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ABSTRACT The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic
cortex, which consists of a contractile, cross-linked actin mesh attached to the plasmamembrane via linker proteins. Measuring
the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells
because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes.
Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to
external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to
confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes
were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new
theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility
modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral mem-
branes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into
account.
WHY IT MATTERS Mammalian cells are extremely soft and easily deformed. These properties are of utmost importance
for many biological processes including cell migration, division, growth development, and carcinogenesis. Here, the
rheological properties of a hidden, inaccessible cell surface—the basolateral membrane—are investigated with the help of
an experimental trick. It was found that the basolateral membrane is substantially stiffer and less fluid than the apical
membrane of epithelial cells. Thus, the polarity of the epithelial cells is also maintained at the mechanical level.
INTRODUCTION

Cellular polarity manifests itself at various levels such
as organelle distribution, plasma membrane composi-
tion, and cytoskeletal architecture (1). Particularly,
epithelial cells exhibit polarized formation of cell-cell
junctions comprising adherens junctions and tight
junctions separating the apical domain from the ba-
solateral side (2,3). Many epithelial cells form micro-
villi at the apical domain filled with bundled actin
filaments that increase the surface area substantially.
On the basal side, stress fibers and focal adhesions
emerge, responsible for attaching cells to the extra-
cellular matrix. For confluent polar epithelial cells,
our understanding of cell mechanics comes mainly
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from indentation experiments in which the apical
side facing the culture medium has been studied
(4–12), whereas very few studies have addressed
the elastic properties of the basal side, let alone their
dissipative properties (13–15). It is generally believed
that the response of cells to deformation originates
predominately from the cellular cortex consisting of
a thin, contractile, and transiently cross-linked actin
mesh connected to the plasma membrane (16–19).
Prestress of the cortex is provided by motor proteins
that, in conjunction with cross-linked actin, ensure re-
silience of the cell body on the one hand and fluidity
of the cell to perform dynamic shape changes on
the other hand (17–21). It was found that cells gener-
ally behave as a soft, glassy material giving rise to po-
wer law rheology with power law exponents between
0.2 and 0.4 because of the broad distribution of relax-
ation times (8,12,19,22–26). Many weak interactions
are involved in the structure formation, which are in-
dependent of molecular details and make the
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viscoelastic behavior appear unbound to a specific
timescale.

Recently, we found that a linear viscoelastic contin-
uum model of cortex based on power law rheology
consistently explains the viscoelastic response of non-
polarized MDCK II cells, confluent cells, as well as api-
cal cell membrane fragments over a wide time range
(19,27). In particular, the defoliation of apical mem-
branes by sandwich cleavage from living cells allowed
to examine the impact of motor activity on fluidity
(27). The method allows neglecting contributions
from the cell interior, which include various filament
types, organelles, and the densely packed cytoplasm
that normally hinders the study of the cortex. Based
on these experiments and data from of previous pub-
lications, I now revisited indentation-relaxation experi-
ments of basolateral membranes from MDCK II cells
grown on porous supports (5,13). I first present a
comprehensive theoretical model based on free-en-
ergy minimization that describes the viscoelastic
response of thin membranes to indentation with a
conical indenter and in a second step compare the
stiffness-fluidity relationship to that of living cells
probed from the apical side.

I found that compared with the viscoelastic proper-
ties of confluent cells, isolated basal cortices are
much stiffer and less fluid, but consistently follow the
same universal scaling law when the excess area is
properly accounted for.
MATERIALS AND METHODS

All experimental data were obtained from previous publications.
Experimental force data from confluent MDCK II were taken from Pie-
tuch et al. (5), whereas all data from basolateral membrane patches
were published by Lorenz et al. (13) In these works, only the approach
curves were evaluated using exclusively elastic tension models. Here,
I included the available retraction curves in the comprehensive visco-
elastic analysis. The following paragraphs repeat the key steps in ob-
taining these data.
Preparation of baslolateral membrane patches on
porous substrates

