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Using a Machine Learning 
Approach to Predict Outcomes 
after Radiosurgery for Cerebral 
Arteriovenous Malformations
Eric Karl Oermann1,*, Alex Rubinsteyn2,*, Dale Ding3, Justin Mascitelli1, Robert M. Starke3, 
Joshua B. Bederson1, Hideyuki Kano4, L. Dade Lunsford4, Jason P. Sheehan3, 
Jeffrey Hammerbacher2 & Douglas Kondziolka5

Predictions of patient outcomes after a given therapy are fundamental to medical practice. We employ a 
machine learning approach towards predicting the outcomes after stereotactic radiosurgery for cerebral 
arteriovenous malformations (AVMs). Using three prospective databases, a machine learning approach 
of feature engineering and model optimization was implemented to create the most accurate predictor 
of AVM outcomes. Existing prognostic systems were scored for purposes of comparison. The final 
predictor was secondarily validated on an independent site’s dataset not utilized for initial construction. 
Out of 1,810 patients, 1,674 to 1,291 patients depending upon time threshold, with 23 features were 
included for analysis and divided into training and validation sets. The best predictor had an average 
area under the curve (AUC) of 0.71 compared to existing clinical systems of 0.63 across all time points. 
On the heldout dataset, the predictor had an accuracy of around 0.74 at across all time thresholds with 
a specificity and sensitivity of 62% and 85% respectively. This machine learning approach was able to 
provide the best possible predictions of AVM radiosurgery outcomes of any method to date, identify a 
novel radiobiological feature (3D surface dose), and demonstrate a paradigm for further development of 
prognostic tools in medical care.

Predicting the outcome of a specific patient treated with a particular therapy is fundamental to medical practice. 
In the case of cerebral arteriovenous malformations (AVMs), several scoring systems have been developed to aug-
ment clinician experience in predicting individual patient outcomes after treatment with radiosurgery, a type of 
highly focused radiation therapy1–8. These outcomes, including the probability of treatment success, the expected 
morbidity associated with a given therapy, and the expected latency period between treatment and obliteration, 
all factor into the clinical decision to treat AVMs with surgery, embolization, radiosurgery, or a multimodal 
approach7–16. The degree to which we can improve upon currently available classification systems for predicting 
AVM treatment outcomes is unknown.

Machine learning is an interdisciplinary field combining computer science and mathematics to develop mod-
els with the intent of delivering maximal predictive accuracy17. Combining these new analytical tools with mod-
ern clinical databases and registries promises an entirely new approach towards conducting medical research and, 
ideally, developing ways to predict individual outcomes and the risk to benefit profiles from specific therapies18. 
In the present study, our aims are to (1) apply a machine learning approach towards predicting individual patient 
outcomes after AVM radiosurgery and (2) analyze the predictive capability of existing grading systems for AVM 
patients treated with radiosurgery.
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Results
Data and analysis pipeline. Of the 1,810 patients, a varying number were excluded for incomplete base-
line data or failure to achieve the endpoint by a given time threshold leaving 1,291–1,674 patients at each time 
threshold with complete 23 feature profiles which were graded utilizing current prognostic models for AVM 
radiosurgery outcomes (RBAS, VRAS, SM) (Fig. 1, Table 1). Of the patients considered as having been oblite-
rated, 76.8% were confirmed with cerebral angiography, while 23% were noted on magnetic resonance imaging 
(MRI) only. The 1,442 patients were randomly sorted 2:1 into 100 training and testing sets of 961 and 481 patients, 
respectively (Table 2).

Feature selection. After pre-processing and feature engineering, the automatically generated features failed 
to yield any appreciable benefit and were subsequently dropped, leaving 23 features for use in classifier con-
struction (Table 3). The top three features in the LR predictor at every time point were maximum diameter (fre-
quency =  1), prior embolization (frequency range = 0.88–1), and margin dose (frequency range =  0.92–0.97). 
The top five features at eight years were equivalent to the top five features at six years: (1) maximum diameter, 
(2) prior embolization, (3) margin dose, (4) number of isocenters, and (5) brainstem location. These were also, 
on average, the most useful features across all time points. For predicting obliteration at two years, a notably 
different set of features was most useful: (1) maximum diameter, (2) prior embolization, (3) margin dose, (4) 3D 
surface dose, and (5) isodose. 3D surface dose did not contribute significantly to predictor performance, with the 
exception of margin dose at the two-year time point. Various locations were always present in a large number of 
models, with more important locations including brainstem (frequency range =  0.63–0.96), thalamus (frequency 
range =  0.75–0.88), and temporal lobe (frequency range =  0.68–0.91).

