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aim: The leading cause of morbidity and mortality in patients with type 2 diabetes mellitus 
(DM) is coronary artery disease (CAD), a condition often asymptomatic but severe in these 
patients. Although glucose metabolism impairment and oxidative stress are known actors 
in the endothelial dysfunction/remodeling that occurs in diabetic patients, the relationship 
between cardiovascular disorders and DM is not fully understood. We have performed 
both an in vivo imaging and in vitro molecular analysis to investigate diabetic-specific CAD 
alterations.

Methods: Computed tomography coronary angiography (CTCA) was performed 
in a group of 20 diabetic patients with CAD (DM+CAD+), 20 non-diabetic with CAD 
(DM−CAD+), 10 diabetic non-CAD patients (DM+CAD−), and 20 non-diabetic healthy 
subjects (HS). Imaging quantitative parameters such as calcium score (Cascore), cal-
cified plaque volume (CPV), non-calcified plaque volume (NCPV), total plaque volume 
(TPV), remodeling index (RI), and plaque burden were extracted for each CAD subject. 
Moreover, the expression levels of superoxide dismutase 2 (SOD2) and liver X receptor 
alpha (LXRα) genes were analyzed in the peripheral blood mononuclear cells, whereas 
hyaluronan (HA) concentrations were evaluated in the plasma of each subject.

results: Imaging parameters, such as Cascore, CPV, RI, and plaque burden, were 
significantly higher in DM+CAD+ group, compared to DM−CAD+ (P = 0.019; P = 0.014; 
P < 0.001, P < 0.001, respectively). SOD2 mRNA was downregulated, while LXRα gene 
expression was upregulated in DM+CAD−, DM+CAD+, and DM−CAD+ groups compared 
to HS (P = 0.001, P = 0.03, and P = 0.001 for SOD2 and P = 0.006, P = 0.008, and 
P  <  0.001 for LXRα, respectively). Plasmatic levels of HA were higher in DM−CAD+, 
DM+CAD−, and DM+CAD+ groups, compared to HS (P = 0.001 for the three groups). 
When compared to DM−CAD+, HA concentration was higher in DM+CAD− (P = 0.008) 
and DM+CAD+ (P < 0.001) with a significant difference between the two diabetic groups 
(P = 0.003). Moreover, HA showed a significant association with diabetes (P = 0.01) in 
the study population, and the correlation between HA levels and glycemia was statisti-
cally significant (ρ = 0.73, P < 0.001).

conclusion: In our population, imaging parameters highlight a greater severity of CAD 
in diabetic patients. Among molecular parameters, HA is modulated by diabetic CAD-
related alterations while SOD2 and LXRα are found to be more associated with CAD but 
do not discriminate between diabetic and non-diabetic subgroups.

Keywords: type 2 diabetes, coronary artery disease, computed tomography coronary angiography, biomarkers, 
atherosclerosis
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inTrODUcTiOn

Type 2 diabetes mellitus (DM) is the most important risk factor 
for the onset of coronary artery disease (CAD), causing glucose 
metabolism impairment and endothelial dysfunction mediated 
by oxidative stress and inflammation (1). A complex network of 
signaling pathways is involved in these pathological processes 
leading to the development and progression of cardiac dysfunc-
tion. In response to myocardial damage, the heart undergoes a 
progressive anatomical and functional transformation known as 
“remodeling” (2).

Several imaging modalities have been used to detect CAD 
in diabetic patients including invasive coronary angiography, 
myocardial scintigraphy and dobutamine stress echocardiog-
raphy (3). Even if invasive coronary angiography is the gold 
standard for identifying obstructive lesions, it only depicts 
the lumen of the vessel, greatly underestimating the burden of 
atherosclerosis (4). Myocardial scintigraphy and dobutamine 
stress echocardiography highlight perfusion defects (inducible 
ischemia and necrosis), but they lack a direct visualization of 
coronary arteries (5). Unlike these, computed tomography 
coronary angiography (CTCA) is a powerful diagnostic tool 
to rule out CAD thanks to its high negative predictive value 
(6). It allows quantification of atherosclerotic burden providing 
comprehensive information about the location, severity, and 
features of coronary atherosclerotic plaques and can be useful 
for risk stratification (7, 8).

Atherosclerosis is a multistage pathological condition involv-
ing an imbalanced lipid metabolism and immune response 
leading to a chronic inflammation of the arterial wall with the 
formation of the atherosclerotic plaque and consequent thicken-
ing of vessel wall and lumen stenosis (9, 10).