Porous silicon substrates purchased from fluXXion B.V. were used
as cell culture substrates. Pores possess a depth of 800 nm and
display a diameter of 1.2 mm. The substrates were first coated
with a thin adhesive layer of chromium (3 nm) followed by a gold
coating of 60 nm, which has been proven to be an excellent surface
for culturing MDCK II cells (28). Basolateral membrane fragments of
MDCK II cells were obtained using a squirting-lysis protocol
described previously (13,29). Confluent MDCK II cells were grown
in minimal essential medium on porous substrates supplemented
with 2 mM/L glutamine and 10% (v/v) fetal calf serum at 37+ in
an 95% air/5% CO2 humidified incubator. Cells were subject to os-
motic stress using hypotonic buffer. Shear stress by a buffer stream
led to cleavage of the cells and also eventually to complete removal
of the upper cell bodies.
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Atomic force microscopy and indentation
experiments

Atomic forcemicroscopy (AFM)measurements were carried out with
an MFP-3D microscope (Asylum Research, Santa Barbara, CA) at
20+C using MSCT cantilevers from Veeco with a nominal spring con-
stant of 0.01 N/m. Ramp velocities were kept constant and set to
2 mm/s.
Theory

Here, I describe how force cycle experiments carried out with a
conical indenter can be modeled with a minimum of essential as-
sumptions to correctly access the viscoelastic properties of thin
pore-spanning cortices. The viscoelastic parameters comprise a
scaling factor (area compressibility modulus K0

A), the prestress s0,
and the fluidity b (power law exponent) of the membrane-cortex com-
posite. The general geometry is schematically shown in Fig. 1 A. R de-
notes the radius of the pore and a is the contact radius of the
membrane with the conical indenter.

Force response of viscoelastic cortices spanned over a pore

In contrast to our previous publication that facilitates the theoretical
treatment by assuming that the AFM-indenter can be modeled by a
cylindrical flat punch with a small radius of a few nanometers (27),
I now consider a conical indenter and also abandoned the small
gradient approximation, which is typically used to simplify the
description of the force response (9,30–33). The following treatment
is partly inspired by the work of Powers et al. (34) who dealt with the
formation of tethers pulled from a planar membrane. The free energy
of the membrane is given by (35,36)

Eel ¼
Z
S

hk
2
ð2HÞ2 þ k

2
Kþ s

i
dA; (1)

where S is the surface of the membrane, H is its mean curvature
ð2H ¼ 1 =R1 þ1 =R2Þ, and K is the Gaussian curvature ðK ¼
ðR1R2Þ�1Þ. k and k are the splay and saddle splay moduli, respec-
tively, i.e., essentially elastic constants. Although k can easily be ob-
tained experimentally and is always positive, k is difficult to obtain.
The Gaussian curvature is independent of how the surface is
embedded in R3 and is an intrinsic property of the surface. Accord-
ing to the Gauss-Bonnet theorem, the integral of the Gaussian curva-
ture over a surface depends only on its topology and boundary. This
implies that for a closed surface the energy contribution of the
Gaussian curvature during any deformation is constant unless the
topology of the surface changes and can be ignored when deter-
mining the shape of the membrane. Because the membrane has
edges, the Gaussian modulus affects the shape through the bound-
ary conditions, which we will neglect for the sake of simplicity, i.e.,
we set k ¼ 0 (34). s denotes the surface tension, i.e., comprising
mainly the free-energy contribution (per unit area) arising from adhe-
sion of the cortex fragment to the pore rim, and in more general
terms, it represents the chemical potential of the membrane reser-
voir. It can also be considered the Lagrangian multiplier to keep
the area constant. The shape equation is obtained from standard
variational calculus representing the balance of normal forces per
unit area (37):

Dp� 2sH þ 2k
�
DHþ 2H3 � 2HK

� ¼ 0: (2)

The pressure difference Dp enters as the Lagrange multiplier
ensuring constant volume. For free-spanning membranes on pores



