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ABSTRACT
Purpose This study explored several strategies to improve the
performance of literature QSAR models for plasma protein
binding (PPB), such as a suitable endpoint transformation, a
correct representation of chemicals, more consistency in the
dataset, and a reliable definition of the applicability domain.
Methods We retrieved human fraction unbound (Fu) data for
670 compounds from the literature and carefully checked them
for consistency. Descriptors were calculated taking account of the
ionization state of molecules at physiological pH (7.4), in order to
better estimate the affinity of molecules to blood proteins. We
used different algorithms and chemical descriptors to explore the
most suitable strategy for modeling the endpoint. SMILES (sim-
plifiedmolecular input line entry system)-based string descriptors
were also tested with the CORAL software (CORelation And
Logic). We did an outlier analysis to establish the models to use
(or not to use) in case of well recognized families.
Results Internal validation of the selected models returned
Q2 values close to 0.60. External validation also gave r2 values
always greater than 0.60. The CORAL descriptor basedmod-
el for √fu was the best, with r2 0.74 in external validation.
Conclusions Performance in prediction confirmed the ro-
bustness of all the derived models and their suitability for
real-life purposes, i.e. screening chemicals for their ADMET
profiling. Optimization of descriptors can be useful in order to
obtain the correct results with a ionized molecule.

KEY WORDS ADME . fu . logk . protein binding . QSAR

ABBREVIATIONS
5-fold cv 5 fold internal cross-validation
ACF Atom centered fragment
AD Applicability domain
CORAL CORelation And Logic
CS Calibration set
CW Correlation weight
EVS External validation set
fu Fraction unbound
HA Heuristic algorithm
ITS Invisible training set
k-NN k-nearest neighbor
LogK Decimal logarithm of the pseudo constant

derived from fu
LR Likelihood ratio
MAE Mean absolute error
PCA Principal component analysis
PPB Plasma protein binding
QSAR Quantitative structure-activity relationship
RMSE Root mean square error
SMILES Simplified molecular input line entry system
SVM Support vector machine
TS Training set
VSURF Variable selection (with) random forest

INTRODUCTION

Drugs can form reversible bonds with plasma proteins, heavily
influencing the pharmacological response. Only the free con-
centration of the drug in tissues guarantees the biological ef-
fect. The pharmacokinetic behavior is very important, and in
the last few years almost 10% of failures in drug development
have been due to this reason (1).
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Drug absorption is very sensitive to plasma protein
binding (PPB). Small changes in the fraction bound to
proteins can have a significant impact on the bioavailable
fraction of the drug and this influence is even more obvi-
ous when large fractions are bound. A difference between
98% and 99% of bound drug results in double the
amount of drug available in plasma even though such a
small difference may not appear significant. This implies a
narrower therapeutic index and a longer half-life of most-
ly bound drugs compared to others (2).

Plasma is the principal component of human blood
(55%) and it is made up of water (92%), proteins (7%)
and other solutes (1%). Albumin is the protein with the
highest concentration in plasma, followed by globulins,
clotting factors and regulatory protein. Most drugs bind
with specific proteins, whether they act as acidic or basic
compounds, and have different binding sites on the same
plasma protein. Generally speaking, acidic compounds
bind with albumin and basic compounds with lipoproteins
and α1-acid glycoprotein (2).

For this study we used a collection of in vivo PPB values, but
in recent years several in vitro techniques have been developed
(2). Some have also been used for estimating the binding to a
specific protein, e.g. albumin (3). However, in vitro and in vivo
methods are often expensive and demanding in terms of time
and resources (e.g. reagents and detection techniques).

A quantitative structure-activity relationship (QSAR) is de-
fined as Ban equation or other function that describes the
relationship between a biological property of compounds,
usually a measure of relative potency^ namely an endpoint,
Band one or more properties of the compounds^, (4). Ideally
the endpoint refers to a single mechanism of action, but this is
not the case of PPB. Drugs can bind different plasma proteins,
and the same protein (especially albumin) can have different
binding sites. Therefore it is not easy to establish a universal
model (5). However, some properties such as lipophilicity are
important in PPB, with no specific relation to a single plasma
protein. This makes possible to identify common quantitative
parameters relevant for QSAR (2).

