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on cell proliferation. However, the oncogenic products

of DNA tumor viruses, such as adenovirus ETA, can
force postmitotic cells to proliferate, thus representing a
powerful tool to study progression into S phase. In this
study, we identified the gene encoding Np95, a murine
nuclear phosphoprotein, as an early target of E1A-induced
transcriptional events. In terminally differentiated (TD)
cells, the activation of Np95 was specifically induced by
E1A, but not by overexpression of E2F-1 or of the cyclin E
(cycE)—cyclin-dependent kinase 2 (cdk2) complex. In addi-
tion, the concomitant expression of Np95 and of cycE-cdk2
was alone sufficient to induce S phase in TD cells. In NIH-3T3

Terminal differentiation exerts a remarkably tight control

cells, the expression of Np95 was tightly regulated during
the cell cycle, and its functional ablation resulted in abro-
gation of DNA synthesis. Thus, expression of Np95 is essential
for S phase entry. Previous evidence suggested that E1A, in
addition to its well characterized effects on the pRb/E2F-1
pathway, activates a parallel and complementary pathway
that is also required for the reentry in S phase of TD cells
(Tiainen, M., D. Spitkousky, P. Jansen-Diirr, A. Sacchi, and
M. Crescenzi. 1996. Mol. Cell. Biol. 16:5302-5312). From
our results, Np95 appears to possess all the characteristics
to represent the first molecular determinant identified in
this pathway.

Introduction

Terminal differentiation of a cell is marked by its functional
specialization and irreversible loss of proliferation ability.
Skeletal muscle cells, such as C2C12, are a well characterized
model system to study this process. In vitro, myoblasts deprived
of growth factors enter an irreversible postmitotic state and
activate the expression of muscle-specific genes, thus becoming
myocytes. Myocytes, in turn, can fuse into multinucleated,
syncytial structures called myotubes (Okazaki and Holtzer,
1966). Terminally differentiated (TD)* myotubes can be

induced to enter the cell cycle by growth factors. However,
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they cannot progress beyond a mid-G; block, and hence do
not enter the S phase (Tiainen et al., 1996a). Even forced
expression of cell cycle regulators, such as E2Fs or the cyclin
E (cycE)—cyclin-dependent kinase 2 (cdk2) complex, is unable
to trigger DNA synthesis in TD muscle cells (Puri et al.,
1998; Pajalunga et al., 1999; Latella et al., 2001). Conversely,
early gene products of DNA tumor viruses, such as adenovirus
E1A, are able to stimulate S phase entry of quiescent or TD
cells (Crescenzi et al., 1995; Tiainen et al., 1996b). Thus,
they constitute a powerful tool to study how postmitotic cells
can be forced to proliferate, an issue of great relevance to the
understanding of human cancer.

The E1A region of human adenovirus 5 produces two major
mRNAs, 125 and 13S, which encode nuclear proteins of 243
and 289 amino acids, respectively. The 12§ variant of E1A
(hereafter referred to as E1A) is sufficient to promote cell cycle
reentry and S phase in TD myotubes (Tiainen et al., 1996b) by
a mechanism that is only pardally elucidated. E1A displays
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gene. (A) TD myotubes were infected
with either dI520 (left, MOI, 400 pfu/cell)
or dI312 as a control (right, MOI, 400
pfu/cell). 24 h later, cells were treated
with BrdU. 48 h after infection, cells
were fixed and stained with anti-myosin
heavy chain (red) to check differentiation
and anti-BrdU (green) antibodies. Nuclear
counterstaining was performed with
DAPI (blue). (B) Schematic of mouse
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multiple interactions with key components of cellular growth-
regulatory pathways, including retinoblastoma protein (pRb)-
family proteins (the so-called pocket proteins) and the tran-
scriptional coactivators p300 and CBP (Arany et al., 1994,
1995). Although these interactions are required for the ability of
E1A to immortalize and transform cells (Eckner, 1996), its ca-
pacity to reactivate the cell cycle segregates with binding to
pocket proteins, whereas binding to p300 is not required (Stein
et al., 1990; Tiainen et al., 1996b; Puri et al., 1997).