FIGURE 1 (A) Parametrization of the indenta-
tion experiment. The free membrane is in red
color and the indenter in black. (B) General
shape of themembrane (green) at two different
indentation depths after minimizing the area.
open to both sides, we can discard this contribution for the free mem-
brane as opposed to living cells. We assume that the energy contribu-
tion due to recruiting new surface area against the surface tension
sz10�3 N is substantially larger than the bending energy. Because
k is expected to be rather small, on the order of 10�19 J depending
on the thickness d of the cortex ðkfd3Þ and the lipid composition,
we can assume that the dimensionless perturbation parameter ε ¼
k=s is indeed very small ðz10�16 m2Þ. Thermal fluctuations are, there-
fore, negligible, and we can rewrite Eq. 2 (34):

2ε
�
DHþ 2H3 � 2HK

�� 2H ¼ 0: (3)
Assuming that ε ¼ 0, we obtain H ¼ 0, the minimal surface equa-
tion, which provides essentially the shape of a catenoid because this
is the only nonplanar minimal surface with zero mean curvature. It
is, however, immediately clear that this simplified differential equa-
tion is not entirely compatible with the boundary condition, because
ε is multiplied with the highest derivative of H (34). Precisely, an
external force is balanced by curvature in which the indenter meets
the membrane r ¼ a implying that Hs0. In contrast, the boundary
condition sH ¼ 0 at r ¼ R, the pore rim, is compatible with the dif-
ferential equation as the pore rim acts as a hinge. Employing the
concept of perturbation theory, we therefore need to consider a
boundary layer at the contact line with the indenter rendering outer
ðr >dÞ and inner ðr <dÞ solutions incompatible. The outer solution of
the free membrane is a catenoid held between two circular bound-
aries, one being the pore with a large radius R and the smaller
one defined by the contact with the conical indenter at r ¼ a.
The thickness of the boundary layer d ¼ ffiffiffiffiffiffiffiffi

k=s
p

can be inferred
from equating εDH with H and represents a characteristic length
scale. On scales larger than d, tension dominates, whereas on
smaller length scales, bending is the most important energy contri-
bution. In our case, d is on the order of 10 nm; therefore, it is consid-
ered small compared with size of the free membrane. In the
following paragraphs, we will only consider the dominant outer solu-
tion because the characteristic length scale is governed by the sur-
face tension due to the thin membrane patches and the large
adhesion forces.

The problem of finding the shape rðzÞ of the membrane during
indentation therefore reduces to the problem of finding its minimal
free surface (34,38). We first consider the elementary case of two
rings of equal size separating the membrane by 2L to form a shape
with zero mean curvature. The area element dA ¼ 2prds generates
the surface through the integral equation:

A ¼
Z

2prds ¼ 2p

Z þL

�L

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

2
p

dz; (4)
with r0 ¼ dr=dz. Using standard techniques of variational calculus, we
arrive at the following equation (38):

rr00 ¼ 1þ r02: (5)

The differential equation can be integrated in two consecutive
steps (38). Using ð1þ r

0 2Þ0 ¼ 2r0r00 , we obtain the following equation:

r ¼ rN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

2
p

; (6)

with rN being a constant. Second, we employ the identity, which is
conveyed by the following equation:

r ¼ rNcosh
�
z� C

rN

�
; (7)

with the integration constant C being 0 for two equally sized rings
(38). Because we have one radius given by the pore rim R and the
other one by the contact radius a we need to infer C from this bound-
ary condition. rN is identified as the minimal radius of the catenoid, its
so-called neck radius. C can be obtained from r ¼ R of the upper rim,

C ¼ 5 rNcosh
�1ðR = rNÞ; (8)

leading to the following equation:

rðzÞ ¼ rNcosh
�
z

rN

�
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2N

q
sinh

�
z

rN

�
: (9)

The upper sign corresponds to catenaries with a minimal neck
radius at a positive value of zðC>0Þ, the indentation depth.
Conversely, for zðrÞ, the shape equation of the free membrane, we
can write the following:

zðrÞ ¼ rNcosh
�1

�
r

rN

�
þ rNcosh

�1

�
R

rN

�
; (10)

or in nondimensional form (~z ¼ z=R, ~rN ¼ rN=R, ~r ¼ r=R),

~zð~rÞ ¼ ~rNcosh
�1

�
~r

~rN

�
þ ~rNcosh

�1

�
1

~rN

�
: (11)