QSAR models are also influenced by quality of the
dataset. PPB data show intrinsic variability due to the
use of different methods, experimental conditions or
endpoint transformations. Several in silico models have
been developed, with different data sets and different
measurement units. In this regard, in silico methods
can be cheap, rapid and powerful for screening large
quantities of chemicals, even without the need for the
substance to be synthetized, because its structure is suf-
ficient. Looking at QSAR models in the literature, there
is a wide range of data sources, structure representa-
tions, descriptors, learning algorithms, and validation
criteria (6). A starting point in dataset building for many
PPB mode l s i s Goodman and Gi lman ’ s book

Pharmacological Basis of Therapeutics (7), a solid collection
of data retrieved from the literature.

Various efforts have been made to integrate new data,
often starting from in vitro or interspecies analysis, or from data
calculated from other pharmacokinetic parameters via differ-
ential equations. However, the use of calculated datamay lead
to a decrease in the quality of the final dataset. Various model-
ing approaches have been used too, and different data repre-
sentations (e.g. fraction unbound (fu), fraction bound (fb), per-
cent bound (%PPB), pseudo-equilibrium constants such as
logK, lnKA, etc.) have been used to improve performance.
The best results were obtained with boosted regression tree,
random forest, partial least squares, support vector machine
(SVM), k-nearest neighbor (k-NN), heuristic algorithm (HA).

Other studies focused on albumin serum affinity (HSA)
with methods as SVM or HA (8) or tried to integrate
QSAR and docking scores (9), including geometry optimiza-
tion before modeling to improve performance (10).

The aim of this study was to evaluate the influence of some
key parameters such as different molecule representations,
endpoint transformations, modeling algorithms and applica-
bility domain (AD) definitions. In addition, the models were
evaluated for suitability on specific families of chemicals.

MATERIALS AND METHODS

Data Curation

Data from Obach et al. (11) were used for modeling. This is a
collection of human fu in vivo data (670 compounds) retrieved
from the literature, related mostly to drugs. The compounds
without experimental values or those with values expressed as
a range were eliminated. SMILES were automatically re-
trieved using chemical name and chemical abstract service
(CAS) as identifiers. JChem and Chemcell (12) were used for
retrieving SMILES. Compounds with missing SMILES or
incongruences between the two sources were discarded.

Chemicals were neutralized and counter-ions eliminated too.
Substances with ambiguous information, metal complexes and
inorganic compounds were eliminated. After this cleaning pro-
cess, the final dataset comprised 512 compounds.

The first issue to face was the skewness (γ1) of the data set:
the distribution of experimental values was shifted toward low
values. A significant part of the dataset consisted of com-
pounds with a highly bound with proteins, with values be-
tween 0 and 0.1 (see Fig. 1). The first bar of the histogram in
the upper part of Fig. 1 is much higher than the others, and
usually compounds in this activity range are those with a
narrower therapeutic index. In order to derive a model able
to discriminate small differences in activity and to obtain a
distribution more suitable for modeling, we applied two dif-
ferent endpoint transformations.
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The first transformation is a pseudo equilibrium constant
(3,5,6,14) expressed as in Eq. 1:

logK ¼ log
1−fu
fu

� �
ð1Þ

When fu is equal to 100%, logK is arbitrarily set at 2.
The second transformation is the square-root of fu (

ffiffiffiffi
fu

p
).

Figure 1 shows the distributions of values before and after
the transformations with the relative γ1 value. As expected,
logK and √fu had less skewed distribution, making them more
suitable for modeling than the original fu data.

Model Derivation

We used two approaches to obtain QSAR models for PPB.
The first applies machine learning algorithms on molecular
descriptors based on chemical features of the compounds. The
second approach used CORAL (IRFMN, 2017) software
which implements a descriptor extraction algorithm from a
SMILES string.