Binding of E1A to pocket proteins releases transcription
factors of the E2F family (Nevins, 1990) that are master regu-
lators of the G,/S transition and are able to induce DNA syn-
thesis in a variety of quiescent, non-TD cells (Johnson et al.,
1993; Lukas et al., 1996). E2Fs act in part by transcriptionally
up-regulating the kinase activity of the cycE—cdk2 complex
(Miiller and Helin, 2000). However, neither the overexpres-
sion of several E2Fs nor that of cycE—cdk2 could force the re-
entry into S phase of TD myotubes (Pajalunga et al., 1999;
Latella et al., 2001). Thus, EIA must be activating comple-
mentary pathways that contribute to the G,/S transition of
TD myotubes. An investigation of such pathways is warranted
by both their central role in the control of cell proliferation
and their possible alterations in neoplastic cells. The present
studies were undertaken in an attempt to elucidate this issue.

Results and discussion

Np95 is induced early in the reentry of TD myotubes in
the cell cycle

To gain insight into the molecular mechanisms leading to re-
activation of TD cells, we used a cDNA subtraction ap-

proach to identify genes induced by E1A in TD myotubes.
TD C2C12 mouse myotubes were infected with either the
adenovirus /520, which expresses only the 12S E1A mRNA,
or the control adenovirus #/312, in which the E1A gene is de-
leted (Jones and Shenk, 1979). The efficiency of S phase re-
entry, measured 48 h after 4/520 infection, was ~70-80%
(Fig. 1 A). To select for genes induced by E1A at early stages,
mRNAs from infected cells were harvested at 14, 15, 16, 18,
20, and 24 h after infection. These time points precede (by at
least 6 h) the onset of DNA replication (occurring ~30 h af-
ter infection). Pooled mRINAs were used for the cDNA sub-
traction procedures (see Materials and methods).

Among the genes induced by E1A, we isolated Np95,
which encodes a previously described murine nuclear phos-
phoprotein, and whose expression is cell cycle regulated
(Fujimori et al., 1998; Uemura et al., 2000; Miura et al.,
2001; Fig. 1 B). Fig. 1 C shows the mRNA and protein ex-
pression of Np95, before and after terminal differentiation
of C2C12 cells, and after their reentry in the cell cycle in-
duced by infection with d/520. The expression of Np95
was virtually abolished by terminal differentiation, both at
the mRNA and protein levels (Fig. 1 C, compare Myo-
blasts with Myotubes), and reinduced by infection with
dl520, but not with 4[312. Np95 mRNA and protein
started to be detectable ~15-16 h after infection, and con-
tinued to increase until the last time points were checked
(20-24 h after infection; Fig. 1 C). Because the expression
of the E1IA mRNA was first detectable at 15 h after infec-
tion (unpublished data), as also previously reported (Ti-
ainen et al., 1996a), we concluded that Np95 is an eatly
E1A-induced gene.
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Figure 2. Role of Np95 in the reentry
in the cell cycle of TD myotubes. (A) TD
myotubes were infected with d/520
(MO, 400 pfu/cell), dI312 (MOI, 400
pfu/cell), or adenoviral vectors encoding
E2F-1 (MO, 400 pfu/cell), cycE (MOI,
100 pfu/cell)/cdk2 (MOI, 400 pfu/cell),
or stimulated with 5% FCS, as indicated
on top. 48 h after infection, total cellular
lysates were extracted and immunoblotted
(40 ng) with the indicated antibodies.
Lanes myoblasts and myotubes are as in

di312 Fig. 1 C. (B) TD myotubes were infected
H DAPI with adenoviral vectors, as indicated on
B MHC the right. MOls were as follows: cycE,
B Brdu 100 pfu/cell; cdk2, 400 pfu/cell; and
Np95, 60 pfu/cell. 24 h later, cells were
treated with BrdU. 48 h after infection,
cells were fixed and stained with anti-
di520
H DAPI BrdU (red), and either anti-myosin
B MHC heavy chain (green, top two rows, MHC),
B Brdu or anti-cycE (green, middle row)
antibodies, or detected by epifluorescence
(green, bottom two rows, to detect GFP-
cchfcde Np95). Nuclear counterstaining was
performed with DAPI (blue). For each
M DAPI condition (horizontally paired panels),
M cycE two pictures of the same microscopic
M Brdu field are shown. All left panels display
the blue (DAPI) and green (either MHC,
or cycE, or GFP) channels. All right panels
Np95 display the green (either MHC, or cycE,
play 8 Yy
[l DAPI or GFP) and red (BrdU) channels.
GFP Stainings are also indicated by a color
8 y
B Brdu code (squares).
cycE/cdk2/Np95
[l DAPI
B GFP
B Brdu