Predictor accuracy at predicting favorable outcomes. The median time to a favorable outcome was 
4.2 years (95% CI 3.8–4.7 years; Fig. 2). Predictors were optimized and subsequently tested on the AVM dataset 
utilizing the previously mentioned features. Without hyperparameter optimization, LR provided superior classi-
fication results in numerous trials. However, with optimization, all classifiers were able to obtain similarly good 
results (Fig. 3). At all follow-up time points, the LR predictor had superior AUC compared to the VRAS, SM 
grade, and RBAS (Fig. 4). The LR predictor additionally continued to outperform existing models on the heldout 
dataset from Site #3 (Fig. 5). The LR predictor delivered superior predictive accuracy compared to existing clinical 
models with an AUC of 0.70 (95% CI 0.67–0.73) at four years, which was relatively constant at all times points 
(Fig. 6). The VRAS had a steady gain in accuracy over time, with an AUC at two, three, four, six, and eight years 
of 0.65, 0.64, 0.67, 0.68, and 0.69, respectively. Using four years as an example time point, the LR predictor had 
an AUC of 0.70 (95% CI 0.67–0.73), the VRAS of 0.67 (95% CI 0.64–0.70), RBAS of 0.60 (95% CI 0.57–0.63), and 
SM of 0.61 (95% CI 0.58–0.64).

Figure 1. Flow chart of data assembly, processing, and analysis. Patients were gathered from two 
independently maintained, prospective AVM radiosurgery databases. Both databases were integrated into a 
single dataset of 1,810 patients described by 23 features. The features were divided into an arbitrary number 
of bootstrap training and testing samples (N =  100). After data pre-processing including standardization 
and normalization, an iterative process of feature engineering, feature selection, predictor generation and 
assessment was instituted. After a satisfactory set of features was selected, a hyperparameter optimization 
routine was utilized, and four final predictors were trained and cross-validated on the dataset. The predictors 
included a logistic regression model, a random forests model, a stochastic gradient descent model, and a 
support vector machine model. Existing clinical models of AVM outcomes were also tested on the dataset, 
including the Spetzler-Martin scale (SM), modified Radiosurgery Based AVM Score (RBAS), and Virginia 
Radiosurgery AVM Scale (VRAS).
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Compared to alternative linear, ensemble, and support vector techniques, the LR predictor obtained simi-
lar results (Fig. 3). At six years, LR had an AUC of 0.72 (95% C.I. 0.68–075), compared to RF at 0.70 (95% C.I. 
0.67–0.73), and SVM at 0.62 (95% C.I. 0.56–0.68). The relative performance of all predictors was similar across 
all time points, despite the difference in predictive algorithms and feature utilization between each technique. Site 
#3 had 60 patients with at least four years of clinical follow-up. When ML predictors were tested at four years, the 
best performing aws the LR predictor with an AUC of 0.79 (95% C.I. 0.76–0.81). The LR predictor at four years of 
follow-up had a sensitivity of 85%, and a specificity of 62% resulting in a positive predictive value (PPV) of 74% 
and a negative predictive value (NPV) of 76% (Table 4).

Clinical observations. For patients predicted to have an unfavorable outcome at eight years, there was a 
trend towards a higher rate of post-radiosurgery hemorrhage (13.5%) compared the favorable outcome group 
(6.3%, p =  0.089), with a difference in average at-risk years for hemorrhage of 4.9 years in the unfavorable out-
come group vs. 4.1 years in the favorable outcome group. Notably, this unfavorable outcome group had no signif-
icant group differences compared to the patients having a neutral or favorable outcome.

In order to uncover the importance of 3D surface dose to the predictors, we retroactively analyzed its asso-
ciation with other patient features and outcomes. At two years, 3D surface dose was associated with adverse 
events. A greater average 3D surface dose was delivered to patients who experienced a post-radiosurgery hem-
orrhage (252 vs 169 Gy*mm2, p <  0.001) and to patients who suffered a permanent neurological deficit (222 vs 
196 Gy*mm2, p <  0.001). A 3D surface dose greater than 199 Gy*mm2 was delivered to 70% of patients who had 
experienced a post-radiosurgery hemorrhage (p <  0.001) at two years of follow-up.

