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Tuberculosis (TB) is the biggest cause of human mortality from an infectious disease. The only vaccine
currently available, bacille Calmette-Guérin (BCG), demonstrates some protection against disseminated
disease in childhood but very variable efficacy against pulmonary disease in adults. A greater understand-
ing of protective host immune responses is required in order to aid the development of improved vac-
cines. Tissue-resident memory T cells (TRM) are a recently-identified subset of T cells which may
represent an important component of protective immunity to TB. Here, we demonstrate that intradermal
BCG vaccination induces a population of antigen-specific CD4+ T cells within the lung parenchyma which
persist for >12 months post-vaccination. Comprehensive flow cytometric analysis reveals this population
is phenotypically and functionally heterogeneous, and shares characteristics with lung vascular and sple-
nic CD4+ T cells. This underlines the importance of utilising the intravascular staining technique for
definitive identification of tissue-resident T cells, and also suggests that these anatomically distinct cel-
lular subsets are not necessarily permanently resident within a particular tissue compartment but can
migrate between compartments. This lung parenchymal population merits further investigation as a crit-
ical component of a protective immune response against Mycobacterium tuberculosis (M. tb).
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Tuberculosis (TB), caused by infection with Mycobacterium
tuberculosis (M. tb), presents a major challenge to global health,
claiming 1.7 million lives in 2016 [1]. The only licensed vaccine
against TB, bacille Calmette-Guérin (BCG), was developed almost
a century ago [2]. When BCG is administered intradermally in early
life, it is protective against disseminated forms of TB in childhood
[3]. However, efficacy against pulmonary disease in adulthood, the
most common form of TB disease, is very variable [4].

In murine models of TB, BCG provides significant protection
against infection [5–8]. Despite strong evidence supporting a crit-
ical role for CD4+ T cells producing interferon-gamma (IFN-c) in
this protection [8,9], frequencies of M. tb-specific CD4+ T cells in
the blood and lymphoid organs of humans and mice do not corre-
late with protection [10,11]. Similarly, magnitude and frequency of
vaccine-induced IFN-c responses fail to predict protective immu-
nity [10–12]. A better understanding of the underlying mecha-
nisms of vaccine-mediated protection, and generation of T cell
memory in response to vaccination, is critical to rational develop-
ment of more efficacious vaccines.

Tissue-resident memory T cells (TRM), a recently-identified sub-
set of memory T cells, may play an important role in protective
immunity to TB. TRM persist in non-lymphoid tissues without
re-circulating through the body and are present locally at sites of
infection in multiple different tissues, including the lungs
[13–16]. They are able to mount a rapid in situ response to patho-
genic challenge and can coordinate recruitment of immune cells to
tissue sites [16–18]. Development of an intravascular staining
technique has enabled the study of TRM, allowing definitive dis-
crimination between cells resident within the parenchyma of an
organ and those present within the vasculature [16,19–21].

Several studies have investigated CD4+ TRM in the lungs within
the context of M. tb infection [17,22–24], but their induction fol-
lowing BCG vaccination has not been well-characterised. Connor
et al. [25] suggest that BCG-induced protection depends on lym-
phocyte migration to the lungs and retention of lung memory

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2018.07.035&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.vaccine.2018.07.035
http://creativecommons.org/licenses/by/4.0/
mailto:Naomi.bull@ndm.ox.ac.uk
https://doi.org/10.1016/j.vaccine.2018.07.035
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine


5626 N.C. Bull et al. / Vaccine 36 (2018) 5625–5635
CD4+ T cells. Perdomo et al. [26] describe a transient influx of CD4+

and CD8+ T cells into the parenchyma of the lung following intra-
tracheal BCG vaccination. However, neither of these studies uti-
lised the intravascular staining technique for definitive
identification of tissue-resident cells. This is critical, as previous
studies utilising intravascular staining reveal that >95% of CD4+ T
cells and >99% of total lymphocytes isolated from naïve murine
lung via standard methods were in fact present in the vasculature
of the lung rather than the parenchyma [17,21].

Other studies have employed the use of intravascular staining
to investigate responses to novel TB vaccines [27–31]. Woodworth
et al. [27] found that mice immunised with a subunit TB vaccine
generated polyfunctional CD4+ T cells which preferentially loca-
lised to the parenchyma of M. tb-infected lungs upon adoptive
transfer. Carpenter et al. [28] demonstrated that vaccination with
mycobacterial peptides resulted in a secondary CD4+ T cell
response against M. tb challenge, comprised of antigen-specific
cells preferentially localising to the lung parenchyma. Both of these
vaccines conferred protection against M. tb infection, highlighting
the exciting potential role of this subset in protective immunity.