Np95 is specifically induced by E1A and complements
cycE-cdk2 in the induction of reentry in the cell cycle
of TD myotubes

To establish a role for Np95 in the sequence of events acti-
vated by E1A, we performed a series of experiments. First,
we investigated the induction of Np95 by different stimuli.
As shown in Fig. 2 A, overexpression of E1A (4/520 lane)
potently induced the expression of Np95. Stimulation with
serum, or overexpression of either E2F-1 or of cycE—cdk2,
only exerted minute effects (Fig. 2 A), possibly attributable
to a small percentage of myoblasts contaminating the myo-
tube cultures. As a control, we checked the levels of cycE
and the phosphorylation status of pRb. As expected, both
E1A and E2F-1 induced the expression of cycE (Tiainen et
al., 1996b; Pajalunga et al., 1999), whereas both E1A and
cycE—cdk2, but not E2F-1, induced hyperphosphorylation
of pRb (Tiainen et al., 1996b; Pajalunga et al., 1999; Mal et
al., 2000; Latella et al., 2001; Fig. 2 A). Thus, in TD myo-
tubes Np95 expression depends essentially on the activation
by E1A of pathways besides those relying on the stimulation
of the activity of the cycE—cdk2 complex or the presence of
high levels of free E2F-1.

E1A reactivates proliferation of TD muscle cells by a mecha-
nism that includes release of E2Fs and activation of the cycE~
cdk2 complex, but also requires other pathway(s) that are pres-
ently not molecularly defined (Tiainen et al., 1996b; Latella et
al., 2001). From these results, Np95 appears to possess the req-
uisites to be part of such a pathway. If so, its overexpression
might complement that of cycE~cdk2 toward induction of the
S phase in TD myotubes. Thus, we coexpressed Np95, cycE
and cdk2 in C2C12 myotubes, through adenoviral vectors.
When the three proteins were coexpressed, ~20% of the myo-
tubes entered S phase within 60 h after infection (Fig. 2 B and
Table I). Conversely, no reentry in the cell cycle was induced
by expression of Np95 alone, by the cycE—cdk2 combination,
or several other negative controls (Fig. 2 B and Table I).

Np95 is essential for entry into S phase

Taken together, the previous results suggest that Np95 could be
a critical effector in the progression of a cell through the cycle.
The fact that Np95 cooperates with cycE—cdk2 to overcome
the Gy block in TD cells further suggests that its action might
be exerted physiologically at the G,/S transition. To address this
question, we switched to NIH-3T3 cells in which functional
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Table I. Np95 cooperates with cycE-cdk2 to induce S phase entry
of TD myotubes

Infection® BrdU positive cells
%

di520 78

di312 <0.3

cycE-cdk2 <0.3

cycE-cdk2/TRACK <0.3

Np95 <03

cycE-cdk2/Np95 19.4

*Adenoviral vectors encoding cycE, cdk2, and Np95 were used at an MOI
of 100, 400, and 60, respectively. Optimal MOls were established in pre-
liminary experiments (unpublished data). TRACK is a control empty ade-
novirus used at an MOI of 120. 24 h after infection, cells were treated with
BrdU and fixed 24 h later. TD myotubes were identified by staining with
anti-myosin heavy chain.

350 myotubes per plate were counted and scored for BrdU positivity. The
experiment shown is typical and representative of three experiments.

ablation of the expression of a protein could be more easily
achieved. In these cells, the expression of Np95 is known to be
cell cycle regulated (Uemura et al., 2000; Miura et al., 2001).
Indeed, in serum-starved NIH-3T3 cells, Np95 was undetect-
able (Fig. 3 A). Its expression started to be clearly detectable af-
ter 9 h of restimulation with serum, i.e., 6 h before the onset of
S phase (Fig. 3 B). These results mirrored those obtained in TD
myotubes stimulated with E1A, and suggested the reactivation
of Np95 occurs by similar mechanisms in cells that display ei-
ther a reversible or an irreversible cell cycle arrest.

