1)
2
−𝑥
2

2

−3 ≤ 𝑥 ≤ 3 𝑥 = (0.228, −1.63), 𝑓min = −6.55

5
𝑓(𝑥) = −60/[1 + (𝑥

1
+ 1)

2

+ (𝑥

2
− 3)

2

] − 20/[1 + (𝑥

1
− 1)

2

+ (𝑥

2
− 3)

2

] − 30/[1 + 𝑥

2

1
+ (𝑥

2
+ 4)

2

] + 30

−6 ≤ 𝑥 ≤ 6 𝑥 = (−0.97, 3), 𝑓min = −34.63

6 𝑓(𝑥) = −10(sin√𝑥

2

1
+ 𝑥

2

2
+ eps/√𝑥

2

1
+ 𝑥

2

2
+ eps) + 10, eps = 10

−15
−3𝜋 ≤ 𝑥 ≤ 3𝜋 𝑥 = (0, 0), 𝑓min = 0

method (SLE) [29], and sequential optimization sampling
method (SOSM) proposed in this paper. Every metamodel
is constructed for 20 times with the same sampling method
in this paper. For functions 1 and 2, we set 𝑚max = 25. For
functions 4 and 5, we set 𝑚max = 36. For functions 3 and 6,
we generate 28 and 40 sampling points separately.

4.2. Selection of Parameters. For the E-RBF approach, we set
𝑐 = 1, which is a prescribed parameter for the multiquadric
basis functions, for all of the examples.The parameter 𝛾 is set
equal to approximately 1/3 of the design domain size. Mullur
andMessac [32] investigated that the results were not unduly
sensitive to 𝛾. Another parameter 𝜂 is set equal to 2 for all
numerical examples.

4.3. Metamodel Accuracy Measures. Generally speaking, an
E-RBF response surface passes through all the sampling
points exactly. Therefore it is impossible to estimate the
accuracy of an E-RBF model with sampling points. To
measure the accuracy of the resulting metamodels, we can
use additional testing points to evaluate the accuracy of the
model via standard error measure: root-mean-squared error
(RMSE).The smaller the value of RMSE is, the more accurate
the response surface will be. The error measure is defined as

RMSE =

√

∑

𝐾

𝑘=1
[𝑓 (x
𝑘
) −

̂

𝑓 (x
𝑘
)]

2

𝐾

,

(13)

where𝐾 is the number of additional testing points generated
by grid sampling method (32 ∗ 32 for all the examples).
𝑓(x
𝑘
) and ̂

𝑓(x
𝑘
) are the true function value and predicted

metamodel value at the 𝑘th testing point x
𝑘
, respectively.

In addition to the preceding RMSE, we also calculate the
normalized root-mean-squared error (NRMSE) as follows:

NRMSE =

√

∑

𝐾

𝑘=1
[𝑓 (x
𝑘
) −

̂

𝑓 (x
𝑘
)]

2

∑

𝐾

𝑘=1
[𝑓 (x
𝑘
)]

2
∗ 100%.

(14)

RMSE only calculates the error of functions themselves.
However, NRMSE allows comparison of themetamodel error
values with regard to different functions.

In engineering problems, global minimum is required
generally. So we employ the simulated annealing (SA) [39]
to calculate the global minimum ̂

𝑓min based on the ultimate
metamodel. The actual global minimum 𝑓min are listed in
Table 3.

4.4. Results and Discussions. In this section, we discuss the
results obtained after constructing metamodels through six
various sampling methods using the assessment measure
described above. As mentioned in Section 4.1, 20 procedures
are conducted for each sampling method and therefore there
are twenty sets of accuracy results for each sampling method.
The advantages and validity of sequential optimization sam-
pling method (SOSM) are tested in comparison with one-
stage sampling methods and sequential sampling methods
separately below. In addition, SOSM is used to solve a typical
mechanical design optimization problem.

4.4.1. Comparison of the Performance between SOSM and
One-Stage Sampling Methods. In this part, two classical one-
stage sampling methods LHD, RND and SOSM are used
to construct metamodels. The accuracy of metamodels and
global minimum of functions are obtained and managed.
The error measures RMSE andNRMSE and global minimum
summarized in Table 4 are average values.