Discussion
This study demonstrates a machine learning approach towards medical prognostication, specifically, a novel 
method for predicting AVM radiosurgery outcomes. While the final predictor from this study has clinical signif-
icance in its own right as the most accurate existent predictor of outcomes after AVM radiosurgery, the general 
approach employed for constructing it is far more important. The application of machine learning methods to 
medical data constitutes the analytical backbone of a novel research paradigm of: (1) generating large clinical 
registries or datasets followed by (2) pre-processing and feature selection in order to (3) select and applying 
machine learning techniques to (4) generate clinical insights and, ideally, (5) actionable principles that may be 
implemented in clinical practice. In this study, we have succeeded in demonstrating this approach towards med-
ical research utilizing a multicenter cohort of patients harboring cerebral AVMs who underwent treatment with 
radiosurgery. We also described the final predictor, which currently stands as an accurate and rigorously vetted 
predictor of individual patient outcomes after AVM radiosurgery.

Given the young age at which AVMs are diagnosed and the devastating neurological consequences of rupture, 
there is significant interest in predicting AVM outcomes after a given therapy2,19–21. The SM grading system is the 

Prognostic Scoring System Feature List Feature type Original Model/Predictor

A:  Summary of existing prognostic systems

SM Classification1

Maximum nidus diameter Categorical: 1–3
Quadratic regression  

(∑ features)Location (± critical function) Binary: 0, 1

Venous drainage Binary: 0, 1

RBAS1

Volume Continuous
Linear regression  

(∑ weighted features)Location (deep vs superficial) Binary: 0, 1

Age Continuous

VRAS1

Volume Categorical: 0–2
Logistic regression  

(∑ features)Location ( ±  critical function) Binary: 0, 1

History of hemorrhage Binary: 0, 1

B:  Number of patients at each time threshold

Time Threshold Number of patients

Year 2 1674

Year 3 1586

Year 4 1442

Year 5 1386

Year 6 1340

Year 7 1308

Year 8 1291

Table 1.  (A) A summary of existing prognostic systems. Many existing prognostic systems utilize a similar 
feature set, but differ considerably in their types (continuous vs categorical) and in the predictors constructed 
with those features in the original manuscripts. (B) A summary of the number of patients at each time 
threshold with patients not having complete data at each threshold being censored. 1SM =  Spetzler-Martin; 
RBAS =  modified radiosurgery-based AVM score; VRAS =  Virginia radiosurgery AVM scale.
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most commonly used classification scheme to predict surgical morbidity based on AVM size, critical function, 
and venous drainage pattern22. Subsequently, new systems were developed to specifically predict AVM radio-
surgical outcomes, including the RBAS, which takes into account patient age, lesion volume, and lesion loca-
tion4,6,23. More recently, the VRAS utilized AVM volume, eloquent location, and prior hemorrhage to predict 
favorable outcome, defined as obliteration without post-radiosurgery hemorrhage or permanently symptomatic 
radiation-induced changes, after radiosurgery24. All of these systems share a common approach towards con-
struction by starting with clinician-specified variables, and then utilizing the coefficients from subsequent regres-
sion modelling to construct an intuitive model that is validated against the original database from which they 
were derived. The Spetzler-Martin grade remains useful for the classification of AVMs undergoing treatment with 
radiosurgery11,25–28. Interestingly, the VRAS scale had a relatively good performance across several time points, 
suggesting that it might better capture time independent factors than the other systems. Efforts are currently 
under way to validate the RBAS and VRAS in a multicenter cohort.

The novel predictors described by the present study, particularly our LR predictor, have a radically differ-
ent design process. Starting with a large, multicenter cohort dataset assembled from two prospective collected 
databases, we utilized all available features within the dataset as our initial input, rather than restricting our-
selves to clinician-selected features. To further maximize the extent to which we could leverage the data, we then 

Feature
Frequency 

at t = 2 years
Frequency 

at t = 3 years
Frequency 

at t = 4 years
Frequency 

at t = 6 years
Frequency 

at t = 8 years Avg.