Next, we attempted functional ablation of Np95, by an
antisense approach. Serum-starved NIH-3T3 cells were mi-
croinjected with a morpholino-modified antisense oligonu-
cleotide of 25 bp that matched the sequence of Np95 and
overlapped its ATG. As a control, we microinjected a similar
oligonucleotide bearing four mismatched bases, including
one in the start codon (see Materials and methods). Serum
and BrdU were then added to the cells that were fixed 24 h
later. As shown in Fig. 4 A, the expression of Np95 and
BrdU incorporation was dramatically reduced in cells micro-
injected with the antisense oligonucleotide, but not with the
mismatched control. Around 80% of the cells microinjected
with the andsense oligonucleotide were inhibited in their
progression into S phase (Fig. 4 B), thus demonstrating that
Np95 is essential for the progression through the cell cycle.

Np95: an oncogene candidate?

Terminal differentiation exerts a remarkably tight control on
cell proliferation. Because TD cells constitute the majority in
an adult mammal, the understanding of how they can be
forced to reenter the cell cycle might be very relevant to human
cancer. TD myotubes are extremely refractory to the mitogenic
action of several oncogenes and growth-promoting inducers
(Tiainen et al., 1996b; Latella et al., 2001), but sensitive to the
action of E1A, and therefore represents an invaluable tool to
dissect critical mechanisms in cell cycle progression. Previous
evidence suggests that E1A, in addition to its well characterized
effects on the pRb/E2F-1 pathway, activates a parallel and
complementary pathway that is also required for the reentry in
S phase (Tiainen et al., 1996b; Alevizopoulos et al., 1998,
2000; Latella et al., 2001). In this study, we show that Np95
has all the characteristics to be the first molecular determinant
identified in this pathway. Np95 appears to constitute a critical
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Figure 3. Cell cycle-dependent regulation of Np95 in NIH-3T3
cells. (A) NIH-3T3 cells were serum-starved for 48 h, and then
stimulated with 10% FCS for the indicated time points. (A) Immuno-
blots (40 pg of total proteins) with the indicated antibodies. The
levels of Np95 in serum-starved cells (Starv) or in an asynchronously
growing population (Async) are also shown. (B) FACS® profiles:
open circles, GO/G1; closed circles, S; squares, G2/M.

effector of this pathway, because it can complement the overex-
pression of cycE—cdk2 toward stimulation of S phase in TD
myotubes. In addition, the function of Np95 is physiologically
required for progression through the cell cycle, as witnessed by
its tight regulation and by the dramatic effects of its functional
ablation in NTH-3T3 cells.

Many important questions remain to be addressed. How is
the transcription of Np95 regulated under physiological con-
ditions? What is the physiological function of Np95? How
does it signal downstream? With regard to the first question,
we note that overexpression of cycD—cdk4 was recently
shown to induce S phase entry of TD myotubes (Latella et
al., 2001). Thus, it is possible that Np95 is a transcriptional
target of a pathway that includes the kinase activity of this
complex, a possibility that we are currently testing.

As far as the function of Np95 is concerned, a human
gene (JCBP90) that displays remarkable similarity to mouse
Np95 (74% identity and 84% overall similarity at the
amino acid level), was recently isolated in a one-hybrid sys-
tem as an inverted CCAAT box—interacting protein of the
topoisomerase Ilac promoter (Hopfner et al., 2000), and
shown to be involved in the transcriptional control of this
gene. Although it remains to be established whether /CBP90
and Np95 are orthologues, our results suggest the possibility
that Np95 acts in transcriptional control. In addition, the
presence in Np95 of many structural and functional do-
mains, including a ubiquitin-like domain, a PHD finger,
pRb-binding motifs, and a RING domain, suggests that
Np95 might control several protein—protein interactions
and enzymatic activities required for S phase entry. The ab-
solute requirement for Np95 in this critical phase of the cell
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Figure 4. Functional ablation of Np95
in NIH-3T3 cells. (A) NIH-3T3 were
serum starved for 48 h, and then micro-
injected with the Np95 antisense (AS)
oligonucleotide or its mismatched (MIS)
control. 1gGs were also microinjected
to identify microinjected cells. BrdU
and 10% FCS were then added, and
cells were fixed 24 h later and stained as
indicated. Nuclear counterstaining was
performed with DAPI. (B) A quantitative
assessment was performed on three
independent experiments, in which at
least 150 microinjected cells per
experiment were counted. Results are
shown as a percentage of microinjected
cells (£SD) that were Np95-positive
(solid bars) or BrdU-positive (empty bars).
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cycle warrants further investigations on its possible role in
malignant transformation.