From the Table 4, the RMSE and NRMSE of metamodels
using samplingmethod SOSM are smaller than the other two
one-stage sampling methods for functions 1–5. For function
6, the values are close. The RND, as expected, performs
poorly. That is, metamodels based on sampling method
SOSMmay provide a better fit to actual functions. As seen in
Table 4, on exploring global minimum ̂

𝑓min of metamodels,
SOSM is superior to LHD and RDN through all numerical
examples compared to the actual global minimum 𝑓min. In
particular, the SOSM can almost find the global minimum
of all numerical examples at every turn. However, LHD and
RND perform fairly poorly, particularly in the success rate
which will be depicted in Figure 9.

The mean results from Table 4 cannot represent the
advantages and disadvantages of different sampling methods
adequately. Thus, statistical graphics, that is, boxplots, are
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Table 4: Metamodel accuracy results for functions 1–6 between SOSM and one-stage sampling methods.

Number SOSM LHD RND
𝑓minRMSE NRMSE ̂

𝑓min RMSE NRMSE ̂

𝑓min RMSE NRMSE ̂

𝑓min

1 0.663 28.214 −10.002 0.722 30.698 −9.137 0.817 34.766 −8.728 −10
2 0.061 9.798 −1.715 0.090 14.524 −1.611 0.122 19.659 −1.662 −1.715
3 1.674 6.464 −0.002 1.790 6.913 0.140 2.072 8.001 0.040 0
4 0.728 38.118 −6.556 0.810 42.456 −5.786 0.861 45.116 −5.374 −6.551
5 2.455 10.531 −34.243 3.353 14.380 −12.928 3.789 16.253 −9.907 −34.63
6 0.995 10.011 0.116 0.992 9.991 2.284 1.076 10.830 2.070 0
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Figure 7: Assessment of metamodels: RMSE between SOSM and
one-stage sampling methods.

used to show the deviations of the accuracy and global
minimum of each metamodel. In descriptive statistics, box-
plot is a convenient way of graphically depicting groups of
numerical data through their quartiles.The center line of each
boxplot shows the 50th percentile (median) value and the box
encompasses the 25th and 75th percentile of the data. The
leader lines (horizontal lines) are plotted at a distance of 1.5
times the interquartile range in each direction or the limit
of the data (if the limit of the data falls within 1.5 times the
interquartile range). The data points outside the horizontal
lines are shown by placing a sign (“◻”) for each point. The
twenty times of metamodels accuracy results (RMSE and
NRMSE) and global minimum 𝑓min with sampling methods,
that is, SOSM, LHD, and RND, are illustrated in Figures 7–9
with the help of boxplots.

From the results shown in Figures 7 and 8, it is found
that the median values of RMSE and NRMSE are smaller
compared to LHD and RND for functions 1–5. For function
6, the median values of RMSE and NRMSE are a little larger,
but very close. In addition, the box size of RMSE andNRMSE
based on SOSM is the shortest for all functions except for
functions 4 and 5. The difference of sizes is small. It is clear
that a small size of the box suggests small standard deviation
of results. High standard deviation of results suggests large
uncertainties in the predictions and low standard suggests
low uncertainty on the contrary. The points outside the
horizontal lines indicate that the results of experiments are
terrible. Above all, either mean values or median values and
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Figure 8: Assessment of metamodels: NRMSE between SOSM and
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Figure 9: Assessment of metamodels: Global minimum between
SOSM and one-stage sampling methods.

box sizes of results are taken into account, the accuracy of
metamodels with sampling method SOSM is better.

Figure 9 depicts the boxplot of global minimum ̂

𝑓min
obtained for twenty numerical experiments. It is obvious
from Figure 9 that the median value of SOSM is probably
equal to the actual global minimum 𝑓min. Meanwhile, the
small sizes of boxes imply small standard deviation, which
is also reflected by small differences between the mean and
median values. The standard deviation of global minimum
is one of the important factors for evaluating the robustness
of algorithm.Therefore, smaller standard deviation of results
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Figure 10: Global minima points of functions 1–6. (a)–(f) show the global minima points for functions 1–6 separately. The red pentagon
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SOSM.The blue square indicates the global minima points of metamodels based on sampling method LHD.Themagenta diamond indicates
the actual global minima points of metamodels based on sampling method RND.
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Figure 11: Function 1: actual and metamodel surface.

implies the robustness of the algorithm. It is clear from
Figure 9 that the SOSM is a more robust sampling method
than the other two sampling techniques under the parameter
settings employed in this paper. The success rate is bad
comparing the actual global minimum from Table 4 with
the distribution of global minimum of metamodels based
on sampling methods LHD and RND from Figure 9. In
other words, SOSM plays a perfect role in finding the global
minimum of metamodels.