Calculation of Molecular Descriptors

The main (de)protonated form of the molecule on the dataset
at physiological blood pH (7.4) was determined with JChem
(15). SMILES were modified accordingly. Dragon 7.0 (16)
was used to calculate 2D molecular descriptors. Dragon was
not able to calculate several descriptors for 23 compounds.
Due to the importance of some of these descriptors (for in-
stance AlogP) we decided to exclude these compounds instead
of reducing the number of predictors of the model.

Many of the Dragon descriptors are likely to be redundant
or not informative, adding uncertainty to the model and low-
ering its effectiveness (17), besides the longer computational
time needed. Although some models are naturally resistant to
non-informative predictors, it is obvious that reducing the input

space is an important step in model derivation. For this reason,
descriptors with constant values (standard deviation 0) and de-
scriptors that correlate over 95% (Pearson correlation coeffi-
cient) with another were rejected. Variable selection was then
applied using a random forest based approach as implemented
in (18) package for R. It is based on three steps. The first iterates
a series of random forests, then the algorithm calculates the
variable importance (based on permutation score) and elimi-
nates those variables that fall below a user-defined threshold.
The second step finds important descriptors closely related to
the response variable (interpretation step) and the third step
(prediction) identifies the smallest model leading to a good pre-
diction of the response variables.

As the ionization state is important in determining PPB,
local models for specific protonation states (acids, bases, neutral
chemicals and zwitterions) were also derived. We used ACD/
labs 12.0 to calculate the concentration of (de)protonated mol-
ecules at pH 7.4. If a molecule is more than 10% in the acid or
basic state, it is flagged as acid or base; if a molecule is more
than 10% for both the acid and the base ionization state, it is
considered a zwitterion. Neutral substances have more than
90% of the concentration in a neutral state. The number of
chemicals in each dataset is shown in Table I.

When addressing the four subsets with specified ionization
states, the neutral form of the molecule was used to calculated
Dragon descriptors (since the ionization state was homoge-
neous in each subset).

Fig. 1 Representation of the
distribution of PPB data, from
Obach (13), before and after trans-
formation. The γ1 of each distribu-
tion is indicated.

Table I Compounds in Each Datasets for Specific Ionization States

Ionization state No. compounds

Acid 122

Base 137

Neutral 198

Zwitterions 55

Total (used for modelling) 489
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For this reason, we were able to save all the compounds for
the local models.

When modeling the sub-datasets, the square roots of the
fraction unbound gave a better performance, so only these
results are shown.

Data Splitting

For the model’s derivation, the dataset was divided into a
Training Set (TS) and an External Validation Set (EVS) with
a ratio of 80:20. The number of compounds in each set is
shown in Table II. In order to ensure a uniform distribution
of the endpoint values in the two subsets, we applied an activ-
ity sampling method. The dataset was binned into five equal
sized portions based on fixed ranges of experimental values.
Each bin was then divided based on a 80:20 ratio and then
distributed in TS and EVS .

Model Training

After VSURF variable selection, a Random Forest (19)
algorithm, as implemented in KNIME (20) was applied
for model derivation. Data sampling for each tree was
done with replacement, and the default number of ran-
domly chosen descriptors at each split was set as the
square root of the initial number of descriptors; the de-
scriptors are different for each tree.

Applicability Domain

The AD of a QSAR model is defined as Bthe physico-
chemical, structural, or biological space, knowledge or
information on which the TS of the model has been de-
veloped, and for which it is applicable to make predictions
for new compounds […]. Ideally, the QSAR should only
be used to make predictions within that domain by inter-
polation not extrapolation^ (21).

Since there is not a universally accepted method to define
AD (21–23) a series of approaches were applied. Results were
evaluated in terms of gain in performance resulting from the
removal of prediction out of AD, and coverage (percentage of

chemicals retained after the application of a given AD meth-
od) (Table III).