The first step of atherosclerosis is endothelial dysfunction; 
atherosclerotic lesions initiate in regions characterized by low 
shear stress resulting in an increase of adhesiveness of circulating 
monocytes to the vessel wall and subendothelial accumulation of 
low-density lipoprotein (LDL) (9). Common cardiovascular risk 
factors, such as smoking, diabetes, hypertension, and hypercho-
lesterolemia, are causes of dysfunction endothelial (10). The LDL 
particles in the intima are susceptible to oxidation by reactive 
oxygen species or other enzymes released from inflammatory 
cells. Oxidized LDL triggers the expression of adhesion molecules 
and the secretion of chemokines by endothelial cells that drive the 
intimal infiltration by immune cells forming the so-called “fatty 
streaks” especially consisting of monocyte-derived macrophage-
like foam cells. Subsequently, vascular smooth muscle cells 
migrate and proliferate into the site of lesion producing an exces-
sive amount of connective tissue with the consequent formation 

of the fibroatheromatous plaque leading to thickening of vessel 
wall and stenosis of coronary lumen (9–11). One of the major 
issues in CAD diagnosis and management is that symptoms onset 
in the advanced state of disease. Indeed, most individuals show no 
manifestations for long time before the first onset of symptoms, 
often with a fatal event.

Oxidative stress is a key component in the development and 
progression of DM and its vascular complications such as CAD 
(12, 13). The onset and progression of CAD involves multiple cell 
types, and whole-blood gene expression profiling has the poten-
tial to provide information about dynamic changes in disease 
states and on underlying disease mechanisms (14).

Superoxide dismutase 2 (SOD2) is one of the major anti-
oxidant defense systems against free radicals (15). Mutations or 
polymorphisms of SOD2 gene are associated with DM progres-
sion and complications, where the reduction of total antioxidant 
capacity and depletion of plasma antioxidants could be related to 
induced-oxidative stress damage (16–21).

Nuclear liver X receptors (LXR) comprise liver X receptor 
alpha (LXRα) and liver X receptor beta (LXRβ), which are key 
regulators of macrophage function, controlling transcriptional 
programs involved in lipid homeostasis and inflammation. The 
inducible LXRα is highly expressed in macrophages, liver, adrenal 
gland, intestine, adipose tissue, lung, and kidney, whereas LXRβ is 
ubiquitously expressed (22). LXRs are involved in the regulation 
of cholesterol metabolism fundamental for the pathogenesis of 
CAD and inhibit atherogenesis, inflammation and autoim-
mune reactions (22). Furthermore, an additional role of LXRs 
is to contribute to glucose homeostasis, demonstrating potent 
glucose-lowering and insulin-sensitizing effects (23, 24). Despite 
extensive research in the field of LXR biology, however, very little 
is known about the regulation of expression and activity of these 
receptors.

Hyaluronan (HA) is present in low amount in normal blood 
vessels but increases in vascular diseases as well as in DM (25). It 
seems to have an important role in diabetic angiopathy (26–28) 
and is associated with an increased risk for developing CAD 
also in non-diabetic patients (29). HA is increased in vascular 
plaques, and its high metabolism causes their destabilization (30). 
Furthermore, the fragmentation of HA triggers inflammatory 
processes and activates leukocytes to produce superoxide radical 
causing oxidative stress (31).

To date, studies integrating parameters calculated by CTCA 
and biological markers in DM patients have been focused on 
the association between CTCA findings (mostly coronary artery 
calcium) and biological markers of inflammation (IL-6, IL-1β, 
TNF-α, hs-CRP, and YKL-40) and endothelial dysfunction 
(sVCAM-1, sICAM-1, and sICAM-3) (32–36). There are no data 
about the association between imaging parameters and gene 
expression profiling in DM.

In this study, we have analyzed the three above mentioned 
molecular markers that underlie important steps of the athero-
sclerotic process: endothelial dysfunction, oxidative stress, lipid 
homeostasis, and inflammation. In this regard, we have analyzed 
SOD2 and LXRα gene expression and HA plasmatic concen-
trations in a group of 20 diabetic patients with known CAD 
(DM+CAD+), 20 non-diabetic patients with CAD (DM−CAD+), 

Abbreviations: DM, diabetes mellitus; CAD, coronary artery disease; HS, healthy 
subjects; DM+CAD−, diabetic non-CAD patients; DM+CAD+, diabetic patients 
with CAD; DM−CAD+, non-diabetic patients with CAD; CTCA, computed 
tomography coronary angiography; HU, Hounsfield unit; Cascore, calcium score; 
CPV, calcified plaque volume; NCPV, non-calcified plaque volume; TPV, total 
plaque volume; RI, remodeling index; SOD2, superoxide dismutase 2; LXRα, liver 
X receptor alpha; HA, hyaluronan; NSP, number of coronary artery segments with 
plaque; NCS, number of coronaries with significant stenosis.
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10 diabetic non-CAD patients (DM+CAD−), and 20 non-diabetic 
healthy subjects (HS). Furthermore, the purpose of our study was 
to investigate diabetic-specific CAD alterations using both quan-
titative imaging parameters derived from CTCA and molecular 
biomarkers.

MaTerials anD MeThODs

Patient recruitment
Computed tomography coronary angiography was performed in 
20 DM+CAD+ patients, 20 DM−CAD+ patients, 10 DM+CAD− 
patients, and 20 HS referred to our institution for suspected 
CAD. All clinical characteristics such as laboratory parameters, 
presence of cardiovascular risk factors, and medical history were 
accurately recorded.