In order to indicate the effectiveness of SOSM in seeking
global minimum points, the positions of global minimum
points of metamodels for functions. 1–6 are shown in Figures
10(a)–10(f) separately. The red pentagon indicates the actual
global minimum point. The black dots indicate the global
minimum points of metamodels based on sampling method
SOSM. The blue squares indicate the global minimum
points of metamodels based on sampling method LHD.
The magenta diamonds indicate the global minimum points
of metamodels based on sampling method RND. Figure 10
shows that the black dots are distributed densely in the center
of red pentagon. Meanwhile, the blue squares and magenta
diamonds are decentralized around the red pentagon and
the difference between actual global minimum points and

global minimum points of metamodels based on LHD or
RND ismostly quite large.The above demonstrate that SOSM
is superior to LHD and RND on global optimization. (a)–(d)
in Figures 11, 12, 13, 14, 15, and 16 show the graphs of actual
functions and of the associated metamodels based on three
sampling methods separately. It can be observed intuitionally
that the metamodels surface adopting SOSM method is
smoother than LHD and RND and, furthermore, the global
minima of metamodels based on SOSM are consistent with
the actual global minima. The conclusions reached above are
identified further by comparing the actual function surfaces
to metamodels surfaces.

4.4.2. Comparison of the Performance between SOSMand Pre-
vious Sequential Sampling Methods. In this part, three differ-
ent sequential sampling methods including cross-validation
sampling method (CV) [25], sequential sampling method
proposed by Kitayama et al. [28] termed KSSM, and suc-
cessive local enumeration sampling method (SLE) [29] are
used to construct metamodels in comparison with those
constructed by SOSM. Similarly, the accuracy of metamodels
and global minimumof functions are obtained andmanaged.
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Figure 12: Function 2: actual and metamodel surface.

The accuracy measures RMSE and NRMSE and global min-
imum summarized in Table 5 are mean values. Note that a
value of zero for both accuracy measures RMSE and NRMSE
would indicate a perfect fit.

From Table 5, the RMSE and NRMSE of metamodels
using samplingmethod SOSMare smaller than the sequential
sampling methods CV and KSSM for functions 1–5. For
function 6, the values are close. The SLE performs greatest.
That is, metamodels based on sampling method SOSM may
provide a better fit to actual functions than CV and KSSM.
However, the samplingmethod SLEperforms unsatisfactorily
in terms of exploring global minimum. As seen in Table 5,
on exploring global minimum ̂

𝑓min of metamodels, SOSM is
superior to the previous sequential sampling methods SLE
through all numerical examples compared to the actual global
minimum𝑓min. In addition, the sequential samplingmethods
CV and KSSM perform as great as SOSM on exploring the
global minimum. In general, the sequential samplingmethod
KSSM is the best, SOSM takes second place, and CV is
the least. It can be concluded that the sequential sampling
method SOSM proposed in this paper is the best choice
considering the accuracy ofmetamodels and exploring global
minimum.

In order to represent the advantages and disadvantages of
different sequential samplingmethods adequately, the twenty
times of metamodels accuracy results (RMSE and NRMSE)
and globalminimum𝑓min with sequential samplingmethods,
that is, SOSM, CV, KSSM, and SLE, are illustrated in Figures
17–19 with the help of boxplot.

From the results shown in Figures 17 and 18, it is found
that themedian values of RMSE andNRMSE based on SOSM
are smaller compared to CV and KSSM for functions 1–5. For
function 6, the median values of RMSE and NRMSE are a
little larger, but very close. Except for Function 5, the accuracy
ofmetamodels constructed by SLE is the best. In addition, the
box size of RMSE andNRMSEbased on SOSM is shorter than
CV and KSSM for functions 1–4. The box size of RMSE and
NRMSE based on SLE is the shortest for all functions except
for functions 1 and 3. A small size of the box suggests small
standard deviation of results and low standard deviation of
results suggests small uncertainties in the predictions and
large standard suggests high uncertainty on the contrary.The
points outside the horizontal lines indicate that the results
of experiments are terrible. Above all, either mean values or
median values and box sizes of results are taken into account,
the accuracy of metamodels with sampling method SOSM
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Figure 13: Function 3: actual and metamodel surface.

Table 5: Metamodel accuracy results for functions 1–6 between SOSM and previous sequential sampling methods.