SMILES-Based Descriptors Model Derivation (CORAL)

The optimal descriptors calculated with CORAL (http://
www.insilico.eu/coral/) software are attributes extracted
from parsing the molecule’s SMILES notations. Obviously
the most important treatment in this case is the correct
normalization of the SMILES notation because the
algorithm works by recognizing recurrent patterns
(particular characters or combinations) in the SMILES
(32–34). To have a good standardization of patterns the
SMILES notation has been canonicalized with ACD/labs
(35). The possible SMILES attributes are listed in Table IV.

The TS used for Dragon approach modeling has been
further divided into three sets: a TS of 108 compounds, an
Invisible Training Set (ITS) of 140 compounds, a Calibration
Set (CS) of 143 compounds. Conversely, the validation set is
identical to the EVS used with the Dragon descriptor-based
models.

The endpoint is calculated as in Eq. 2:

Endpoint ¼ C0 þ C1 DCW T;Nð Þ ð2Þ

C0 and C1 are the intercept and slope for the Eq. 2,
and DCW(T, N) is the combination of SMILES-based at-
tributes, each associated with a correlation weight (CW),
as described in Eq. 3. The correlation weights are opti-
mized with the Monte Carlo method to a given number
of iterations (N), providing CWs which, used in Eq. 4,
provide a maximum correlation coefficient between the
descriptor and selected endpoint.

DCW T * ;N *
� � ¼ CW HARDð Þ þ ∑CW Skð Þ

þ ∑CW SSkð Þ þ ∑CW SSSkð Þ ð3Þ

The CW(HARD) is the correlation weight of the HARD.
The Sk is the SMILES atom (i.e. single symbol or two

symbols which cannot be examined separately, e.g. ‘Cl’,
‘Br’, etc.); the SSk is a combination of two SMILES atoms;

Table II Numerosity of the Splits
for Each Dataset and Number of
Descriptors Selected

Transformation No. of selected Dragon
Descriptors with VSURF

No. Of compounds in TS No. Of compounds in EVS

Total LogK 24 391 98

Total √fu 16 391 98

Acids √fu 8 97 25

Base √fu 18 158 40

Neutral √fu 10 109 28

Zwitterions √fu 6 47 8
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the SSSk is a combination of three SMILES atoms. The
CW(Sk), CW(SSk), and CW(SSSk) are correlation weights
of the above SMILES attributes. The numerical data on
the correlation weights are calculated by the Monte Carlo
method. The optimization gives maximal value for target
function. The target function (TF) is calculated as Eq. 4:

TF ¼ Rþ R
0
− R−R

0�� ��þ IIC*1:1 ð4Þ

R and R’ are the correlation coefficients between ex-
perimental and predicted values of the endpoint for TS
and ITS, respectively. The IIC is the Index of Ideality of
Correlation described in the literature (37,38). Attributes
with positive CW are considered promoters of an in-
crease of the endpoint value, and those with negative
CW are promoters of a decrease. CORAL has an in-
house AD evaluation. Only compounds whose SMILES
attributes have been selected for model derivation are
considered in AD. Predictions of chemicals outside the
model AD are considered unreliable and with greater
uncertainty and are excluded from the evaluation of
the performance (39).

Statistical Analysis

Performance is evaluated on the basis of the determination
coefficient (r2) calculated as shown in Eq. 5.

r2 ¼ 1−
∑ yi−ŷið Þ2
∑ yi−�yið Þ2 ð5Þ

where yi is the experimental value of the i-th chemical
in the dataset; ŷi is the predicted value of the i-th query
compound in the dataset for the determination of r2; �yi
is the mean of the experimental values of the com-
pounds in the dataset.

Root Mean Square Error (RMSE) is the square root of the
average of the squared differences between prediction and
actual observation, as represented in Eq. 6:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

ŷi−yið Þ2
N

s
ð6Þ

where yi is the experimental value of the i-th chemical in the
dataset; ŷi is the predicted value of the i-th chemical and N is
the number of chemicals.