Maximum diameter (mm) 1 1 1 1 1 1

Prior embolization (yes/no) 0.88 1 1 1 0.99 0.974

Marginal dose (Gy) 0.92 0.97 0.94 0.98 0.92 0.946

Number of isocenters (no.) 0.84 0.81 0.78 0.96 0.95 0.868

Location 8 – brain stem (yes/no) 0.63 0.71 0.9 0.96 0.93 0.826

Associated aneurysm (yes/no) 0.68 0.88 0.84 0.86 0.83 0.818

Location 5 – thalamic (yes/no) 0.77 0.78 0.81 0.88 0.75 0.798

Location 2 – temporal (yes/no) 0.68 0.73 0.91 0.82 0.76 0.78

Surgery (yes/no) 0.81 0.49 0.76 0.86 0.74 0.732

Deep venous drainage (yes/no) 0.69 0.64 0.64 0.85 0.82 0.728

History of Hemorrhage (yes/no) 0.69 0.73 0.62 0.75 0.73 0.704

Sex (male/female) 0.68 0.61 0.69 0.79 0.7 0.694

Age (years) 0.6 0.64 0.6 0.77 0.67 0.656

3D surface dose (Gy × mm2)* 0.87 0.71 0.6 0.51 0.59 0.656

Location 9 – cerebellum (yes/no) 0.64 0.76 0.62 0.62 0.59 0.646

Location 1 – frontal (yes/no) 0.5 0.56 0.63 0.71 0.75 0.63

Location 7 – callosal (yes/no) 0.65 0.51 0.61 0.72 0.62 0.622

Location 4 – occipital (yes/no) 0.55 0.42 0.6 0.73 0.8 0.62

Volume (mm3) 0.59 0.4 0.57 0.75 0.72 0.606

Location 3 – parietal (yes/no) 0.82 0.58 0.53 0.56 0.47 0.592

Location 6 – BG† (yes/no) 0.8 0.51 0.5 0.57 0.57 0.59

Isodose (%) 0.81 0.51 0.49 0.56 0.55 0.584

Max dose (Gy) 0.48 0.4 0.7 0.52 0.59 0.538

Table 2.  Frequency of variable inclusion in LR predictor. The set of utilized features in the logistic regression 
predictor (LR predictor) and their frequency of model inclusion at different time points. Bolded text indicates 
the top five utilized features at each time point, with a final column (Avg.) denoting the average rate of inclusion 
in the predictors across all time points. The majority of features were derived from original patient data, while 
one feature, marginal dose (Gy) ×  surface area (mm2), was consistently selected for inclusion in the learning 
model and of particular use at predicting early obliteration rates. *The engineered feature selected for inclusion 
in the model. †basal ganglia.

Site #3 at 4 years

Predicted 
Unfavorable 

Outcome

Predicted 
Favorable 
Outcome Totals

Unfavorable Outcome 16 10 26

Favorable Outcome 5 29 34

Totals 21 39 60

Table 3.  A confusion matrix of predictive results from the LR predictor at 4 years for the independent 
dataset of Site #3. The LR predictor had a sensitivity of 85%, and a specificity of 62%. These results yield a 
positive predictive value (PPV) of 74% and a negative predictive value (NPV) of 76%.
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performed several iterations of feature engineering. After screening all engineered features, we discovered that  
AVM surface area multiplied by margin dose was particularly helpful for fitting the predictors at early time points. 
We termed this parameter 3D surface dose, since it effectively describes the total dose delivered to the entire sur-
face/margin of the lesion, and it may have clinical significance in its own right (as discussed below) beyond simply 
increasing predictive accuracy at early time points. We then turned to identifying optimal predictors in order to 
achieve the highest possible predictive accuracy while utilizing cross-validation to decrease the risk of over fitting 
the data. To further ensure accuracy and generalizability, we validated the final models on patients from a third 
site, which was entirely excluded from model construction. This general process of model training and testing on 
a multicenter dataset, with validation on independent datasets from other sites is a crucial best practice for prog-
nostic model creation which is often lacking in the construction of existing clinical scoring systems29.

This approach has several additional theoretical advantages beyond its increased accuracy and data inclusive 
design. First, as a computer-based predictive model that is scripted to run off of an arbitrary database, the present 
model has the advantage of being able to be seamlessly updated as new information becomes available, thus allow-
ing it to adapt with time to shifts in practice patterns and patient populations. This also parlays into an advantage 

Figure 2. (a) Kaplan-Meier plot of obliteration over time of the combined dataset, showing a median time 
to obliteration of 3.4 years (95% C.I. 3.2–3.6 years), and an average time to obliteration of 6.1 years (95% C.I. 
5.8–6.5 years). (b) There was a divergence in results between treatment sites, with one site reporting an average 
time to obliteration of 6.7 years (95% C.I. 6.2–7.1 years), and the other reporting an average time to obliteration 
of 5.2 years (95% C.I. 4.6–5.8 years) (p <  0.001).