A simple relation holds between rN, the minimal radius, and the
force f:
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f ¼ �vE

vz
¼ �

v
�
2ps

R za
0
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

2
p

dz
�

vz
¼ � 2psrffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r0
2

p ;

(12)

with za the indentation depth at r ¼ a. At the neck of the catenoid r ¼
rN , we have r0 ¼ 0 and therefore rN ¼ f =ð2psÞ. Because at rðzaÞ ¼ a

with a>rN , we can write the following:

za ¼ rNln

0
B@a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2N

p
1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2N
p

1
CA: (13)

Equation 13 is responsible for two branches, forming a closed
curve in the f � za plane for a<R (34). In principle, a critical
(maximal) separation za exists in which no solution is found, i.e.,
the catenoid becomes unstable and breaks. If the contact radius
a is fixed and the indentation depth below the maximum (before
instability) two catenoidal equilibrium solutions exist (see Eq. 13).
We only have to consider the branch (minus sign in Eq. 13) with
a larger ~rN-value that has less area. The other branch is not found
for real minimal surfaces. Therefore, we proceed with the minus
sign in Eq. 13. The existence of an elastic boundary layer allows
the limit of a point force, i.e., a/0, which is in contrast to pure
soap films. In practice, however, point forces do not play a role
because conventional AFM tips display curvature radii of �20 nm.
Now, we only have to determine the contact radius a from the con-
tinuity condition, where the slope is identical for indenter and free-
standing membrane. For a conical indenter we find the following:

dzðrÞ
dr

				
r¼ a

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a
rN

�2

� 1

s ¼ �tanq; (14)

with p=2� q being the half-opening angle of the cone, giving

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� rN
�tanq

�2
þ r2N

r
; (15)

and the indentation depth at the tip of the indenter is zðr ¼ 0Þ ¼ zaþ
atanðqÞ. Note that a>rN as rN is the smallest possible radius of a cat-
enoid. The tension of the membrane is not necessarily a constant but
depends on the area dilatation, which inevitably occurs upon
indentation:

s ¼ s0 þ KAa; (16)

with s0 the initial prestress and KA the area compressibility modulus.
a ¼ A�A0

A0
denotes the relative area dilatation with A the actual area

and A0 the area before indentation, i.e., A0 ¼ pR2. The actual area
of the free membrane forming the catenoid is

Acat ¼ pr2N
2

ðsinhð2za = rNÞþ 2C� sinhð2CÞþ 2za = rNÞ;
(17)

with C ¼ � cosh�1ðR =rNÞ. Additionally, we need to consider coating
of the cone up to r ¼ a, leading to Acone ¼ pa2=cosðqÞ, and therefore,
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the overall area of the membrane is A ¼ Acone þ Acat. If excess mem-
brane area Aex is recruited from the pore rim, we refer to an apparent
compressibility module KA

A0

A0þAex
(vide infra).

As shown previously, viscoelasticity enters through the time depen-

dency of the area compressibility modulus KA ¼ K0
A

�
t
t0

��b

with

0%b%1 and t0 ¼ 1s (set arbitrarily) (19). The power law indicates
that relaxation is not tied to an internal timescale (22). Consequently,
the elastic-viscoelastic-correspondence principle leads to the
following expression for the overall tension:

sðtÞ ¼ s0 þ
Z t

0

K0
A

�
t � t

t0

��b
vaðtÞ
vt

dt: (18)

Because viscoelasticity of the membrane-cortex composite im-
pacts only the in-plane area compressibility modulus, we can safely
assume that the contour during indentation is identical to the contour
for the elastic case. In nondimensional form ð~a¼ a =RÞ the indenta-
tion depth at r ¼ 0 is

~z ¼ ~rN ln

 
~a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ~rN

2
p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~rN

2
p

!
þ ~atanðqÞ; (19)

which tells us that for a given indenter geometry, i.e., q-value, the
shape of the membrane and its scaled force response is uniquely
defined by the distance between the two rings (In the limit of small
forces Eq. 19 reduces to ~z ¼ ~rN ln ~a�1 þ ~atanðqÞ, identical to the
small gradient solution sV2u ¼ qðrÞ with q(r) the transverse load
on the membrane being zero for a < r < R and f /pa2 at r ¼ a.9