The phenotype of CD4+ T cells induced by BCG vaccination has
been described by several studies [5,32,33], but it is unclear how
these phenotypes are distributed in the parenchymal and vascular
compartments of the lung, as no studies have separately identified
these populations with respect to BCG vaccine-induced responses.
It is now important to establish whether BCG-induced lung
parenchymal cells exhibit a unique phenotype, identifying them
as tissue-resident. A number of studies have used expression of
CD69 to define tissue-residence in the lung [16,19,20,34,35]. How-
ever, it is unclear how reliably this identifies lung TRM in the con-
text of TB vaccination. It is also important to determine whether
the phenotype of these cells provides further knowledge regarding
their functional potential. Whilst TRM have been shown to express
high levels of CD44 and low levels of CD62L, in common with effec-
tor memory T cells (TEM) [36]; they also exhibit a unique transcrip-
tional profile, different from that of other memory T cell subsets
[37], which confirms their classification as a separate population.

Here, we utilise the intravascular staining technique to compre-
hensively characterise the development of an antigen-specific
tissue-resident CD4+ T cell population over the course of 12
months following intradermal BCG vaccination. We determine that
BCG induces a population of these cells which are still present in
the lung parenchyma 12 months post-immunisation. They display
phenotypic and functional heterogeneity, reinforcing the impor-
tance of the intravascular staining technique for their definitive
identification in the absence of unique phenotypic markers of lung
location.
2. Results

2.1. Frequency of CD4+ T cells is greater in the lung vasculature than
parenchyma post-BCG or placebo immunisation

Following intradermal vaccination with BCG or placebo,
intravascular anti-CD45 staining allowed discrimination between
CD4+ T cells present in the lung parenchymal tissue and those pre-
sent in the lung vasculature (Fig. 1a). At all time points investi-
gated, up to 12 months post-vaccination, frequencies and
absolute numbers of CD4+ T cells in the lung vasculature were sig-
nificantly higher than in the parenchyma, for both BCG and
placebo-immunised mice (P < 0.0001) (Fig. 1b and c). For the first
12 weeks post-immunisation, frequencies of CD4+ T cells in the
lung vasculature were approximately 9-fold greater than in the
parenchyma. At 26 and 52 weeks post-immunisation, frequencies
of CD4+ T cells in the lung parenchyma were significantly greater
than for all previous time points (P < 0.05) and frequencies of
CD4+ T cells in the lung vasculature were significantly lower than
for all previous time points (P < 0.05). The actual number of CD4+

T cells in the lung parenchymal compartment did not alter signif-
icantly between any of the time points measured post-
immunisation. There were significantly fewer CD4+ T cells in the
lung vascular compartment at week 26 (4.5 � 105) compared to
weeks 1 (6.5 � 105, P = 0.0022) and 6 (6.8 � 105, P = 0.0004) in
both BCG and placebo-immunised mice.

2.2. BCG vaccination induces antigen-specific CD4+ T cells in the lungs,
spleen and blood

In order to investigate the development of antigen-specific
CD4+ T cells following BCG vaccination, lymphocytes isolated from
the lungs, spleen and peripheral blood were stimulated with a pool
of TB10.4 peptides before intracellular cytokine staining (ICS) to
identify CD4+ T cells producing interferon-gamma (IFN-c),
interleukin-2 (IL-2) and tumour necrosis factor-alpha (TNF-a)
(Supplementary Fig. 1). Boolean gating allowed analysis of all
CD4+ T cells producing any of these cytokines independently or
in combination (cytokine+). BCG vaccination induced significant
populations of antigen-specific CD4+ T cells in the lung, spleen
and peripheral blood, compared to placebo immunisation (P <
0.05) (Fig. 2a). Antigen-specific CD4+ T cells were identified at all
time points from week 3 post-BCG vaccination in the lung vascula-
ture and from week 5 post-BCG vaccination in the lung parench-
yma, spleen and peripheral blood.

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.vaccine.2018.07.
035.