Figure 3. A heatmap of AUC for the different classifiers across various times points. There is a trend towards 
peak performance at five years for all classifiers, with a skew towards superior performance at later time points. 
The increased accuracy at later time points is likely due to the more evenly balanced data due to more patients 
having met the endpoint by later time points.
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of being distinctly translatable into a practice-specific tool. Rather than being a static construction off of a single 
center’s experience, to be generalized with unknown error to specific practices and specific patients, the present 
approach can be run off of any supplied database. The end result is maximally accurate results for clinical decision 
support in the management of individual patients rather than broadly generalizable knowledge about a disease 
state. Lastly, by utilizing machine learning methods rather than a developed scoring system, the present approach 
can be easily modified to account for missing data. The 368 patients which were excluded from the present study 
were excluded because the scoring systems (VRAS, SM, etc…) could not be calculated for them. It would have been 
a straightforward process to incorporate all 368 of them into the machine learning models however.

For some of the classical models, results at certain time points are scarcely better than chance. This possibly 
stems from their limited feature space, with many only utilizing two or three features, or their susceptibility to 

Figure 4. ROC curves for four predictive models of AVM outcomes after radiosurgery at all assessed 
follow-up time points on the testing set. There is a noticeable decay in accuracy for all models at longer 
follow-up time points. The LR predictor consistently delivers more accurate predictions of individual 
“favorable” outcomes than existing systems.

Figure 5. ROC curves for the trained classifiers were tested on a heldout dataset from Site #3 
demonstrating similar results and potential for generalization to other institutions and clinical settings. 
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error stemming from limited sources of data and potential bias prior to analysis. The present study’s predictors 
are originally designed to mitigate some of these sources of error, as well as benefitting from a larger, more diverse 
multicenter dataset. Despite these advantages and the reasonable sample size, our predictors also appeared to 
reach a upper bound on their predictive accuracy around 70%, despite the use of both straightforward and more 
sophisticated methods. Also, notably, the logistic regression classifier with its sparse, linear feature space per-
formed exceptionally well. We considered utilizing a naïve Bayes classifier as well due to their efficiency and 
accuracy at classification. However, the conditional independence assumption is clearly not true for clinical data-
sets containing both pre-treatment and treatment features since it is characteristic of treatment features to be 
dependent upon pre-treatment features.

Several possibilities exist for the cause behind this upper bound on our predictive capabilities and the failure 
of nonlinear classifiers to outperform simple linear ones. We speculate that intrinsic characteristics of the AVMs 
including angioarchitecture (how the blood vessels are arranged), hemodynamics, and radiobiology play a large 
and unknown role in determining patient specific response to radiosurgery30,31. A recent study by our group 
noted a potential role for angioarchitecture in determining obliteration rates9. Unfortunately, the present dataset 
did not contain comprehensive information on angioarchitecture for us to include in our analysis. Hemodyanmic 
features like AVM blood flow, volume, and pressures, may also be crucial to determining the response to radia-
tion, as well as features describing the radiation dosimetry may be helpful for increasing our predictive accuracy. 
The sample size itself also presents an interesting conundrum. From a statistical perspective it is somewhat small, 
only consisting of a few thousand patients. For this given pathology, however, the size of the analyzed dataset is 
enormous, constituting, to the author’s knowledge, the largest AVM analysis published to date. Perhaps most sig-
nificantly for the case of the more advanced learning models, a significant source of error incurred while learning 
a feature space may stem from an iatrogenic loss of interesting clinical variants/cases.

Clinicians practically limit the values of treatment features based on clinical features in order to achieve an 
intended clinical outcome. While this is the essence of medical practice, it does pose a barrier to machine learning 
by denying predictive models the knowledge of how outcomes are dependent upon those specific interactions 
which clinicians are avoiding. For example, in the present analysis, brainstem and insular AVMs all have relatively 
conservative dose regimens. While this approach may yield favorable clinical outcomes, it simultaneously denies 
a learning algorithm the ability to know that a high dose delivered to the brainstem is associated with adverse 
events. We suspect that this is partially why more advanced techniques like random forests do not outperform 
linear models like logistic regression, and why location isn’t as important a feature as one would expect (because 
doctors are eliminating instructive cases as to its importance). A possible solution to this issue may be utilizing 
artificial training sets to pre-train models with existing medical knowledge prior to learning from actual clinical 
cases. This clinical pre-training step would be somewhat analogous to the unsupervised pre-training of convo-
lutional networks prior to supervised learning. We suspect further investigations in this particular problem area 
will prove essential and fruitful towards increasing predictive power.