Diabetes was defined as treatment with drugs or fasting blood 
glucose ≥126 mg/dL. Dyslipidemia was defined as treatment with 
drugs or fasting serum total cholesterol ≥240  mg/dL, or LDL 
cholesterol ≥140 mg/dL, or high-density lipoprotein cholesterol 
<40  mg/dL, or triglyceride ≥150  mg/dL. Hypertension was 
defined as treatment with drugs or systolic blood pressure (SBP) 
≥140  mmHg or diastolic blood pressure (DBP)≥ 90  mmHg. 
Anthropometrical measurements including body weight and 
height were recorded and body mass index (BMI) was calcu-
lated. Blood pressure and resting heart rate were measured after 
≥5 min rest with a sphygmomanometer. Physical activity in HS 
and patients was evaluated according to the WHO guidelines 
for adults 18–65 aged; specifically the performance of at least 
150  min of moderate-intensity aerobical physical activity per 
week [50–70% of maximum heart rate (MHR)] or at least 75 min 
of vigorous-intensity aerobic physical activity throughout the 
week (70–80% MHR) (37). None of the recruited subjects had 
physical disabilities.

Patients with known history of cancer, cardiomyopathy, active 
infections, chronic or immune-mediated diseases, renal failure, 
hepatic failure, and not suitable for cardiac imaging (atrial fibril-
lation, arrhythmia, or pre-scan heart rate greater than 65 bpm) 
were excluded from the study to avoid confounding effects due 
to other variables.

sample collection
Peripheral venous blood samples were collected after a 12  h 
overnight fasting immediately before i.v. cannulation for CTCA 
examination. All tubes were centrifuged within 30 min of collec-
tion at 1,900 g for 10 min at 4°C to separate plasma and cellular 
components. Aliquots of plasma were transferred into cryostat 
tubes and stored at −80°C until analysis. PBMNCs were isolated 
by Ficoll gradient using HISTOPAQUE-1077 (Sigma Diagnostics, 
MO, USA) and frozen at −80°C until total RNA extraction. 
All biological samples were stored at the IRCCS SDN Biobank 
(38). The study and the protocol were approved and reviewed 
by the institutional ethics committee (IRCCS Fondazione SDN, 
protocol no. 7-13). The study was performed in accordance with 
the ethical standards of the institutional ethics committee and 
with the Helsinki Declaration. A written informed consent was 
obtained from all subjects enrolled.

cT angiography Protocol and image 
analysis
Computed tomography coronary angiographies were performed 
on a CT scanner (Discovery CT750 HD, GE Healthcare), with 
a 64  mm  ×  0.625  mm collimation, 350  ms rotation time, and 
228 ms temporal resolution. A prospective ECG-triggered scan 
without contrast medium was used for calcium score (Cascore) 
evaluation followed by a retrospective scan with ECG tube cur-
rent modulation. Contrast enhancement was obtained by a bolus 
tracking technique with scan starting when a region of interest 
placed in the ascending aorta at the pulmonary bifurcation 
reached a threshold of 150 Hounsfield unit (HU). Contrast mate-
rial (iomeprol 400 mg I/mL, Iomeron 400, Bracco, Milan, Italy) 
was injected at 5–6 mL/s through an 18-gauge intravenous ante-
cubital catheter and was followed by saline solution at the same 
flow. Tube voltage and contrast agent volume were adapted to 
patient anatomical features such as BMI, calcifications, or stents. 
Images were reconstructed with a section thickness of 0.625 mm 
and an increment of 0.4  mm; standard and sharp reconstruc-
tion filter kernels were used; an additional sharper convolution 
kernel was used in patients with stents or calcification. The best 
data set was chosen according to the phase of the cardiac cycle 
with lower artifacts and coronary motions. Images were sent to 
a dedicated offline workstation (GE Advantage workstation 4.6, 
GE Healthcare) where MIP, cMPR, and 3D volume rendering 
were generated. Cascore was calculated by the SmartScore tool 
to obtain the Agatston score. Total plaque volume (TPV), non-
calcified plaque volume (NCPV), calcified plaque volume (CPV), 
and total lumen volume were measured for the major coronaries 
using the HU cutoff values reported in Ref. (39). The resulting 
values were summed to determine a per-patient plaque volume. 
Total vessel volume was determined summing TPV and total 
lumen volume. Plaque burden was obtained dividing TPV by total 
vessel volume (40). The remodeling index (RI) was calculated by 
dividing the cross-sectional vessel area at the site of maximum 
luminal narrowing including plaque by the cross-sectional vessel 
area in the most proximal atherosclerotic free segment chosen 
as reference (41). The total number of coronary artery segments 
exhibiting plaque (NSP) was determined according to the modi-
fied American Heart Association 16-segment classification (42) 
for each patient (less or more than 8 segments affected). Significant 
coronary stenosis was defined as a decrease in the luminal diam-
eter of >50% in one or more of the major coronary arteries; the 
total number of coronaries (NCS) with significant stenosis was 
calculated for each patient (less or more than one stenotic vessel).  
All scans were analyzed by two experienced, independent 
radiologists; therefore, a consensus interpretation was arrived to 
obtain a final coronary CT diagnosis according to the interna-
tional SCCT guidelines (43).