Table III Methods Chosen for
Defining the AD, Brief Description
and Reference

Method Description

Two-class real-random
classification

After permutation of descriptors on a mirror TS, the two matrices are merged and
a classification model is built to distinguish real values from random ones. (17,24)

Leverage Based on calculation of the leverage (hi). New compounds that are above the
hi threshold are considered outside the AD. (25,26)

PCA (threshold: mean±3*SD) After calculation of the two first PC of TS descriptors a threshold is set for each PC
equal to mean ± 3*standard deviation. If values for PCs of new compounds
fall outside the established range, the prediction is considered unreliable. (23)

PCA (threshold: 0.5-0.95
percentile)

Same as the method above, but the threshold is established on the 0.5th and
0.95th percentile of distribution of TS compounds. (23)

Nearest neighbor distance It is based on calculation of the average Euclidean distances between all pairs of
TS compounds. If the distance of a VS compound from its nearest neighbor in
TS is greater than a given threshold, it is out of AD. (27,28)

Atom centered fragment (ACF) All ACFs are calculated (a central non-hydrogen atom with all atoms bonded to it)
of the TS. A test compound is considered within the AD if each ACF obtained
by its decomposition is part of the ACFs identified in the TS. (29–31)

Fingerprint The average similarity (Tanimoto based on PubChem fingerprints) of test
compounds with the TS is determined. If average similarity is lower than
0.1 the compound is outside the AD. (23)

Table IV Smiles Attributes and
their Description SMILES attibutes Description

Sk Single SMILES element

SSk Combination of two SMILES elements

SSSk Combination of three SMILES elements

HARD Represents the presence, or absence of eight chemical elements (nitrogen, oxygen, sulfur, phosphorus,
fluorine, chlorine, bromine, and iodine) and different kinds of chemical bonds (double bond,
triple bond, and stereo chemical bond) (36).
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The cross-validated determination coefficient (Q2) has
been used for the calculation of statistics in cross-validation.

Q 2 ¼ 1−
∑ yi−y′ið Þ2
∑ yi−�yið Þ2 ð7Þ

y′i is the predicted value in cross-validation (40).
For the Dragonmodels a 5 fold internal cross-validation (5-

fold cv) is used while in the case of CORAL model the equa-
tion is calculated as the aggregation of TS, ITS and CS.

Outlier Analysis

A statistical analysis was done in order to check for the possible
presence of chemical categories with a large error in predic-
tion. Compounds with absolute error in prediction larger than
the mean absolute error (MAE) observed for the whole TS
were considered badly predicted (outliers); the remaining
compounds were considered correctly predicted.

Chemical categories were defined based on the occurrence
in their structures of some BFunctional group count^ descrip-
tors calculated by Dragon 7.0 (16). Then the distribution of
outliers in each category is compared with the distribution of
outliers of the entire dataset by a significance test (Fisher’s
exact test). This statistic tests the null hypothesis if there is no
association between the row variable and the column variable.
In this particular case the null hypothesis is the absence of
significant difference from the distribution of outliers in a cat-
egory and in the total distribution. The null hypothesis is
rejected when the p-value is less than 0.05.

To evaluate the strength of the probability Likelihood
Ratio has been adapted from Ferrari et al. (41) to estimate
the statistical relevance of analyses. (Eq. 8)

LR ¼ TP=FPð Þ* negatives=positivesð Þ ð8Þ

The TP (true positives) are compounds with a certain func-
tional group that are badly predicted, while the FP (false pos-
itives) are compounds with the same functional group but
correctly predicted. Negatives are the total number of correct-
ly predicted compounds, while positives are the total number
of badly predicted compounds.

The same procedure has been used also to evaluate if some of
the models performed better for certain chemical categories.

RESULTS

Table V shows that the statistical performance of the various
models is comparable. Internal validation returned Q2 values
close to 0.60 for Dragon and CORAL models. External valida-
tion also gave r2 values around 0.71, with the CORAL model
performing better than others, with a r2 value of 0.74 on

the VS. LogK model gave the best performance when
PCA based AD (threshold: mean±3*SD) was used, while
√fu model had the most noticeable improvements when
Two Class Real-Random Classification based AD was ap-
plied. Few chemicals (between 3% and 13%) were exclud-
ed after AD application when we focus on the Dragon
models, while CORAL model has a lower coverage.