Figure 6. Comparison of AUC with 95% CIs for the tested models at various time points. While the models 
have a consistent hierarchy of accuracy at most time points with the LR model being the most accurate and 
the SM model being the least, there is a trend of increasing predictive accuracy with time for the VRAS model. 
This potentially suggests capture of more time-dependent features in the VRAS model compared to the other 
models, which have relatively constant accuracy across all time points.
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An essential component of a machine learning analysis is the generation of actionable insights consequent to 
constructed predictive models. The LR predictive model is, itself, a valuable clinical tool. As previously discussed, 
both its superior predictive capabilities as well as its natural ability to be tailored to a particular population or 
practice make it ideal for implementation in clinical practice. To further demonstrate the practical utility of this 
approach, we conducted a secondary analysis to evaluate patients who were predicted to have an unfavorable 
outcome, as well as a secondary analysis of our engineered feature, 3D surface dose.

We looked at the subset of patients who were predicted to have favorable outcomes at eight years by the LR 
model. This set of patients had a longer time to obliteration, although it was not significant, and despite the diffi-
culty of categorizing patients eight years out from a treatment, the predictor yielded mediocre results at identify-
ing unfavorable outcomes. However, on our subset analysis of the unfavorable outcomes that were identified, we 
noted an increased rate of post-GK hemorrhages, perhaps due to their longer at-risk period. It is worth noting 
that, methodologically, this separate analysis could have been avoided, and possibly even improved upon, by con-
structing an entirely separate classifier designed to exclusively isolate individuals at risk for hemorrhage, rather 
than attempting to parcel out and identify an at-risk subset from the predictions of favorable outcomes.

The engineered feature, 3D surface dose, was of particular interest due to its utility at early time points, time 
dependence, and relatively intuitive clinical interpretation. Under the assumption that its significance to the 
model might be to indicate early events, we looked for correlations between 3D surface dose and clinical events. 
While loosely associated with obliteration rates, 3D surface dose was significantly associated with adverse events 
within the first two years. After engineering a new categorical feature, we identified a cutoff of 199 Gy*mm2, 
above which patients at all times points had a greater incidence of treatment-related adverse events. While need-
ing independent verification, a potential mechanism is that 3D surface dose is associated with both increased 
target edema leading to swelling, deficits, and potentially hemorrhage secondary to shift. A second potential 
mechanism is that 3D surface dose correlates closely with the dose delivered to surrounding normal tissues. Both 
of these mechanisms have been observed in other cases. In the case of intracranial radiosurgery for meningioma, 
surface area and dose are associated with increased intracranial edema32,33. Modelling studies have also identified 
surface area alone as correlating with intracranial V-12 (the volume receiving 12 Gy), which is associated with 
normal tissue toxicity, as well as being predictive of rectal toxicity after prostate SRS34–36.

Although the data in this study was collected in a prospective fashion, validated against an independent third 
dataset, and the study’s analysis was conducted utilizing techniques to minimize bias, it is a retrospective project 
that requires validation in a prospective manner to demonstrate predictive capability. Regardless of dataset size, 
quality, and the use of techniques such as cross-validation, there is no internal panacea for validating predictive 
models which ultimately need external validation37. This problem was demonstrated clearly in the present study 
when attempts to fit models on one center’s data and then test on the other center were challenged by significant 
variation within each center’s treatment patterns. Only by combining centers, at a slight loss of accuracy, could we 
develop a more generalized result. Therefore, validation using patient cohorts from other institutions is essential 
to improving upon these results. The quality of any predictor is ultimately limited by the quality of its data as 
well, and as noted previously, there are intrinsic limitations to any given dataset – some of which are iatrogenic 
and clinically desirable, although disadvantageous for modelling. Larger datasets with more variation will prove 
essential towards increasing predictive accuracy.

Despite the success of this project at generating superior predictors, the results are nonetheless less than 
ideal for use in clinical practice to guide individual patient management. A potential limitation, with regards 
to accuracy, is the non-exhaustive search through existing machine learning models. While we utilized a wide 

Classifiers and their respective hyperparameters

L1-penalized logistic regression

 C: [10^4 … 10^2]

L2 -penalized Linear SVM

 C: [10^-4 … 10^2]

Random Forest

 Max depth : {10, 20, 30}

 # trees: {25, 50, 100}

 minimum # of split samples: {2, 3, 4, 5}

Extremely Randomized Trees:

 Max depth : {10, 20, 30}

 # trees: {25, 50, 100}

 minimum # of split samples: {2, 3, 4, 5}

Gradient Boosting:

 Learning rate: [10^-4 … 1.0]

 # boosting stumps: {25, 50, 100}

 Depth of each boosting stump: {2, 3, 4, 5}

 Subsampling: {0.5, 1.0}

Table 4.  A list of the classifiers employed and their respective hyperparameters which were optimized 
utilizing a grid-search routine prior to classifier training and testing.
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range of classifiers, there are many more which we have not yet attempted and may yet yield superior results. 
As noted, with hyperparameter optimization, most of the predictors however obtained similar accuracies with 
upper bounds between 70–80%. This upper limit on accuracy for both the linear and nonlinear models leads us 
to believe that more sophisticated models will not be more successful on the present dataset. Rather, we believe 
that a more comprehensive and descriptive feature set will be required to obtain more accurate predictors. With 
a larger feature set, it is conceivable that then more sophisticated models may be necessary for achieving more 
accurate results.