2.3. BCG induces the highest frequencies of antigen-specific CD4+ T
cells in the lung, with no difference in frequency between parenchyma
and vasculature

There was no significant difference in frequency of antigen-
specific CD4+ T cells present in the lung vascular and parenchymal
compartments at any time point post-BCG vaccination (Fig. 2b). At
week 5 post-vaccination, both the lung parenchyma and vascula-
ture contained significantly higher frequencies of antigen-specific
CD4+ T cells (2.36% and 2.49% respectively) when compared to
peripheral blood (0.51%, P = 0.0146 & P = 0.0074 respectively).
The lung vascular compartment contained significantly higher fre-
quencies of antigen-specific CD4+ T cells when compared to spleen
(0.82%, P = 0.0338). At week 12 post-vaccination, only the lung
parenchymal compartment contained significantly higher frequen-
cies of antigen-specific CD4+ T cells (3.48%) compared to spleen
(1.34%, P = 0.0055) and peripheral blood (0.85%, P = 0.0002). At
week 52 post-vaccination, only the lung vascular compartment
contained significantly higher frequencies of antigen-specific
CD4+ T cells (3.68%) compared to spleen (1.17%, P = 0.0004) and
peripheral blood (1.03%, P = 0.0001).

2.4. BCG-induced antigen-specific CD4+ T cells display a dominance of
multifunctional cells in the lungs, spleen and blood

Boolean gating analysis was used to identify populations of
antigen-specific CD4+ T cells producing IFN-c, IL-2, TNF-a or any
combination of the three. Triple-positive (IFNc+IL-2+TNF-a+) and
double-positive (IFNc+IL-2�TNF-a+) CD4+ T cells were detectable
in all compartments at all time points post-BCG vaccination except
week 1, when there were no significant populations of antigen-
specific CD4+ T cells in any compartment. Representative data for
week 5 is shown (Fig. 3), with data for all other time points avail-
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Fig. 1. Frequency of CD4+ T cells is greater in the lung vasculature than parenchyma post-BCG or placebo immunisation. Following BCG immunisation, intravascular staining
identified populations of lung parenchymal and lung vascular CD4+ T cells. (a) Representative plots from a BCG-immunised mouse showing gating strategy for defining lung
parenchymal and vascular populations. (b) Frequency of lung vascular and parenchymal CD4+ T cells as a % of total CD4+ T cells isolated from the lung. (c) Number of CD4+ T
cells in the lung parenchyma and vasculature. For both graphs, points represent mean ± SEM (n = 6). Two-way ANOVA with Sidak’s post-test, comparing each time point
within the same compartment (shown on graph, *P < 0.05, **P < 0.01, ***P < 0.001), BCG with control (no significant differences at any time point) and lung parenchymal with
lung vascular (not shown on graph, for all time points frequency and number of lung vascular CD4+ T cells exceeded lung parenchymal CD4+ T cells in both BCG-immunised
and control mice by ****P < 0.0001).
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able in Supplementary Fig. 2. Similar patterns of cytokine produc-
tion were seen across all time points.
2.5. BCG-induced antigen-specific CD4+ T cells display an effector
phenotype in the lungs, spleen and blood

In order to determine whether the antigen-specific CD4+ T cell
populations induced by BCG vaccination displayed an effector phe-
notype, expression of CD62L was investigated [38] (Fig. 4a). CD27
expression was investigated as a marker of functional heterogene-
ity in CD4+ memory T cells [39,40] (Fig. 4a). Prior to analysis of
CD62L and CD27 expression, CD4+ T cells were pre-gated on CD44hi
to identify antigen-experience [41] (Fig. 1a). At all time points from
week 3 post-BCG vaccination, antigen-specific CD4+ T cells in both
lung compartments, spleen and peripheral blood all displayed a
CD44hi CD62Llo CD27� effector phenotype (P < 0.0001). Represen-
tative data for week 5 is shown (Fig. 4b) with data for all other time
points available in Supplementary Fig. 3.
2.6. BCG-induced antigen-specific CD4+ T cells are CCR7� but
heterogeneous for CD69 and CD127

Additional markers were investigated to further characterise
the antigen-specific CD4+ T cells in each compartment. We