rna extraction and reverse Transcription
Total RNA was isolated from PBMCs using TRIzol Reagent 
(Thermo Fischer Scientific, USA) as previously described (44). 
The quantity and quality of RNA were measured using the 
NanoDrop 1000 (Thermo Fischer Scientific, USA). Total RNA 
(0.5 µg) was reversed transcribed (RT) using the SuperScript® III 
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First-Strand Synthesis SuperMix for qRT-PCR (Thermo Fischer 
Scientific, USA) according to the protocol of the manufacturer. 
The RT was performed using the Bio-Rad iCycler Thermal Cycler 
with the following protocol: incubation at 25°C for 10 min (primer 
annealing), 42°C for 30  min (cDNA synthesis), and 85°C for 
5 min (termination of cDNA synthesis). Immediately after, the 
samples were cooled down and stored at −20°C.

Quantitative real-time Pcr
The optimal reference genes for the study were selected as 
previously reported (45). Gene expression was quantified on 
the MyiQ™ Single-Color Real-Time PCR Detection System 
(Bio-Rad Laboratories, USA). Primers pairs were designed 
through OLIGO 6.7 program, and their specificity was verified 
with the BLAST program for test of sequence homology, a test 
for secondary structures and optimization of multiplex setup. 
All primers were purchased from Life Technologies. All samples 
were run in triplicate for genes of interest and reference genes 
using 1 µL of cDNA and iQ™ SYBR® Green Supermix (Bio-Rad 
Laboratories, USA) in a 25 µL final volume reaction. The thermal 
profile employed was 3  min of initial step of denaturation at 
95°C followed with denaturation for 15 s at 95°C, annealing at 
60°C for 30 s, and elongation at 72°C for 30 s for 40 cycles. Melt 
curve analysis was performed to verify a single product species. 
Relative expression (fold change) was calculated by the 2−ΔΔCT 
method (46). Mean and SE were determined by averaging rela-
tive expression levels across three independent experiments, each 
determined in triplicate.

ha Measurement
Plasmatic levels of HA were determined by enzyme-linked 
immunosorbent assay (ELISA) using Quantikine Hyaluronan 
Immunoassay kit (DHYAL0) (R&D Systems, Abingdon, UK), 
in accordance with the protocol supplied by the manufacturer. 
Briefly, samples were incubated with HA binding protein coated 
on microplates for 2 h at room temperature. After incubation, the 
microplates were washed five times with wash buffer, and further 
incubated with 100 µL of peroxidase labeled HA binding protein 
for 2 h at room temperature. After incubation, the microplates 
were again washed five times, and further incubated with 100 µL 
of peroxidase substrate for 30 min at room temperature in a dark 
room. The reaction was stopped by the addition of 100 µL of stop 
solution. The optical density of each well was determined using a 
microplate reader set to 450 nm within 30 min. HA concentration 
in each sample was calculated using the standard curve obtained 
with the purified HA solutions, included in the kit as references.

statistical analysis
Statistical analysis was performed using R Core Team (version 
3.03 Austria, Vienna). Continuous variables were expressed 
as mean  ±  SD or as median (1 quartile and 3 quartile). Data 
were tested for normality through the Shapiro–Wilk test and 
for homoscedasticity through the Levene test. For comparison 
between two groups, t-test was used if gaussianity was met; oth-
erwise the Mann–Whitney U test was chosen. For comparison 
among four groups, the one-way analysis of variance was used if 
both gaussianity and homoscedasticity were met; otherwise the 

Kruskal–Wallis test was chosen. In case of statistical significance, 
the Tukey–Kramer test and the Conover test were used for 
multiple comparisons as parametric and non-parametric test, 
respectively. Categorical variables were expressed as percentage 
and were compared using the Fisher’s exact test. The Spearman 
correlation test was performed to assess linear relationship 
between variables; in case of binary variables, the association was 
tested by the Wilcoxon rank sum test. A P < 0.05 was considered 
for statistical significance (rounded to the third decimal place).