Number SOSM CV [25] KSSM [28] SLE [29]
𝑓minRMSE NRMSE ̂

𝑓min RMSE NRMSE ̂

𝑓min RMSE NRMSE ̂

𝑓min RMSE NRMSE ̂

𝑓min

1 0.663 28.214 −10.002 0.699 29.707 −9.995 0.709 30.142 −10.017 0.493 20.951 −9.539 −10
2 0.061 9.798 −1.715 0.089 14.312 −1.715 0.120 19.343 −1.716 0.065 10.504 −1.622 −1.715
3 1.674 6.464 −0.002 2.261 8.732 0.000 2.305 8.902 −0.001 1.459 5.636 0.105 0
4 0.728 38.118 −6.556 0.813 42.601 −6.514 0.847 44.359 −6.552 0.533 27.899 −5.904 −6.551
5 2.455 10.531 −34.243 2.508 10.759 −33.794 2.466 10.575 −34.259 2.789 11.961 −12.212 −34.63
6 0.995 10.011 0.116 0.943 9.486 0.390 0.950 9.558 0.052 0.703 7.080 1.274 0

is superior to sampling methods CV and KSSM. Certainly,
the sampling method SLE performs greatest in terms of
the accuracy of metamodels. However, SLE is not good at
exploring the global minimum of functions.

Figure 19 depicts the boxplot of global minimum ̂

𝑓min
obtained for twenty numerical experiments. It is obvious
from Figure 19 that the median value of SOSM, CV, and
KSSM is probably equal to the actual global minimum 𝑓min.
Meanwhile, the small sizes of boxes imply small standard
deviation, which is also reflected by small differences between
themean andmedian values.The standard deviation of global

minimum is one of the important factors for evaluating
the robustness of algorithm. Therefore, smaller standard
deviation of results implies the robustness of the algorithm.
It is clear from Figure 19 that the sequential sampling meth-
ods except SLE are robust sampling techniques under the
parameter settings employed in this paper. The success rate
is bad comparing the actual global minimum from Table 5
with the distribution of global minimum of metamodels
based on sampling methods SLE from Figure 19. It is obvious
that SOSM plays a perfect role in constructing the accurate
metamodels and finding the global minimum of functions.
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Figure 14: Function 4: actual and metamodel surface.

Six various sampling methods have been used to con-
struct metamodels for six typical functions in this paper.
It can be demonstrated that sequential sampling methods
perform better and more efficient than one-stage sampling
methods. Furthermore, sequential sampling technique allows
engineers to control the sampling process. In general, one-
stage sampling technique is not as good as sequential sam-
pling methods for fitting the area where the global minimum
locates. In a word, SOSM as a sequential sampling method
proposed in this paper is the best choice considering the
accuracy of metamodels and locating global minimum. In
other words, SOSM is reliable in the whole fitting space and
also good for fitting the area where the global minimum
locates.

4.4.3. Engineering Problem. The validity of sequential sam-
plingmethod SOSMproposed in this paper is tested by a typ-
ical mechanical design optimization problem involving four
design variables, that is, pressure vessel design. This problem
has been studied bymany researchers [40–42].The schematic
of the pressure vessel is shown in Figure 20. In this case, a
cylindrical pressure vessel with two hemispherical heads is

designed for minimum fabrication cost. Four variables are
identified: thickness of the pressure vessel 𝑇

𝑠
, thickness of the

head 𝑇

ℎ
, inner radius of the pressure vessel 𝑅, and length of

the vessel without heads 𝐿. In this case, the variable vectors
are given (in inches) by

𝑋 = (𝑇

𝑠
, 𝑇

ℎ
, 𝑅, 𝐿) = (𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) . (15)

The objective function is the combined cost of materials,
forming andwelding of the pressure vessel.Themathematical
model of the optimization problem is expressed as

min 𝑓 (𝑋) = 0.6224𝑥

1
𝑥

3
𝑥

4
+ 1.7781𝑥

2
𝑥

2

3
+ 3.1661𝑥

2

1
𝑥

4

+ 19.84𝑥

2

1
𝑥

3

s.t. 𝑔

1 (
𝑋) = −𝑥

1
+ 0.0193𝑥

3
≤ 0

𝑔

2 (
𝑋) = −𝑥

2
+ 0.00954𝑥

3
≤ 0

𝑔

3 (
𝑋) = −𝜋𝑥

2

3
𝑥

4
−

4

3𝜋𝑥

3

3

+ 129600 ≤ 0

𝑔

4 (
𝑋) = 𝑥

4
− 240 ≤ 0.