Fig. 2. BCG induces antigen-specific CD4+ T cells in the lungs, spleen and peripheral blood, with highest frequencies in the lung parenchyma and vasculature. Following BCG
immunisation, intravascular staining and ICS identified populations of antigen- (TB10.4 peptide) specific (cytokine+) CD4+ T cells in the lungs, spleen and peripheral blood
producing IFN-c, IL-2 or TNF-a alone or in combination. (a) Frequencies of antigen-specific CD4+ T cells as a % of the total number of CD4+ T cells in the same compartment.
Statistical comparison is between BCG and control at each time point. (b) Frequencies of antigen-specific CD4+ T cells from all compartments in BCG-vaccinated animals
expressed as a % of the total number of CD4+ T cells in the same compartment. Statistical comparison is between frequency of BCG-induced antigen-specific CD4+ T cells in all
compartments at each time point. For all graphs, points represent mean ± SEM (n = 6). Two-way ANOVA with Sidak’s post-test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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included CCR7 to define effector or central memory phenotype
[38], CD127 to determine memory capability [42,43] and CD69 as
it has been suggested as a putative marker of TRM [37,44]. At all
time points from week 3 post-BCG vaccination, antigen-specific
CD4+ T cells in both lung compartments, spleen and peripheral
blood were all CCR7�, either CD69+ or CD69� and either CD127hi

or CD127lo (Fig. 5a). Representative data for week 5 is shown
(Fig. 5b) with data for all other time points available in Supplemen-
tary Fig. 4. There were significantly higher frequencies of CD127lo

compared to CD127hi CD4+ T cells in both lung compartments
and spleen at weeks 3, 5 and 6 (P < 0.05). There were significantly
higher frequencies of CD69+ compared to CD69� CD4+ T cells in
both lung compartments and spleen at weeks 12 and 26
(P < 0.01) and in the lung vascular compartment alone at week 3



Fig. 3. BCG-induced antigen-specific CD4+ T cells display a dominance of multifunctional cells. Following BCG immunisation, intravascular staining and ICS identified
populations of antigen-specific (cytokine+) CD4+ T cells in the lungs, spleen and peripheral blood producing IFN-c, IL-2 or TNF-a alone or in combination. Graphs show
frequencies of BCG-induced antigen-specific CD4+ T cells in all compartments as a % of the total CD4+ T cells in the same compartment at week 5 post-BCG vaccination. Data
for all other time points is presented in Supplementary Fig. 2. For all graphs, bars represent mean ± SEM (n = 6). Two-way ANOVA with Sidak’s post-test, comparing BCG and
control, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(P = 0.0497). There were significantly higher frequencies of CD69�

compared to CD69+ CD4+ T cells in the lung vascular compartment
and the spleen at week 52 (P < 0.0001). In order to investigate dif-
ferences in the level of CD69 expression on lung parenchymal and
vascular CD4+ T cells, median fluorescence intensity (MFI) of the
CD69+ populations was measured (Fig. 5c shows data for week 5
post-BCG and Supplementary Fig. 5 shows all other time points).
The CD69+ MFI was significantly higher for lung parenchymal com-
pared to lung vascular CD4+ T cells at weeks 5 (P < 0.0021) and 52
(P < 0.0032) post-BCG. At all other time points, the CD69+ MFI was
higher for the lung parenchymal population, but this did not reach
statistical significance.

3. Discussion

BCG vaccination provides significant protection against TB in
mice [5–8], but despite strong evidence implicating IFN-y-
producing CD4+ T cells in this protection [8,9], the precise underly-
ing mechanisms have yet to be elucidated. TRM, a subset of memory
T cells which persist in non-lymphoid tissues and are able to
respond to infection locally at sites of pathogen entry, have been
identified in the lungs within the context of M. tb infection
[17,21,22,24]. They have been shown to mediate superior protec-
tion, compared to T cells present in the lung vasculature
[17,22,24], and their ability to enter the lung parenchyma corre-
lates with greater control of M. tb [17,22].

To date, there has been little data published on TRM induction
following immunisation against TB. Woodworth et al. [27] and Car-
penter et al. [28] have both used intravascular staining to investi-
gate CD4+ T cell responses to vaccination against TB, using subunit
and peptide immunisations respectively. Both of these studies
describe induction of a population of CD4+ T cells which preferen-
tially localise to the parenchyma of M. tb-infected lungs upon
adoptive transfer. Here we evaluate whether BCG, the only licensed
vaccine currently available against TB, delivered intradermally, can
induce a population of antigen-specific CD4+ T cells in the lung par-
enchyma. We describe the development of a lung tissue-resident
CD4+ T cell population following BCG which persists for >12
months post-vaccination. In the murine model, protective immu-
nity afforded by parenteral BCG immunisation has been demon-
strated up to 12 months post-vaccination [32,45]. The durability
of this protection has been linked to the ongoing presence of
BCG-specific, multifunctional CD4+ T cells [5,45], and here we pre-
sent the first study utilising intravascular staining to investigate
their location in either the parenchyma or vasculature of the lung.