resUlTs

clinical characteristics of study groups
The baseline demographic and clinical characteristics of the 
study population are summarized in Table  1. Heart rate was 
significantly different between HS and DM+CAD+ (P  <  0.01) 
and HS and DM−CAD+ (P  <  0.01) since only 10% of HS was 
in treatment with beta blocker agents, while no statistical sig-
nificance was found between both CAD groups and DM+CAD−. 
Considering the metabolic markers, glycemia was significantly 
higher in DM+CAD+ and DM+CAD− patients compared to HS 
(P < 0.01 and P < 0.001, respectively) and DM−CAD+ subjects 
(P < 0.01 and P < 0.001, respectively). Of diabetic patients, in 
DM+CAD+ group, 16% were insulin users, 64% were in treatment 
with antihyperglycemic agents, and 20% were not in treatment; in 
DM+CAD− group, the percentage of treatments were, respectively, 
10% for insulin, 80% for antihyperglycemic drugs, and 10% were 
not treated. Total cholesterol, LDL- and HDL-cholesterol plas-
matic concentrations did not significantly differ among the four 
groups, reflecting the effects of statin therapy to which 73.68% of 
DM+CAD+, 50% of DM−CAD+, 40% of DM+CAD−, and 5% of HS 
were subjected. Furthermore, SBP and DBP were not statistical 
different among the groups (P = 0.50 and P = 0.52, respectively). 
In this regard, hypertensive patients were in treatment with beta 
blocker agents (P = 0.008), calcium channel blockers (P = 0.68), 
and ACE inhibitors (P = 0.06).

imaging Parameters
There was significant difference between DM−CAD+ and 
DM+CAD+ according to NCS and NSP (P  =  0.026, P  =  0.04, 
respectively). Cascore was significantly higher in DM+CAD+ 
compared to DM−CAD+ (Figures  1 and 2): 1,068.7 (517.2–
2,086.85) vs 214.05 (72.98–970.15) P = 0.019. As regards plaque 
characterization, CPV was significantly higher in DM+CAD+ 
[105.85 (51.2–341.73) mm3] compared to DM−CAD+ [42 (7.2–
105.9) mm3] P = 0.014, but there was no significant difference 
according to NCPV and TPV: 519.85 (411.93–1,064.85) mm3 
for DM+CAD+ and 421.85 (240.10–689.58) mm3 for DM−CAD+ 
P = 0.37 and 688.95 (470.05–1,436) mm3 for DM+CAD+ vs 454.45 
(257.78–820.83) mm3 for DM−CAD+ P =  0.16, respectively. RI 
was 1.40  ±  0.24 for DM+CAD+ and 1  ±  0.19 for DM−CAD+ 
P < 0.001, and plaque burden was 0.45 ± 0.14 for DM+CAD+ and 
0.27 ± 0.15 for DM−CAD+ P < 0.001. Results are summarized in 
Table 2.

In our population, RI highly correlated with plaque burden 
(ρ = 0.65, P < 0.001). Cascore showed a positive correlation with 
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Table 1 | Clinical parameters of patients and healthy subjects.

clinical parameters hs DM+caD− DM+caD+ DM−caD+ P valuea

Age 58 ± 8.37 60.8 ± 13.5 61.24 ± 10.47 64.4 ± 9.33 0.07
BMI 26.9 ± 3.62 28.94 ± 4.2 29.36 ± 5.43 27.73 ± 3.14 0.07
SBP (mmHg) 119.38 ± 11.16 122 ± 14.7 126.25 ± 19.20 118.75 ± 7.91 0.50
DBP (mmHg) 75.63 ± 6.23 77 ± 5.81 74.67 ± 10.36 78.75 ± 3.54 0.52
Heart rate (bpm) 67.86 ± 11.09 60.20 ± 6.15 56.00 ± 6.50 54.68 ± 6.49 0.005
Ejection fraction (%) 57.50 ± 3.54 55.78 ± 6.07 51.46 ± 9.90 56.00 ± 5.00 0.41
Glycemia (mg/dL) 93.71 ± 10.26 126.90 ± 14.43 132.43 ± 26.15 97.90 ± 12.17 0.006
Azotemia (mg/dL) 36.91 ± 7.44 37.8 ± 9.15 39.84 ± 16.04 38.48 ± 11.84 0.71
Creatinine (mg/dL) 0.88 ± 0.17 1 ± 0.19 1.03 ± 0.19 1.04 ± 0.17 0.05
Sex (M) 60% 60% 70% 75% 0.50
CAD familiarity 45% 40% 60% 60% 0.51
Smoke 25% 30% 15% 35% 0.75
Hypertension 45% 70% 75% 55% 0.04
Dyslipidemia 35% 70% 75% 45% 0.05
Physical activity 25% 20% 200% 25% 0.80
Total cholesterol (mg/dL) 187.35 ± 31.55 160.7 ± 72.45 160.75 ± 65.95 172.80 ± 47.31 0.51
LDL-c (mg/dL) 133.86 ± 26.47 87.24 ± 38.45 83.50 ± 68.59 107.60 ± 43.71 0.31
HDL-c (mg/dL) 55.25 ± 19.55 48.27 ± 15.50 48.50 ± 12.40 41.40 ± 8.02 0.45
Tryglycerides (mg/dL) 123.57 ± 52.99 135.28 ± 55 150.40 ± 66.54 119.25 ± 53.21 0.70