RMSE values of logK model and √fu model cannot be
compared, as the two endpoints differ in their spread of ex-
perimental values. Performance was acceptable in both inter-
nal and external validation, while excluding compounds out of
AD slightly improved performances without losing too much
in coverage. The internal validation for the Dragon models is
performed with a 5-fold cross-validation.

It is not simple to generate valid models for compounds
discriminated on the basis of their (de)protonation state. The
use of ionized state did not improve performance, so we used
the classical SMILES notation.

Among the models for specific protonation states, only the
model for acid compounds gave acceptable performance in
both internal and external validation, while other models gave
disappointing results in external validation raising to accept-
able results only if the compounds were included in the AD
but resulting in a very large decrease in coverage (Table VI).

DISCUSSION

It is difficult to compare our results with literature models
since they are often based on different datasets and different
transformations are applied to the endpoint. To the best of
our knowledge only few studies (3,42,43) used similar forms of
pseudo-equilibrium constant for model derivation while no-
body has used √fu. These models resulted in a r2 in internal
and external validation often lower than 0.60, with the best
model returning r2 =0.67 in external validation (42).

A larger number of models have been developed for
predicting the percentage of chemicals bounded to plasma
proteins (%PPB) (2,5,14,42,44–46). Recently Basant (45)
reviewed literature models for %PPB and proposed a new
model, returning very high performance in external validation
(i.e., r2 greater than 0.90). Amajor limitation of this model was
represented by the distribution of %PPB that was highly un-
balanced towards higher values, leading to biased statistical
performance. The use of pseudo-equilibrium constant instead
of %PPB, as described in the work here presented, allows to
overcome the risk of a biased validation.

In his studies on the Yamazaki dataset, Gleeson pointed
out that PPB is closely related to both the ionization state
and the liphophilicity of a molecule (3). Dealing with different
representations of molecules (i.e., ionization states and tau-
tomerism) is often a mandatory process especially when using
ligand-receptor based models (47,48). Different SMILES
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representations of the same molecule lead to different de-
scriptor values (49). In particular ionization state can in-
fluence a large block of descriptors, from charge-based
descriptors to molecular properties. For example PPB is
closely correlated with lipophilicity. If we compute the
Pearson correlation between the Moriguchi octanol-
water partition coefficient (MLOGP) calculated on neu-
tralized SMILES of our TS and the same descriptor cal-
culated on ionized SMILES, we get a value under 0.70.

As shown in Table VII, VSURF selection showed a certain
degree of overlap in terms of selected descriptors between the
logK and √fu predicting models. This is not unexpected be-
cause, although they are the result of different mathematical

transformations, the two endpoints basically describe the same
property, i.e. PPB. Consequently, the same properties are
useful in both cases to explain the endpoint.

Several descriptors are related to lipophilicity (P_VSA_i_2,
CATS2D_00_LL,CATS2D_01_LL, pMax2_Bh(p), MLOGP,
MLOGP2, ALOGP), indeed it is well recognized that PPB is
related to lipophilicity (50). In general, as compounds become
more lipophilic, PPB becomes easier to predict, although some
hydrophilic compounds have unexpected high PPB values (51).
BTotalcharge^ descriptor measures the sum of formal charges
of each atom in a molecule. It is easy to understand that it is
highly dependent on calculation of the correct ionization state
of the molecule. For instance warfarin at pH 7.4 is a heterocy-
clic anion, and is known that albumin has specific binding sites
to negatively charged hydrophobic compounds (2).

As shown in Table VIII the models fail in predicting com-
pounds with the presence of chargedN, that have been reported
to be predicted correctly by other models, due to the high cor-
relation of protein binding and LogP for these compounds (6).