We identified BCG-induced antigen-specific CD4+ T cells in the
lung parenchyma from 5 weeks post-vaccination, and this tissue-
resident population was maintained for the duration of the study,



Fig. 4. BCG-induced antigen-specific CD4+ T cells display an effector phenotype. Following BCG immunisation, intravascular staining and ICS identified populations of
antigen-specific (cytokine+) CD4+ T cells. (a) Representative plots showing surface staining for CD62L and CD27 on antigen-specific CD4+ T cells from a mouse 5 weeks post-
BCG vaccination. (b) Frequency of antigen-specific CD4+ CD44hi T cells in all compartments displaying combinations of CD62L and CD27 cell surface markers as a % of total
CD4+ T cells in that compartment at week 5 post-vaccination. Data for all other time points is presented in Supplementary Fig. 3. Bars represent mean ± SEM (n = 6). Two-way
ANOVA with Sidak’s post-test, comparing BCG and control, ****P < 0.0001.
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52 weeks in total. Factors involved in the maintenance of TRM in
the lung are incompletely understood, and no data is published
on their persistence following vaccination against TB, utilising
the intravascular staining technique. Longitudinal studies of CD8+

lung TRM report waning of the population over time following
clearance of influenza virus infection [35,46]. Slϋtter et al. [46] sug-
gest that this is due to a requirement for continual replenishment
from the circulating memory T cell pool. Our results demonstrate
maintenance of a population of tissue-resident antigen-specific
CD4+ T cells up to 52-weeks post-infection, with no measurable
decline. This difference may be due to the fact that BCG has been
shown to persist in tissues for at least 16 months post-
vaccination providing ongoing antigenic-stimulation [5,47], result-
ing in maintenance of a stable tissue-resident population. Addi-
tionally, Turner et al. [48] report that in a murine model of
allergic airway disease, only CD4+ and not CD8+ TRM persisted long
term in the lung following cessation of exposure to allergen. This
suggests that the dynamics of CD4+ TRM responses may well differ
from those of their CD8+ counterparts.

Use of intravascular staining [21] allowed definitive identifica-
tion of tissue-resident cells, whilst also enabling separate analysis
of T cells present within the vasculature of the lung. Antigen-
specific CD4+ T cells were present in the lung vasculature from 3
weeks post-vaccination, but were undetectable in the peripheral
blood until 5 weeks post-vaccination, suggesting that the lung
vascular compartment is not simply an extension of the systemic
circulation but may be considered a distinct immunological com-
partment in its own right. This hypothesis is supported by several
studies investigating the kinetics of migration of leukocytes
through the vasculature of the lungs [49–52], which indicate that
leukocytes may be retained within the capillary bed of the lung
whilst migrating. In accordance with this, Sakai et al. [17] demon-
strated that during M. tb infection, the frequency of antigen-
specific CD4+ T cells in the lung vasculature was >5-fold higher
than in the peripheral circulation. In fact, the authors also report
that these lung vascular CD4+ T cells produced more IFN-c than
their tissue-resident counterparts, suggesting that they may also
have an important role to play in protection againstM. tb infection.

Whilst an antigen-specific CD4+ T cell response was maintained
in all compartments from week 5 post-BCG for the duration of the
study, the magnitude of this response varied between the time
points measured. Peak responses were observed at weeks 5, 12
and 52 post-vaccination, with lower frequencies of antigen-
specific CD4+ T cells observed at time points in between these.
We have observed this previously [5,32] and it is therefore a consis-
tent observation in our long term BCG vaccination studies in mice.
We speculate this may be because BCG is a live, replicating vaccine
undergoing cycles of control and subsequent replication within the
host, resulting in changes in the magnitude of the antigen-specific
response. Further work is required in order to test this hypothesis.