Materials and methods

Cells and microinjection procedures

C2C12 myoblasts (Yaffe and Saxel, 1977) were cultured in collagen-
coated dishes in DME supplemented with 10% FBS. Differentiation was in-
duced by serum deprivation for 72 h (Tiainen et al., 1996b). Unless other-
wise stated, 50 mM 1-B-p-arabinofuranosylcytosine (Ara-C) was added
during the first 48 h to eliminate undifferentiated cells. Ara-C—purified
myotubes contained >90% of the nuclei in the culture.

For microinjections, morpholino-modified oligonucleotides (Gene-
Tools Inc.) were prepared at a concentration of 0.5 pM. The following oli-
gos were used in Fig. 4: antisense, 5'CATGATGCCGATGTACTCTC-
TCACG3’ (the antisense codon corresponding to ATG is underlined); and
control (bearing four mismatches), 5'CAAGATCCCGATGTACTGTCT-
GACGCAAGATGCCGATGTACTGTCTGACG3'. Microinjection was per-
formed with a microinjector (model Axiovert 100; ZEISS).

Adenoviruses

The dI520 and dI312 adenoviruses have been described previously (Haley
et al., 1984; Zerler et al., 1987; Wang et al., 1993). The Ad-cdk2 and Ad-
cycE recombinant adenoviruses have also been described previously (Latella

etal.,, 2001). Ad-E2F-1 was a gift of J. Nevins (Howard Hughes Medical Insti-
tute, Duke University Medical Center, Durham, NC; DeGregori et al., 1997).
The Ad-Np95 adenovirus was generated according to He et al. (1998) by
placing the cDNA for Np95 (Fujimori et al., 1998) under the control of the
cytomegalovirus immediate-early promoter enhancer. This virus also ex-
pressed the green fluorescent protein under the control of a second copy of
the cytomegalovirus promoter. All adenoviruses were grown and titrated in
the permissive 293 cell line (Harrison et al., 1977). The multiplicity of infec-
tion (MOI) for all biological experiments is expressed as plaque-forming unit
(pfu), as established by titration on 293 cells per infected cells.

RNA extraction, Northern blotting, and cDNA subtraction

Total RNAs were prepared by guanidine-cesium chloride gradient accord-
ing to published methods (Sambrook et al., 1989). Poly(A)* RNA was pre-
pared with a commercial kit (Amersham Pharmacia Biotech), based on the
oligo-dT method, according to the manufacturer’s instructions. The cDNA
subtraction was performed with the PCR select cDNA subtraction kit
(CLONTECH Laboratories, Inc.) according to the manufacturer’s instruc-
tions (Diatchenko et al., 1996).

Protein studies

Preparation of cellular lysates, immunoprecipitation, and immunoblotting
were performed as described previously (Fazioli et al., 1993). Immunofluo-
rescence procedures were also as described previously (Tiainen et al.,
1996b; Latella et al., 2001). Antibodies used were as follows: rabbit antise-
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rum to cycE (Santa Cruz Biotechnology, Inc.), mAb clone G3-245 to pRb
(BD PharMingen; pRb in all figures), rabbit antiserum to pRb phosphorylated
on serine 807/811 (Cell Signaling; ph-pRb in all figures), mAb against E2F-1
(a gift of K. Helin, European Institute of Oncology, Milan Italy), goat antise-
rum against lamin B (Santa Cruz Biotechnology, Inc.), rat Th-10a mAb to
Np95 (Muto et al., 1995), mouse mAb to BrdU (Becton Dickinson), and rab-
bit antiserum to muscle-specific myosin heavy chain (a gift of G. Cossu,
Stem Cell Research Institute, Rome, Italy). In immunofluorescence experi-
ments, mAbs were detected either with donkey anti-mouse Cy3 (red) or
donkey anti-mouse FITC (green) secondary antibodies. The Np95 mAb was
detected with a goat anti-rat Cy3 (red). pAbs were detected with donkey
anti—rabbit FITC (green). Pictures were acquired with a color-chilled camera
(model 3CCD-C5810; Hamamatsu Corporation). Blots were digitalized with
an AGFA scan system. All images were managed with Adobe Photoshop®.
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