Table V Performance of PPB Predicting Models

r2/Q2 RMSE Coverage AD

Dragon(log K)

TS (5-FOLD CV) 0.61 0.72 -

EVS 0.65 0.68

EVS (in AD) 0.68 0.65 0.98 PCA – mean±3*SD

Dragon(√fu)

TS (5-FOLD CV) 0.62 0.19 -

EVS 0.70 0.17

EVS (in AD) 0.72 0.16 0.87 Two-class Real-Random
Classification

CORAL (√fu)

TS+ITS+CS 0.61 0.19 -

EVS 0.69 0.17

EVS (in AD) 0.74 0.12 0.77 CORAL AD

Table VI Performance of PPB Predicting Models for Specific Ionization
States

r2/Q2 RMSE Coverage

Acid

TS (5-FOLD CV) 0.61 0.20 -

EVS 0.72 0.17

EVS (with two-class real-random classification AD) 0.73 0.17 0.96

Base

TS (5-FOLD CV) 0.60 0.18 -

EVS 0.46 0.20

EVS (with two-class real-random classification AD) 0.50 0.21 0.60

Neutral

TS (5-FOLD CV) 0.70 0.18 -

EVS 0.47 0.19

EVS (with two-class real randomclassificationAD) 0.75 0.16 0.50

Zwitterion

TS (5-FOLD CV) 0.64 0.18 -

EVS 0.46 0.21

EVS (with two class real-random classification AD) 0.86 0.23 0.62

Table VII List of Descriptors as Selected by VSURF Included in PPB
Predictive Models

Common descriptors Exclusive descriptors
for LogK

Exclusive descriptors
for √fu

ALOGP nCsp2 CATS2D_01_LL

P_VSA_i_2 MLOGP2 nCar

MLOGP GATS1i SpMin1_Bh(i)

P_VSA_p_3 SpMax2_Bh(p) Eta_betaP_A

C% nBM SM12_AEA(ri)

CATS2D_00_LL MATS5e nN+

Eta_betaP AMW

PCD F01[C-N]

Ui T(O..O)

N% J_D/Dt

C-024 SpMax_AEA(dm)

CATS2D_00_PP

totalcharge

Table VIII List of Chemical Categories Showing a High Error in Prediction
(Only Categories with a p <0.05 are Shown)

Name Description original dataset Likelihood Ratio

Nq quaternary N Acid 7.50

N+ positively charged N Acid 7.50

RCOOR esters (aliphatic) Base 1.85

OHt tertiary alcohols Base 1.98

RCONH2 primary amides (aliphatic) CORAL 2.01

CH2RX CH2RX LogK 3.58

CONN urea (-thio) derivatives √fu 1.98

ArOH aromatic hydroxyls √fu 2.12

RCONHR secondary amides (aliphatic) √fu 5.12
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Overall there is a clear predominance of good predictions for
compounds with quaternary carbon atoms, like in branched al-
kanes that are usually highly liphophilic compounds (Table IX).
The presence of descriptors like logP and number of aromatic
carbonshaveahighspecificity inpredictingtheinteractionbetween
imidazole and aminoacidic residues of albumin, like tryptophan
(Trp), tyrosine (Tyr) and phenylalanine (Phe) (52) andmight influ-
ence the predictivity of √fumodel for imidazole category.

CONCLUSION

In the present study, we derived new QSARmodels predicting
PPB. Mathematical transformations were applied to experi-
mental data in order to obtain datasets suitable for modeling.
Different combinations of descriptors and machine learning
approaches were explored and applied to the endpoint.

SMILES using the ionization state did not make any sig-
nificant contribution in model derivation compared to previ-
ous modeling efforts with similar algorithms (2), probably be-
cause some descriptors were not optimized for a correct inter-
pretation of a charged compound (e.g. AlogP). Despite this,
models still gave an acceptable result.

Performance in prediction confirmed the robustness of the
derived models and their suitability for real-life purposes, i.e.,
screening chemicals for ADMET profiling.
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