At all time points post-immunisation, the proportion of total
lung CD4+ T cells present in the vasculature was significantly



Fig. 5. BCG-induced antigen-specific CD4+ T cells are CCR7� but heterogeneous for CD69 and CD127. Following BCG immunisation, intravascular staining and ICS identified
populations of antigen-specific (cytokine+) CD4+ T cells. (a) Representative plots showing surface staining for CCR7, CD69 and CD127 on antigen-specific CD4+ T cells from a
mouse 5 weeks post-BCG vaccination. (b) Frequency of antigen-specific CD4+ CD62Llo T cells in all compartments displaying CCR7, CD69 and CD127 cell surface markers as a %
of total CD4+ T cells in that compartment at week 5 post-BCG vaccination. Data for all other time points is represented in Supplementary Fig. 4. For all graphs, bars represent
mean ± SEM (n = 6). Two-way ANOVA with Sidak’s post-test, comparing BCG with control and BCG with BCG, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (c) Median
fluorescence intensity (MFI) of antigen-specific CD4+ CD69+ populations in the lung parenchyma and lung vasculature at week 5 post-vaccination. Data for all other time
points is represented in Supplementary Fig. 5. Lines represent mean ± SEM (n = 6). Unpaired two-tailed t-test, **P < 0.01.
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greater than the proportion present in the parenchyma. In spite of
the relative larger size of the lung vascular population, from week
5 post-BCG vaccination the magnitude of the antigen-specific CD4+

T cell response in both lung compartments was comparable. This
suggests that systemic BCG is equally capable of inducing tissue-
resident and lung vascular responses. Notably, at week 5
post-vaccination, antigen-specific CD4+ T cells in both lung com-
partments were observed more frequently than in the peripheral
blood. This supports evidence in the existing literature that sys-
temic BCG vaccination is able to induce lung-specific responses
[32].

By week 26 post-immunisation, the difference in proportion of
total CD4+ T cells between both lung compartments was reduced,
although there was still a significantly greater proportion of the
total CD4+ T cell population present in the lung vasculature. How-
ever, this was the case for both BCG and placebo-immunised mice
and therefore may reflect a physiological ageing change in the mice
rather than a specific effect of BCG vaccination. Zens et al. [53] have
recently reported impaired establishment of TRM during infancy
and suggest that this is due to intrinsic differences in infant and
adult T cell populations. Further investigation is required, as this
may have important implications for the timing of administration
of vaccines in order to optimise generation of TRM.

We performed detailed cell-surface phenotype analysis, in
order to identify unique phenotypic characteristics of the tissue-
resident population induced following BCG vaccination. All
antigen-specific CD4+ T cells, regardless of location, were CD44hi

CD62Llo CD27� as described previously [32]. Importantly, we found
no significant differences between lung compartments in the pro-
portion of CD4+ T cells expressing CD69. However, there did appear
to be a relationship between higher expression of CD69 and loca-
tion, as the MFI of CD69+ cells in the parenchyma was consistently
higher than those in the vasculature at all time points measured,
despite this only reaching statistical significance at weeks 5 and
52 post-vaccination. CD69 has been described as a putative marker
of tissue-residence on TRM [37,44,54] due to its ability to inhibit
sphingosine-1-phosphate receptor 1 (S1PR1)-mediated T cell exit
from secondary lymphoid organs [55–57]. This has been proposed
as a mechanism for maintenance of TRM in tissues [44,58]; there-
fore, the observed higher CD69 expression on parenchymal cells
may be related to their retention in the lung tissue. However, the
finding that expression of CD69 alone does not differentiate
between lung parenchymal and vascular T cells reinforces the need
to utilise the intravascular staining technique to definitively iden-
tify lung parenchymal cells, as to date no unique phenotypic mark-
ers have yet been identified to describe tissue-resident cells.

Further analysis revealed antigen-specific CD4+ T cells in the
lungs and spleen share a CD62Llo CCR7� effector memory T cell
(TEM), rather than central memory (TCM) phenotype, consistent
with previous findings [5,38,59]. Indeed, it has been suggested that
the failure of BCG to provide durable long-term protection may be
due to its inability to induce TCM [59,60]. In humans, generation of
TCM requires contraction of the BCG-specific effector T cell
response [61]. Here, we have shown that TEM responses are main-
tained at stable levels in the lung, spleen and peripheral blood of
mice up to 12 months post-BCG vaccination, possibly due to per-
sistence of BCG providing chronic antigenic stimulation [5,47].
Studies suggest that BCG may persist for many years in humans
[62–66], offering a possible explanation for the observed lack of
development of TCM following vaccination [67–69], and subse-
quent waning of immunity [70]. However, this theory is con-
founded by evidence of long-term BCG-mediated protection in
some populations [71]. Further work is required to determine the
features of BCG-induced T cell immunity which determine subse-
quent durability of protection.
Expression of CD127 (IL-7 receptor subunit-a) was of interest,
as IL-7 signalling promotes long-term survival of memory CD4+ T
cells, and is a key regulator during memory development [72,73].
Therefore, expression of CD127 has been used as a marker of T cell
memory capability [42,43]. Significant populations of antigen-
specific CD127hi and CD127lo CD4+ T cells were observed in both
the parenchyma and the vasculature of the lungs, as well as the
spleen and peripheral blood, at all time points post-BCG vaccina-
tion. These data suggest the simultaneous presence of both mem-
ory and effector T cell populations, mediated by chronic antigen
exposure due to the persistence of BCG [5,47].