Medical treatments
Beta blocker agents (%) 10% 40% 52.63% 52.63% 0.008
Calcium channel blockers (%) 20% 10% 10.53% 21.05% 0.68
ACE inhibitors (%) 15% 30% 42.11% 21.05% 0.06
Statins (%) 5% 40% 73.68% 50% 0.008
Antiplatelets agents (%) 5% 10% 78.95% 52.63% <0.001

Diabetic medications
Oral hypoglicemic (%) 80% 64% 0.04
Insulin (%) 10% 16% 0.23
No treatment (%) 10% 20% 0.05

aComparison among HS, DM+CAD−, DM+CAD+, and DM−CAD+.
SBP, systolic blood pressure; DBP, diastolic blood pressure; CAD, coronary artery disease; LDL, low-density lipoprotein; BMI, body mass index.

FigUre 1 | (a,D) Non-contrast enhanced images showing calcium deposits (yellow) on the left descending coronary artery (LAD) in a non-diabetic CAD patient 
(DM−CAD+) and in a diabetic CAD patient (DM+CAD+), respectively. (b,e) cMPR of LAD is provided for DM−CAD+ and DM+CAD+. (c,F) Plaque characterization: the 
calcific (yellow) and non-calcific (pink) components of the plaque are highlighted; the vessel lumen is represented in green. DM+CAD+ displayed significantly higher 
coronary calcium values compared to DM−CAD+.
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FigUre 2 | (a,b) Cross-sectional view and cMPR of the left descending coronary artery (LAD) in a non-diabetic CAD patient (DM−CAD+) and in a diabetic CAD 
patient (DM+CAD+). In cross-sectional images, the vessel lumen is represented in green whereas the calcific component of the plaque is red.

Table 2 | Imaging parameters.

imaging parameters DM+caD+ DM−caD+ P valuea

Number of coronaries with stenosis 44.4%c 10%c 0.026
NSPb 78%d 45%d 0.04
Calcium scoreb 1,068.7 (517.2–2,086.85) 214.05 (72.98–970.15) 0.019
Calcified plaque volume (mm3)b 105.85 (51.2–341.73) 42 (7.2–105.9) 0.014
Non-calcified plaque volume (mm3)b 519.85 (411.93–1,064.85) 421.85 (240.10–689.58) 0.37
Total plaque volume (mm3)b 688.95 (470.05–1,436) 454.45 (257.78–820.83) 0.16
Remodeling index 1.40 ± 0.24 1 ± 0.19 <0.001
Plaque burden 0.45 ± 0.14 0.27 ± 0.15 <0.001

aComparison among DM+CAD+ and DM−CAD+.
bData are expressed as median (1 quartile–3 quartile).
cPatients with >1 coronary stenotic vessels.
dPatients with >8 coronary segments exhibiting plaque.

6

Infante et al. CAD and Diabetes: An In Vivo and In Vitro Analysis

Frontiers in Endocrinology | www.frontiersin.org August 2017 | Volume 8 | Article 209

NCPV (ρ = 0.83, P < 0.001), CPV (ρ = 0.96, P < 0.001), TPV 
(ρ = 0.88, P < 0.001), and plaque burden (ρ = 0.60, P < 0.001). 
Moreover, a significant correlation was found between plaque 
burden and NCPV (ρ  =  0.57, P  <  0.001), CPV (ρ  =  0.64, 
P < 0.001), and TPV (ρ = 0.60, P = 0.001).

gene expression Profiling
We evaluated, by quantitative real-time PCR, SOD2 and LXRα 
gene expression in PBMCs from our population (Table  3). For 
both genes, ΔCT was computed and compared between the 
four groups. Molecular analysis showed that SOD2 mRNA 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


7

Infante et al. CAD and Diabetes: An In Vivo and In Vitro Analysis

Frontiers in Endocrinology | www.frontiersin.org August 2017 | Volume 8 | Article 209

was downregulated in DM+CAD− (ΔCT  =  5.70  ±  3.28; fold 
change = 0.10 ± 0.03; P = 0.001), DM+CAD+ (ΔCT = 4.57 ± 3.56; 
fold change  =  0.22  ±  0.08; P  =  0.03), and DM−CAD+ 
(ΔCT = 5.75 ± 3.04; fold change = 0.10 ± 0.05; P = 0.001) compared 
to HS (ΔCT = 2.36 ± 2.61), with no statistically significant difference 
between the two CAD groups (with and without DM) (Figure 3A). 
LXRα gene expression was significantly upregulated in DM+CAD− 
(ΔCT = 2.77 ± 1.36; fold change = 4.51 ± 0.20 P = 0.006), DM+CAD+ 
(ΔCT = 3.27 ± 1.79; fold change = 3.19 ± 0.42; P = 0.008), and 
DM−CAD+ (ΔCT  =  2.15  ±  1.16; fold change  =  6.93  ±  0.70; 
P  <  0.001) compared to the HS (ΔCT  =  4.94  ±  2.14), with a 
significant difference between the two CAD groups (P  =  0.03) 
(Figure  3B). No statistically significant correlation was found 
between SOD2 and Cascore (ρ  =  −0.04, P  =  0.81), NCPV 
(ρ = −0.03, P = 0.85), and TPV (ρ = −0.02, P = 0.89) as well as 
between LXRα and Cascore (ρ = 0.13, P = 0.44), NCPV (ρ = 0.10, 
P = 0.55), and TPV (ρ = 0.10, P = 0.57).