At large forces the deviations are substantial, leading to an overes-
timation of force response by the membrane for the small gradient
approximation.). The same is naturally true for the surface integral.
This allows us to numerically compute ~zð~rNÞ as well as að~rNÞ for
each value of q once and for all and fit the two curves with
two polynomials, ~gð~z;QÞ ¼Pncn~z

n and að~z; QÞ ¼ P
ndn~z

n,
respectively. This permits us to obtain an analytical solution of
the corresponding elastic-viscoelastic problem for indentation
(approach),

fapp ¼ 2p~gð~z;QÞR
�
s0 þ

Z t

0

KAðt� tÞ vaðtÞ
vt

dt
�
; (20)

and relaxation (retraction) starting at t ¼ tm,

fret ¼ 2p~gð~z;QÞR
�
s0 þ

Z tm

0

KAðt� tÞ vaðtÞ
vt

dt (21)

respectively. Here, I assumed that in-plane stretching of the mem-
brane/cortex is time-dependent að~zðtÞÞ as we apply a linear ramp
~zðtÞ ¼ ~v0t at the approach and ~zðtÞ ¼ ~v0ð2tm �tÞ upon retraction,
respectively ð~v0 ¼ v0 =RÞ. Hereditary integrals using a polynomial to
the order n for aðtÞ are readily solved:

fapp ¼ 2p~gð~z;QÞR
 
s0 þK0

A

X
n

dn
t�bnð~v0tÞnGð1� bÞGðnÞ

Gð1� bþ nÞ

!
;

(22)

and



fret ¼ 2p~gð~z;QÞR
 
s0 þK0

A

X
n

dn

h
t�bðtm~v0Þn2F1

�
b; n; nþ 1;

tm
t

�
þ

ð�1ÞbGðbþ 1ÞGðnÞ
�

1
2tm�t

��b

ð � ~v0ðt � 2tmÞÞn

Gðbþ nþ 1Þ

�
ðt � tmÞb

�
t�tm
t�2tm

��b

ðtm~v0Þn2F1

�
� b; n; nþ 1;� tm

t�2tm

�
n

3
75
1
CA (23)
with theGammafunctionGðnÞ ¼ RN
0

xn�1e�xdx, and theordinary hyper-
geometric function 2F1ða;b; c; zÞ. Usually, polynomials to the order of
n ¼ 4 are sufficient to describe the functions ~gð~z;QÞ and að~z;QÞ with
good accuracy. Experimental force time curves were subject to fitting
a piece-wise function f ðt%tmÞ ¼ fappðtÞ and f ðt >tmÞ ¼ fretðtÞ.
Force response of living cells

We use the model of Hubrich et al. to fit the data (27). In brief,
confluent cells are considered to be capped cylinders with contact
angles around f0 ¼ 35 + before deformation (5). Generally, we treat
the cell as a liquid-filled object surrounded by an isotropic visco-
elastic shell deformed at constant volume. The force f acting on
the apex of the cell is shown below (27):

f ¼ 2p

�
R2
1

�
R1sinðfÞ þ asinðQÞ

R2
1 � a2

�
�R1sinf

�
sðtÞ; (24)

or in nondimensional form (~f ¼ f =ð2pR1sðtÞÞ, ~a ¼ a=R1;~z ¼ z= R1),

~f ¼ sinðfÞ þ ~asinðQÞ
1� ~a2

� sinf ¼ ~gðQ;f; zÞ; (25)

with R1 as the radius at the base of the spherical cap and f as the
contact angle in response to deformation (5). For a given set of an-
gles f and Q, the generic shape function ~gðQ;f; zÞ is computed
numerically and the outcome fitted by a polynomial ~gðQ;f0; zÞ ¼P

ncn~z
n to obtain the coefficients cn. Computation of area change

has been outlined before and the outcome approximated with a poly-
nomial as described above ~aðQ;f0; zÞ ¼

P
ndn~z

n to determine dn ,
respectively (5,27).