Whilst the phenotyping data presented here give an interesting
insight into the nature of the antigen-specific CD4+ T cell response
induced in the lung parenchyma following BCG vaccination, inter-
pretation of this data is confounded by use of a stimulation proto-
col to allow for identification of cytokine production. This may
have impacted on phenotype analysis through uniform stimulation
of all antigen-specific cells. Further work using tetramer staining to
identify phenotype directly ex vivo will be required to confirm
these findings. In addition, characterisation of the lung parenchy-
mal population through expression of CXCR3, CX3CR1 and KLRG1
would also provide valuable information, as combinations of these
markers have been utilised in other studies to define the lung
parenchymal population following M. tb infection [17] and subunit
TB vaccination [27].

Functional capacity was also assessed and across all tissue sites
there was a dominance of multifunctional cells, producing two or
more cytokines. No distinct differences in the pattern of cytokine
production were evident between compartments.

This high level of heterogeneity, and the common phenotypic
characteristics shared between BCG-induced CD4+ T cells in multi-
ple locations, may suggest that these cells can migrate, rather than
being maintained in distinct tissue compartments separately from
one other. The lack of clear functional differences between CD4+ T
cells in the lung vascular and parenchymal compartments may
suggest that they are in fact the same subset of antigen-specific
cells having undergone a process of extravasation. Interestingly,
Woodworth et al. [27] recently described a population of circulat-
ing CD4+ T cells, induced by a subunit vaccine against TB, which
shared phenotypic characteristics of lung parenchymal CD4+ T cells
and efficiently trafficked into M. tb-infected lung parenchyma. This
may indicate that it is not necessary for CD4+ T cells to be perma-
nent residents in the lung in order for them to provide protection
against M. tb infection. Indeed it may be enough for a vaccination
to induce a population of CD4+ T cells with the characteristics of
lung parenchymal cells, which are able to efficiently migrate to
the lung when presented with a pathogenic challenge. This may
have implications for the design of future vaccination strategies
to improve upon protection afforded by BCG.

In conclusion, we demonstrate that BCG delivered systemically
induces tissue-resident, antigen-specific CD4+ T cells in the lung
parenchyma detectable up to 12 months post-vaccination. These
cells are defined as tissue-resident through their location in the
parenchyma, as identified through intravascular staining. This
may represent a long-lived vaccine-induced TRM population, situ-
ated within the lung tissue ready to respond in the event of infec-
tion withM. tb. Antigen-specific CD4+ T cells are also maintained in
the lung vasculature, spleen and peripheral blood, confirming that
BCG induces durable immune responses both locally and systemi-
cally. These memory responses are enriched in lung compartments
compared to the spleen and peripheral blood, with high levels of
heterogeneity found in all compartments. Within the scope of this
study it was not possible to identify a unique tissue-resident
immune signature. An increased understanding of the immune
responses and protective mechanisms induced by BCG vaccination
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will contribute to rational development of more protective vacci-
nation regimens.
4. Methods

4.1. Ethics

All animal work was carried out in accordance with the UK Ani-
mal (Scientific Procedures) Act 1986, under appropriate Personal
and Project licences. The study protocol was approved by the APHA
Animal Use Ethics Committee.
4.2. Animals

Female specific-pathogen-free (SPF) BALB/c mice were obtained
from Charles River UK and used at 8 weeks of age. Animals were
housed in appropriate biological containment facilities at APHA,
according to the Code of Practice for the Housing and Care of Ani-
mals Bred, Supplied or Used for Scientific Purposes. All animals
were randomly assigned to treatment groups, housed in groups
of 6 mice per cage and provided food and water ad libitum. Provi-
sion of normally distributed data for immunological analyses
required minimum sample size n = 6 (Kolmogorov and Smirnov
test).
4.3. Immunisation