comparison of ha levels
In the HS group, mean concentration of plasma HA was 
46.90  ±  23.79  ng/mL. Compared with HS, HA concentrations 
were higher in DM−CAD+ (90.05  ±  35.11  ng/mL; P  =  0.001), 
DM+CAD− (105.56  ±  18.13  ng/mL; P  =  0.001), and DM+CAD+ 
(120.74 ± 21.17 ng/mL; P = 0.001) (Figure 3C). When compared 
to DM−CAD+, HA concentration was significantly higher in 
DM+CAD− (P = 0.008) and DM+CAD+ (P < 0.001) with a signifi-
cant difference between two diabetic groups (P = 0.003). Correlation 
of HA levels with Cascore, NCPV, and TPV revealed ρ  =  0.29, 
P = 0.076, ρ = 0.30, P = 0.073, and ρ = 0.31, P = 0.063, respectively.

risk Factors and Molecular Markers 
analysis
Analysis on risk factors and molecular data showed no significant 
association between sex and SOD2, LXRα, and HA (P  =  0.85; 

Table 3 | Molecular parameters.

Molecular parameters hs DM+caD− DM+caD+ DM−caD+ P valuea

Superoxide dismutase 2 2.36 ± 2.61 5.70 ± 3.28 4.57 ± 3.56 5.75 ± 3.04 0.009
Liver X receptor alpha 4.94 ± 2.14 2.77 ± 1.36 3.27 ± 1.79 2.15 ± 1.16 0.005
Hyaluronan 46.90 ± 23.79 105.56 ± 18.13 120.74 ± 21.17 90.05 ± 35.11 <0.001

aComparison among HS, DM+CAD−, DM+CAD+, and DM−CAD+.

FigUre 3 | (a) Superoxide dismutase 2 (SOD2) mRNA relative expression in PBMNCs of healthy subjects (HS), diabetic non-CAD patients (DM+CAD−), non-
diabetic CAD patients (DM−CAD+), and diabetic CAD patients (DM+CAD+). (b) Liver X receptor alpha (LXRα) gene expression in PBMNCs of HS, DM+CAD−, 
DM−CAD+, and DM+CAD+. (c) Median plasma hyaluronan (HA) concentrations (ng/mL) in HS, DM+CAD−, DM−CAD+, and DM+CAD+ (*P < 0.05; **P < 0.01; 
***P < 0.001). When not specified, significance is referred to the comparison vs HS. (D) Correlation between HA levels and glycemia in HS, DM+CAD−, DM−CAD+, 
and DM+CAD+ patients (ρ = 0.73, P < 0.001).
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P = 0.21; P = 0.75, respectively) as well as regarding familiarity 
(P = 0.83; P = 0.64; P = 0.55, respectively) and smoke (P = 0.73; 
P  =  0.17; P  =  0.49, respectively). Furthermore, no significant 
correlations were found between BMI and the three molecular 
parameters (SOD2 ρ = 0.12, P = 0.35; LXRα ρ = −0.11, P = 0.35; 
HA ρ  =  0.19, P  =  0.15). HA was significantly correlated with 
age (ρ  =  0.46, P  <  0.001), unlike SOD2 (ρ  =  0.03, P  =  0.97) 
and LXRα (ρ  =  0.03, P  =  0.95). HA showed also a significant 
association with dyslipidemia (P = 0.01) and diabetes (P = 0.01) 
in the study population, while statistical analysis on hypertension 
revealed a P = 0.08. On the other hand, SOD2 and LXRα were 
not significantly associated with the previously mentioned risk 
factors (SOD2 vs dyslipidemia P  =  0.45, SOD2 vs hyperten-
sion P = 0.63, SOD2 vs diabetes P = 0.47, LXRα vs dyslipidemia 
P = 0.85, LXRα vs hypertension P = 0.53, and LXRα vs diabetes 
P = 0.61). Correlation between HA levels and glycemia was sta-
tistically significant (ρ = 0.73, P < 0.001) (Figure 3D), while no 
significant correlation was found between SOD2 (P = 0.62) and 
LXRα (P = 0.55) gene expression and glycemia.

DiscUssiOn

In this study, we have exploited an imaging and molecular based 
analysis to investigate diabetic-specific CAD alterations in 
selected groups of patients.