The engineered features, particularly 3D surface dose, have actual values which the present study only approx-
imated. In the case of 3D surface dose, actual target surface areas can be calculated using treatment planning soft-
ware, and in the future could be determined this way. Due to limitations of the available datasets, the present study 
could only approximate the true value of this feature utilizing calculated spherical surface area. A limitation with 
regards to comparing the present approach to existing models is the fundamental difference in approach towards 
feature selection. Existing systems, the VRAS, RBAS, and Spetzler-Martin, utilized a small set of pre-treatment 
features, whereas our current approach attempted to derive the best possible prediction utilizing all available 
information. In a sense then, the fundamental advantage of a machine learning or data science approach towards 
making predictive models is a philosophical one with regards to the use of data.

Lastly the predictors for the present study were each developed for a specific time points, two, three, four, 
six, and eight years. While useful time points clinically, such discrete results are suboptimal, due to a reduction 
in predictor accuracy the farther time gets from its point of optimization. The current system could stand to be 
improved upon by creating a system that continuously sweeps over all available time points, or by creating an 
ensemble model that utilizes a union of the existing discrete predictors and weights predictions inversely to the 
difference in time from a given point to the optimal.

Variability in patient outcomes after a given therapy is a known part of medical practice. Machine learning 
presents novel tools to predict outcomes and, in the case of AVM radiosurgery, can provide a powerful tool for 
treatment planning. This approach towards developing optimal predictors has enabled the present study to create 
a tool that outperforms existing prognostic systems for predicting AVM outcomes. Point of care prognostics for 
a specific AVM patient, based upon the outcomes of a particular practice in a given population and harvested 
automatically from a clinical registry or electronic medical record, may be able to ensure we deliver the right care 
to the right patient.

Methods
Participant selection, definitions, and outcomes assessment.  We retrospectively evaluated pro-
spectively maintained, institutional review board (IRB) approved AVM radiosurgery databases from three institu-
tions participating in the International Gamma Knife Consortium (IGKRF). A total of 1,910 patients, comprising 
1,010 patients from the University of Virginia (Site #1), 800 patients from the University of Pittsburgh (Site #2), 
and 100 patients from New York University (Site #3) were de-identified and pooled by an independent third 
party, and then sent to the institutions of the first and senior authors for analysis. All patients were treated using 
the Leksell Gamma Knife (Elekta AB), the details of which have been previously reported38–40. All patients were 
required to have sufficient data regarding prior interventions, clinical presentation, AVM characteristics, and 
post-SRS outcomes, as well as follow-up angiography or MRI in order to be included in the site-specific databases 
with a minimum follow-up of at least 2 years between the two sites. Radiologic follow-up was obtained by MRI 
at approximately six to twelve month intervals for the first two years, and then annually thereafter. Obliteration 
was defined as the absence of flow voids on MRI, or the absence of anomalous arteriovenous shunting on angi-
ography. Angiography to confirm nidal occlusion was performed, when possible, after obliteration was noted on 
MRI. Latency period hemorrhage was defined as hemorrhage following SRS treatment, regardless of neurological 
condition. An “unfavorable” outcome was defined as any patient experiencing a post-radiosurgery hemorrhage, 
or a new, permanent neurological deficit. A “neutral” outcome was defined as a patient at a specified time point 
with a patent AVM, but not having an unfavorable outcome. Lastly, a “favorable” outcome, the focus of the current 
study, was defined as any patient achieving obliteration at a specified time point without suffering an unfavorable 
outcome.