Mice were immunised with the human vaccine strain M. bovis
BCG Danish prepared as per manufacturer’s instructions (SSI, Den-
mark). A single dose of 2 � 105 colony forming units (CFU) of BCG
in 50 µl inoculum was administered via intradermal injection in
the base of the tail. Control mice received 50 µl Hank’s Balanced
Salt Solution (HBSS) (Gibco) administered in the same way.
4.4. Intravascular stain

Intravascular staining was performed using an amendment of
the method described by Anderson et al.[21] Briefly, 100 µl of PE-
conjugated anti-CD45 monoclonal antibody (eBioscience) at 0.75
µg/ml in HBSS was administered via the lateral tail vein one min-
ute prior to euthanasia, allowing flow-cytometric discrimination
between lung vascular cells (accessible to the stain) and lung
parenchymal cells (inaccessible to the stain).
4.5. Lymphocyte isolation

Spleen cells were isolated by passage through a 40 µm cell strai-
ner, washed at 300 g for 8 min and resuspended at 1 � 107 cells/ml
in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma) supple-
mented with foetal calf serum (FCS) and penicillin/streptomycin
(Gibco) for assays.

Lung cells were isolated using a GentleMACsTM tissue dissociator
and C tubes (Miltenyi Biotech). Cells were agitated for 1 h at 37 �C
in supplemented DMEM with collagenase I (Gibco) and DNase II
(Sigma), passed through a 40 µm cell strainer, washed and resus-
pended in supplemented DMEM at 5 � 106 cells/ml for assays.

Peripheral blood cells were isolated through incubation for 10
min at room temperature with MACS rinsing buffer (Miltenyi
7Biotech) and anti-Terr119-biotin (eBioscience) at 6.7 µg/ml, fol-
lowed by addition of EasySepTM mouse streptavidin RapidSpheresTM

(STEMCELL Technologies Inc.) at 174 µl/ml and placement on Easy-
SepTM magnet for 5 min. Supernatants were poured off, cells
washed and resuspended in supplemented DMEM for assays.
4.6. Flow cytometry

Cells isolated from spleen, lungs or peripheral blood were cul-
tured with 2 µg/ml of two immunodominant peptides (Pepscan,
Lelystad, The Netherlands), [SSTHEANTMAMMARDT] and
[AGYAGTLQSLGAEIAV] of the TB10.4 protein, previously demon-
strated to stimulate both CD4+ & CD8+ T cell responses (Kaveh &
Hogarth, unpublished); 1 µg/ml anti-CD28 (BD Biosciences) and
10 µg/ml Brefeldin A (Sigma) for 16 h at 37 �C/5% CO2. Cells were
washed at 300 g for 5 min and surface stained with combinations
of CD62L-FITC, CD27-PerCP-Cy5.5, CD8-AF700, CD44-BV421,
CD127-PE-Cy7, CD69-FITC, CCR7-BV421, live/dead-Zombie Aqua
(all BioLegend) and CD4-APC-H7 (BD Biosciences). Cells were then
washed, treated with BD Biosciences Cytofix/Cytoperm as per
manufacturer’s instructions and stained intracellularly with com-
binations of IFN-c-PE-Cy7, IL-2-APC (both eBioscience), IFN-c-
BV605 and TNF-a-BV605 (both BioLegend). Cells were washed
again and analysed using an LSRFortessaTM analyser utilising a
532 nm laser for PE and PE-conjugate excitation with FACSDivaTM

software (BD Biosciences). Final analysis was performed using
FlowJo� software (Tree Star Inc.) on a minimum of 100,000 live
lymphocytes (50,000 for peripheral blood).

4.7. Statistical analysis

All data were analysed using GraphPad Prism 7 statistical pack-
age (GraphPad, USA). When comparing two groups, an unpaired
Student’s two-tailed t-test was performed. With three or more
treatment groups the data were analysed by one-way ANOVA with
appropriate multiple comparisons test as stated. Where two inde-
pendent variables were compared, data were analysed by two-way
ANOVA with appropriate multiple comparisons test as stated. For
all data, * represents P < 0.05, ** represents P < 0.01, *** represents
P < 0.001 and **** represents P < 0.0001.
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