Viscoelasticity of the shell enters through Eq. 18, replacing sðtÞ as
before. What follows is numerical solution of a set of nonlinear equa-
tions for the shape of the deformed cell to fulfill force balances and
the constant volume boundary condition (27). For a given indenter ge-
ometry and contact angle f0 , this has to be solved only once and
scaling is accomplished by multiplication with R1.
RESULTS AND DISCUSSION

Previously, we investigated the topography and elastic
properties of basolateral membranes derived from
confluent MDCK II cells grown on porous substrates
(13). Defoliation was accomplished according to the
squirting lysis protocol, in which the confluent MDCK II
cells were first subject to osmotic swellingwith addition
of hypotonic buffer (Fig. 2 A) (13,29). Subsequently, the
cells were ruptured by applying a gentle buffer stream
froma syringe directed to the cell monolayer at an angle
of 45 +. After removal of cell debris, pore-spanning baso-
lateral membranes were obtained as shown in Fig. 2, C
and D. After imaging, force cycle curves were collected
from the center of the pore. The exact positioning of the
AFM tip over the center of the pore was accomplished
byfirstmapping theareaof interest and thenaddressing
the pore center from the obtained coordinates. In partic-
ular, inaccurate positioning leads to response functions
that appear to correspond to stiffer sheets. A force-vol-
ume protocol (39) was also frequently used, and the
force curveswere selected accordingly. The indentation
curves obtained from the pore's center were previously
described using an asymptotic linear relationship be-
tween force and indentation depth essentially capturing
only the prestress of the cortex (13).

I now reevaluated this data, including the retraction
curves that were not considered in the previous publi-
cation, by applying the viscoelastic model described
above. Both indentation and relaxation were fitted,
with Eqs. 22 and 23 as a piece-wise function providing
access to three relevant mechanical parameters, the
prestress s0, the scaling factor (apparent area
compressibility modulus) K0

A and the fluidity or power
law exponent b, the latter two, as we shall see, being
not independent (Fig. 2 D). It is important to notice
that for pore-spanning membranes and cortices, the
prestress s0 corresponds mainly to the differential
adhesion free energy between the pore rims Gpr and
the free-standing part Gp:

s0 ¼ Gpr � Gp

pR2
: (26)

The area compressibility modulus is the response
function of the linear-elastic resistance of the
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FIGURE 2 (A) Preparation of basolateral
membrane sheets on porous supports (13).
MDCK II cells are first grown to confluence on
a porous support with pores of 1.2 mm in diam-
eter. After exposing the cells to hypotonic solu-
tion (1), the swelling makes them susceptible
for shear stress (2) applied by a buffer stream.
The isolated membranes were subject to
indentation experiments using a conventional
AFM instrument. (B) Fluorescence micrograph
showing the results of the squirting-lysis proto-
col (TRITC: phalloidin-stained actin filaments).
(C) AFM image showing actin stress fibers.
(D) Typical force cycle curve (circles) subject
to fitting of equations (22, 23) (red line). Fitting
range was limited to avoid interference from
adhesion events. The inset shows the shape
of the membrane at largest indentation depth.
cortex/membrane assembly against in-plane area
dilatation. Depending on the boundary conditions,
area dilatation occurs inevitably during deformation
as required for deviation from a minimal surface.
Although cells maintain a constant volume during
deformation, the basal membrane sheets are physi-
cally and chemically attached to the pore rims: the
strength of attachment given by Eq. 26 (9,19,28).
The measured area compressibility modulus of the
basolateral membrane sheets contains contributions
from the rather inextensible membrane and the actin
mesh. Albeit the outstretched plasma membrane is
almost inextensible exhibiting considerably large
KA-values of 0.1–0.5 N/m depending on the lipid
composition (40), excess membrane area Aex can be
recruited from wrinkles, ruffles, folds, and, eventually,
the entire footprint of the cell during indentation.
This excess area diminishes the measured area
compressibility by a factor of A0=ðA0 þAexÞ. Conse-
quently, experiments with neat lipid bilayers neither
display a measurable area compressibility modulus
nor a noticeable hysteresis during relaxation because
the excess area recruited from adjacent surface is
often extremely large and friction between the pore
rim and the bilayer small (33). The second contribu-
tion to KA comes from the underlying actin cortex,
which points toward the indenter in this case. Notably,
recruitment of excess area from the adjacent surface
is also possible in this case, giving also rise to
apparent values (vide infra), which are much smaller
than those obtained by assuming only the area of a
single pore. As pointed out previously, knowledge of
cortex thickness and mesh size allows to roughly es-
timate the elastic modulus of a cross-linked actin
network (19,41):