Initial and engineered features. Features (variables) in the initial database included standard clinical 
and treatment parameters: gender, age, prior treatments, prior AVM hemorrhage, presence of intranidal or per-
inidal aneurysms, margin dose, maximal dose, isodose, number of isocenters, duration of follow-up, and clinical 
symptoms. Angioarchitectural features included location (eloquent vs. non-eloquent and deep vs. superficial), 
maximum diameter, volume, number of draining veins, and location of draining veins (superficial only vs. any 
deep component). Age was re-scaled as log age. Location was defined both in terms of critical neurologic func-
tion, based on the Spetzler-Martin (SM) grading scale, as well as neuroanatomical region. Regions were defined 
in terms of the major lobes (frontal, temporal, parietal, occipital), basal ganglia, thalamus, corpus callosum, brain-
stem, cerebellum, or insula. Feature engineering, a pre-training manipulation of data to boost predictor perfor-
mance was performed in two steps41. Automatic feature engineering was performed by pairwise multiplication 
and binary re-classification of features, in addition to expert judgement feature engineering performed by a mem-
ber of the team familiar with both clinical medicine as well as machine learning. Most notably the effort at expert 
judgement driven feature engineering yielded the 3D surface dose which, assuming spherical AVM geometry and 
a roughly homogenous dose distribution, can be approximated as nidus three dimensional surface area multiplied 
by the average radiosurgical margin dose.

Machine learning analysis and statistical comparison. Predictors (predictive models) were con-
structed to predict favorable outcomes using a machine learning approach. Novel features not present in the initial 
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datasets were constructed as previously discussed. Pre-processing, including normalization and re-classification, 
was performed for all features in order to assess their utility for inclusion in the final model. All non-binary fea-
tures were normalized to a mean of zero and unit variance. An iterative process of feature engineering, model 
generation, and model/feature assessment was performed to identify useful features for prediction. Cases with 
missing values were excluded from the overall analysis. As part of predictor construction, all predictors were 
tested both with and without initial optimization (grid search) of their hyper-parameter space by assessing 
cross-validated accuracy on training subsets of the dataset as described below. Predictors tested in the current 
study included logistic regression (LR) with L2 regularization, a linear support vector machine (SVM)42 with L2 
regularization, gradient boosting43, Random Forests (RF)42, and Extremely randomized trees44–47.

Predictor construction was performed by generating N fixed bootstrap42 samples consisting of two-thirds of 
the dataset, with the remaining one-third reserved for validation (N =  100 samples for the current manuscript). 
Ten-fold cross validation on each bootstrap training set was performed to optimize predictor hyperparameters 
(Table S1). Lastly, optimized predictors were trained on the entire bootstrap testing set and tested against the 
corresponding testing set. The process was performed iteratively across all N bootstrap testing sets and displayed 
graphically to show the variation within each predictive technique. To quantify each model’s general precision, 
all N models were averaged to generate a final measure of average accuracy and variance for each predictor. A 
similar bootstrap sampling process, with omission of a training step, was performed for all standard clinical 
models as well. Traditional models of AVM outcomes after radiosurgery included in the step were the modi-
fied radiosurgery-based AVM score (RBAS)6, Virginia Radiosurgery AVM Scale (VRAS)24, and Spetzler-Martin 
grading scale22. All predictors and models were evaluated for their predictive accuracy at standard time points 
of, two, three, four, six, and eight years using area under receiver operating characteristic (AUROC), which is a 
measure of accuracy that is invariant to class size imbalance. By evaluating survival, a binary outcome, at each 
specific time point for patients who had achieved an outcome by that given time point, we were able to mimic 
survival regression across a time series despite utilizing standard machine learning models. As a further testing of 
predictor accuracy and generalizability, the final predictors were validated against patients from Site #3 that were 
not involved in initial predictor construction, training, or validation.

In order to utilize the predictive models to also obtain an understanding of the underlying parameter space 
and how well it characterized the underlying radiobiology, we attempted to ascertain the importance of each 
feature’s contribution to predictor construction. For each of the finalized N predictors, following training, the 
features included as part of the predictor were stored in a separate dataset, and tabulated following construction 
of all N predictors to obtain a frequency analysis of feature usage.

To assess the novel classifiers for potential clinical utility, we identified the group of patients predicted to fail to 
obliterate by 8 years and analyzed this group’s clinical characteristics. Hemorrhage rates were calculated at various 
time points and analyzed to see whether classifier predictions could delineate high-risk individuals, as well as 
whether obvious pre-treatment variables identified this set of high-risk patients. All statistical comparisons were 
made using an alpha of 0.05. Standard nonparametric statistical testing for univariate data was utilized as appro-
priate including the Mann-Whitney and Chi-square tests. To identify optimal cutoff points for continuous data 
to classify specific categories, an automated binning algorithm utilizing the minimal description length principle 
(MDLP) was employed, as previously described48. All data management and analyses were conducted using the 
open source scikit-learn library in Python.
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