Calcium score, CPV, plaque burden, and RI were significantly 
higher in DM+CAD+ compared to DM−CAD+. Previous studied 
have examined CAD and plaque features in diabetic patients 
by CTCA. Diabetics showed extensive coronary artery calcium 
deposits and, therefore, a larger atherosclerotic plaque burden 
with a consequent higher risk for all-cause mortality than in 
non-diabetic patients (5, 47–54). Gao et  al. (47) found that 
diabetics compared to non-diabetics have higher total coronary 
artery calcium, a higher proportion of coronary segments with 
plaque and multivessel obstructive disease. In a study by Van 
Werkhoven et al., obstructive CAD and the number of diseased 
segments, with obstructive and non-obstructive plaques, were 
higher in diabetics than non-diabetics. Total Agatston score was 
higher in diabetic patients (440 ± 786 vs 195 ± 404, P < 0.001) 
(5). Khazai et al. found that segment involvement score, segment 
stenosis score, and total plaque score were higher in diabetics but 
there was no significant difference in the number of non-calcified 
plaque between the two groups (50). In one study by Pundziute 
et al., diabetics showed more diseased segments and more seg-
ments with non-obstructive CAD, but Agatston score was similar 
between the two groups (54). Furthermore, Chu et al. detected 
more calcified plaques than mixed or non-calcified plaques in 
diabetics. Among the different degrees of stenosis, mild narrow-
ing was most common, and no significant difference between 
non-obstructive stenosis and obstructive stenosis was observed 
(48). In agreement with the aforementioned works, in our study, 
DM+CAD+ presented more diseased coronaries in terms of 
coronary calcium, significant stenoses, atherosclerotic burden, 
and extent of disease. Furthermore, we have quantified RI in 
diabetic patients by CTCA providing an additional prognostic 
value comparable only to invasive procedures such as intravas-
cular ultrasound (55, 56). A recent study analyzed CAD features 

comparing hypertensive, dyslipidemic, and diabetic patients 
by CTCA reporting the prevalence of positive remodeling as a 
qualitative parameter (57).

Positive coronary arterial remodeling is a compensatory 
enlargement of coronary arterial lumen in response to athero-
sclerotic plaque formation. Histopathological studies proved that 
positive remodeling is associated with infiltration of inflammatory 
cells, expression of pro-inflammatory cytokines, and increased 
protease activity (58, 59). Positive remodeling is associated with 
vulnerable plaque and progression of atherosclerosis. High plaque 
burden, together with positive remodeling, means more prone 
to rupture plaques in diabetic patients and, therefore, a worse 
prognosis and a major likelihood of cardiac event occurrence.

In the last decade, a great amount of data demonstrated a 
complex interaction between blood cells and the arterial wall 
with the consequent activation of oxidative and inflammatory 
pathways, leading to the development of CAD.

Our results showed that the expression levels of SOD2 gene 
were reduced in CAD patients compared to HS, while no signifi-
cant difference was found between diabetic and non-diabetic CAD 
subjects. Previous studies reported controversial findings for the 
effect of SOD2 activity relative to CAD. A recent study by Peng 
et al. (60) showed that plasmatic concentration of SOD1 and SOD2 
was higher in CAD than in healthy control. Our findings were 
in line with a gene expression study performed by Abdullah et al. 
(61) showing a downregulation of this gene in PBMCs of angio-
graphically confirmed CAD patients (≥50% stenosis). These data 
indicate that SOD2 might serve as surrogate biomarker for CAD.

Data from in vitro and in vivo models have demonstrated a key 
role of LXRα in the regulation of processes involved in CAD and 
DM such as inflammation and glucose homeostasis (62, 63). Our 
findings reported that LXRα gene expression was significantly 
upregulated in DM+CAD+ and DM−CAD+ compared to HS. 
Although previous study by Dahlman et al. (64) investigated the 
association of LXRα and DM, we demonstrated also a differential 
expression of this gene between DM+CAD+ and DM−CAD+ 
groups suggesting this parameter as a possible biological hallmark 
for diabetic condition. HA plasmatic concentrations showed 
significant difference between diabetic and non-diabetic patients 
with higher values in patients affected by both DM and CAD 
suggesting a possible additive detrimental effect on endothelial 
dysfunction. A significant positive correlation was found between 
HA levels and glycemia in our study population. Our findings 
were in line with previous studies, also reporting a critical role 
for HA in DM-related atherosclerosis (26–29, 65). In vascular 
dysfunction, HA triggers smooth muscle cells’ dedifferentia-
tion, which contributes to vessel wall thickening. Furthermore, 
HA is able to modulate inflammation by altering the adhesive 
properties of endothelial cells. In hyperglycemic conditions, HA 
accumulates in vessels and can contribute to the diabetic compli-
cations in macro- and microvasculature (25).

However, no study has yet examined the relationship between 
HA levels and vascular function assessed by CTCA. Our data 
suggested that serum HA levels positively correlated with poor 
glycemic control and angiopathy and, due to the pivotal role in 
favoring atherogenesis, this molecule could be used as a surrogate 
marker of vascular function.
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