(16)
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Figure 15: Function 5: actual and metamodel surface.

Table 6: Comparison of optimal results for the design of a pressure vessel.

Design variables Cao and Wu [42] Kannan and Kramer [43] Deb [44] This paper using SOSM
𝑥

1
1.000 1.125 0.9375 1.000

𝑥

2
0.625 0.625 0.5000 0.625

𝑥

3
51.1958 58.291 48.3290 41.523

𝑥

4
60.7821 43.690 112.6790 120.562

𝑓(𝑋) 7108.616 7198.042 6410.381 6237.402

The ranges of design variables 𝑥

1
∈ [0.0625, 6.25], 𝑥

2
∈

[0.0625, 6.25], 𝑥
3
∈ [62.5, 125], and 𝑥

4
∈ [62.5, 125] are used

referring to the literature [40].
The problem formulated above is a simple nonlinear con-

strained problem. Now assuming that the objective and con-
straint functions defined by (16) are computation-intensive
functions, hence,metamodels of functions are constructed by
RBF using the sequential sampling method SOSM.

This problem has been solved by many researchers,
including Cao and Wu [42], applying an evolutionary pro-
gramming model. Kannan and Kramer [43] solved the
problemusing an augmented Lagrangianmultiplier approach
and Deb [44] using a genetic adaptive search.

The average values of optimal results from 50 runs are
listed in Table 6 compared with the three results reported in
the literature [42–44]. It can be seen from the table that the
optimal solution in this paper is still about 2.7% superior to
the best solution previously reported in the literature [44].

5. Conclusions

In this paper, the sequential optimization sampling method
(SOSM) for metamodels has been proposed. The recently
developed extended radial basis functions (E-RBF) are intro-
duced as an approximated method to construct the meta-
models. Combining the new sampling strategy SOSM with
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Figure 16: Function 6: actual and metamodel surface.
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Figure 17: Assessment of metamodels: RMSE between SOSM and
previous sequential sampling methods.

the extended radial basis functions, the design algorithm
for building metamodels is presented. In the SOSM, the
optimal sampling points of response surface are taken as the
new sampling points in order to improve the local accuracy.
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Figure 18: Assessment of metamodels: NRMSE between SOSM and
previous sequential sampling methods.

In addition, new sampling points in the sparse region are
required for better global approximation. To determine the
sparse region, the density function constructed by the radial
basis functions network has been applied. In the proposed



16 The Scientific World Journal

 

−35

−30

−25

−20

−15

−10

−5

0
Function 1 Function 2 Function 3 Function 4 Function 5

Function 6

G
lo

ba
l m

in
im

um
 o

f f
un

ct
io

ns
1–
6

SO
SM CV

KS
SM SL

E
SO

SM CV
KS

SM SL
E

SO
SM CV

KS
SM SL

E
SO

SM CV
KS

SM SL
E

SO
SM CV

KS
SM SL

E
SO

SM CV
KS

SM SL
E

Sampling methods

Figure 19: Assessment of metamodels: global minimum between
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Figure 20: Diagram of pressure vessel design.

algorithm, the response surface is constructed repeatedly
until the terminal criterion, that is, the maximum number of
sampling points 𝑚max, is satisfied.

For the sake of examining the validity of the proposed
SOSM sampling method, six typical mathematical functions
have been tested. The assessment measures for accuracy
of metamodels, that is, RMSE and NRMSE, are employed.
Meanwhile, global minimum is introduced to judge the
performance of sampling methods for metamodels. The
proposed sampling method SOSM is successfully imple-
mented and the results are analyzed comprehensively and
thoroughly. In contrast to the one-stage sampling methods
(LHD and RND) and sequential sampling methods (CV,
KSSM, and SLE), the SOSM results in more accurate meta-
models. Furthermore, SOSM is superior in exploring the
global minimum of metamodels compared to the other five
sampling methods.

The new sequential optimization sampling method
SOSM has been proposed, which provides another effective
way for generating sampling points to construct metamodels.
It is superior in seeking global minimum compared to the
previous sampling methods, and, meanwhile, can improve
the accuracy of metamodels. Therefore, the sequential opti-
mization sampling method SOSM significantly outperforms
the previous sampling methods.
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