KAz
3kBTl

2
p

z2
d

l3c
; (27)
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with the distance between cross-links lczz4=5l
1=5
p and

the persistence length lp (41). Assuming reasonable
values for the mesh size of z ¼ 100 nm, a cortex thick-
ness d of 150 nm and a persistence length of 17 m (42)
we obtain KA-values of�2.5 mN/m. Taken together, we
expect rather small values for the area compressibility
due to the presence of excess area. Notably, in the pre-
vious publication we removed filamentous actin partly
resulting in a substantial softening of the membrane
patch confirming the importance of the cortex for the
elastic response (13).

The power law exponent b represents the flow
behavior of the cortex. If b is close to 0, the cortex be-
haves as an elastic solid, whereas a b-value of 1 corre-
sponds to a Newtonian liquid. Generally, intermediate
b-values are found for living cells. It could be shown
that b is not independent of the corresponding elastic
modulus or scaling factor in the case of power law
rheology, which in our case is the apparent area
compressibility modulus K0

A, but decreases according
to bf� logK0

A (vide infra) (19).
Fig. 2 D shows a typical force cycle curve consisting

of an approach curve generated by a linear ramp and a
subsequent relaxation also following a linear ramp
(identical approach and retraction velocity) obtained
by probing a basolateral membrane patch. The patch
covering the pore was indented as precisely as
possible in the center fulfilling the axial symmetry con-
ditions of the theory. Because of the potential for adhe-
sion events to affect the retraction curve, only a portion
of the retraction curve (approximately one-third) was
considered for fitting.

Fig. 3 shows the results of fitting Eqs. 22, 23 to many
experimental force curves obtained from basolateral
membrane patches of adherent MDCK II cells. Gener-
ally, three parameters are obtained from the entire
force cycle, the scaling factor K0

A, the prestress s0
and the fluidity (power law exponent) b. The mean



FIGURE 3 Fluidity b as a function of area compressibility K0
A for ba-

solateral membrane sheets (purple) and living cells probe from the
apical side (brown). The data for living cells were obtained from
reevaluating experiments by Pietuch et al. (5) using the model of Hu-
brich et al. (27) The arrow illustrates what happens to the data if K0

A is
rescaled by the average area of a membrane footprint, the flow illus-
trated by the inset in the top right corner.
prestress s0 was found to be around 1:651 mN/m,
which I largely attribute to differential adhesion at the
pore rim and stress exerted by actin bundles. The large
variance is due to substantial pore to pore variation
supporting the theory of differential adhesion that can
locally be quite different, for instance in the vicinity of
focal contacts. The mean fluidity was considerably
lower ðbz0:2Þ than reported for confluent living cells
evaluated with the Evans model ðbz0:6Þ (19,27).
This is attributed mainly to the missing sliding action
of myosin motors compared with living cells, where
motor proteins maintain fluidity of the cortex. It is
also conceivable that the basolateral cortex is poten-
tially stiffer than the apical side, but a previous study
has shown that membrane extracts actually have lower
fluidity (27). An increase of prestress due to the pres-
ence of pore rims (Eq. 26) compared with the cortex
stress of living cells can easily generate a substantial
decrease of fluidity (19,23,43).

Most importantly, however, a linear decrease of b

with the scaling factor logK0
A was found as reported

from the rheology of living cells and apical membrane
fragments (22,23,27). Because b and K0

A depend on
each other in this way, it implies automatically that
stiffer cortices are also less fluid and vice versa. This
universal law has first been discovered by Fabry et al.
using ferrimagnetic beads adhering to the actin cyto-
skeleton and actuated by an external magnetic field
(22). A weak power law was observed for G0 being
larger than G00 below 300 Hz. The spectra were
described by a structural damping model that pro-
duced parameters falling onto such a master curve.
This essentially suggested that the constitutive elastic
and frictional properties are controlled by a single
parameter, for instance, b, over a wide frequency range
(22). Thus, in principle, the cells can respond to external
cues by modulating solely b as the primary control
parameter. However, if the data are extrapolated to a
fully elastic material (b ¼ 0, intersection with the x
axis) the basolateral membranes exhibit a very low
stiffness compared with living cells (Fig. 3) (27). This
needs further exegesis. If one takes into account that
the excess area might be as large as the patch itself
including hidden reservoirs Aexz329549 mm (44)
because upon indentation the cortex can follow the
indenter into the pore, the corrected (see arrow in
Fig. 3) correlation (4K0

A with 4 ¼ A0þAex
A0

) continues the
scaling found for living cells probed at the apical side
(Fig. 3). Therefore, the master curve still holds and
considering only one parameter, the fluidity b, is suffi-
cient. The lack of functional motor proteins could be
responsible for the flatter slope found for the basolat-
eral membrane patches compared with that of living
cells. This was shown recently for apical cell mem-
brane fragment after addition of exogenous ATP to
revive some of the remaining myosin motors signifi-
cantly increasing fluidity of the cortex (27). Close to
bz0, the elastic limit, other contributions such as fric-
tion between the membrane and the pore rim might
become visible: an explanation of why energy losses
occur even with very high stiffness. A direct compari-
son between cortex fragments derived either from the
basolateral or the apical side shows that polarity has
only a small impact on viscoelasticity. Hubrich et al.
(27) found that apical membrane fragments also
exhibit low fluidity in the range of 0.2 similar to what
was found here, whereas living cells display substan-
tially higher fluidity presumably due to motor activity
as mentioned above. Along the same lines, Kim et al.
found only small differences in elasticity of PaTu8988S
and PaTu8988T probed either from the basal or apical
side, respectively (15).

Notably, the presence of pores during cell culture ren-
ders MDCK generally softer than cultured on contin-
uous stiff surfaces such as culture dishes or silica.
This was recently shown in a systematic fashion using
different pore sizes (45). The area compressibility
modulus might be reduced by a factor of 2–3
comparing cells cultured on flat substrates with those
grown on porous surfaces with a pore diameter of 5
mm (45).

In conclusion, for the first time, to my knowledge, it
was possible to obtain the viscoelastic properties of
basolateral membranes in the absence of other cellular
ingredients by site-specific indentation-relaxation ex-
periments of planar membrane patches on porous sub-
strates. The theoretical model to describe the force
cycles correctly describes the shape of the free mem-
brane/cortex in terms of a minimal surface and permits
to easily modify the constitutive equations to capture
dissipative processes in thin films employing the
Biophysical Reports 1, 100024, December 8, 2021 7



viscoelastic-elastic correspondence principle (8). It
could be shown that the universal scaling law between
stiffness of cells and their fluidity is largely preserved,
implying that cell cortices cannot change their elastic
and dissipative properties independently (19,22,23). A
decrease of stiffness is always accompanied by an in-
crease in fluidity. We found that regulation of mechan-
ical properties can also be accomplished via storage of
excess area to soften the apparent moduli over orders
of magnitude. The cortex fragments are stiffer, and
less fluid compared with living cells that can be partly
attributed to arrested myosin motors but could also
be a consequence of polarity and therefore larger
prestress exerted by stress fibers at the basal side.
Although for unstressed actin networks, a power law
exponent of 0.5 is expected, I found substantially lower
values of only 0.2 (46). I attribute this partly to higher
prestress and missing motor activity that decreases
the noise level necessary to drive the cytoskeleton
into a disordered state that eventually enables the cells
to perform tasks like spreading, migration, and division.

Polarity of epithelial cells is very pronounced on
many levels, and cortical viscoelasticity seems to be
no exception. However, more experiments involving
fully active cortices with myosin motors are needed
to obtain a more comprehensive picture of viscoelas-
ticity in the context of cell polarity.
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