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Abstract
Metastasis—the ability of cancer cells to disperse throughout the body and estab-
lish new tumours at distant locations—is responsible for most cancer-related deaths. 
Although both single and clusters of circulating tumour cells (CTCs) have been iso-
lated from cancer patients, CTC clusters are generally associated with higher meta-
static potential and worse prognosis. From an evolutionary perspective, being part 
of a cluster can provide cells with several benefits both in terms of survival (e.g. pro-
tection) and reproduction (group dispersal). Thus, strategies aimed at inducing clus-
ter dissociation could decrease the metastatic potential of CTCs. However, finding 
agents or conditions that induce the dissociation of CTC clusters is hampered by 
the fact that their detection, isolation and propagation remain challenging. Here, we 
used a mechanistic agent-based model to (a) investigate the response of CTC clusters 
of various sizes and densities to different challenges—in terms of cell survival and 
cluster stability, and (b) make predictions as to the combination of factors and param-
eter values that could decrease the fitness and metastatic potential of CTC clusters. 
Our model shows that the resilience and stability of CTC clusters are dependent on 
both their size and density. Also, CTC clusters of distinct sizes and densities respond 
differently to changes in resource availability, with high-density clusters being least 
affected. In terms of responses to microenvironmental threats (such as drugs), in-
creasing their intensity is, generally, least effective on high-density clusters. Lastly, 
we found that combining various levels of resource availability and threat intensity 
can be more effective at decreasing the survival of CTC clusters than each factor 
alone. We suggest that the complex effects that cluster density and size showed on 
both the resilience and stability of the CTC clusters are likely to have significant con-
sequences for their metastatic potential and responses to therapies.
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1  | INTRODUC TION

Metastasis—the ability of cancer cells to disperse throughout the 
body and establish new tumours at distant locations—is responsi-
ble for the majority of cancer-related deaths (Chaffer & Weinberg, 
2011). The initiation of secondary tumours was originally believed 
to involve the dispersal of individual cancer cells, and consistent 
with this view, single circulating tumour cells (CTCs) have been iso-
lated from the blood of cancer patients as early as mid-19th century 
(Ashworth, 1869). More recently, however, groups of CTCs have also 
been found in blood samples (Aceto, Toner, Maheswaran, & Haber, 
2015; Massagué & Obenauf, 2016; Meunier et al., 2019). CTC clus-
ters have been shown to detach from tumours as groups of cells and 
are known to increase during metastasis (Aceto et al., 2014; Cheung 
et al., 2016; Fabisiewicz & Grzybowska, 2017). Despite their lower 
frequency relative to single CTCs, CTC clusters exhibit higher met-
astatic potential and are associated with worse clinical outcome 
(Aceto et al., 2014; Cheung et al., 2016; Suo et al., 2017; Wang et al., 
2017; Zhang et al., 2017).

CTC clusters isolated from cancer patients vary in size between 
2 and 100 cells (though most clusters range between 20 and 40 
cells), with larger clusters being most aggressive (Liotta, Saidel, 
& Kleinerman, 1976; Rostami et al., 2019; Wang et al., 2017). The 
morphology and composition of CTC clusters also varies broadly. 
Clusters can be spherical, triangular or linear (Manjunath et al., 
2019), and can form tightly packed, loosely connected or branched 
structures (Balakrishnan et al., 2019) (Figure 1a). Many clusters 
have been found to contain noncancer cells (e.g. fibroblasts, plate-
lets) and are referred to as circulating tumour microemboli (Aceto 
et al., 2015). CTC clusters have a short life in circulation (minutes to 
hours; Aceto et al., 2014). Although some CTC clusters can assume 
linear configurations in transit (Au et al., 2016), they are generally 
assumed to become lodged in narrow capillaries, where they can re-
main dormant for extended periods of time, until they resume cell 
proliferation and establish secondary tumours (Giuliano et al., 2018). 
Nevertheless, some CTC clusters can also extravasate as multicellu-
lar clusters and have increased proliferative ability relative to single 
CTCs (Allen et al., 2019).

From an evolutionary and ecological perspective, being part of 
a cluster can provide cells with several benefits in terms of both 
survival (e.g. protection) and reproduction (group dispersal). Indeed, 
the dispersal of CTCs as clusters instead of single cells is thought 
to increase the likelihood of successful metastasis in several ways 
(Giuliano et al., 2018). For instance, cells in CTC clusters maintain 
strong cell–cell connections (including desmosomes and adherens 
junctions), the presence of which might confer resistance to anoikis 
(Hou et al., 2012; Yu et al., 2013)—a special form of apoptosis gener-
ally induced in single cells that detach from the extracellular matrix. 
Also, contrary to single CTCs, cells in CTC clusters have been found 
to lack proliferation markers and express more mesenchymal mark-
ers, which might explain their relatively higher survival and resis-
tance to chemotherapy (Hou et al., 2012; Krebs et al., 2012). Cellular 
plasticity and cooperativity among cells in a cluster is also thought 
to confer resistance to stress during circulation (Micalizzi, Haber, & 
Maheswaran, 2017), protection against immune predation and more 
successful colonization at secondary sites (Hong, Li, & Zhang, 2016).

Despite the accepted view that CTC clusters are extremely rel-
evant to the metastatic process and that their presence correlates 
with poor clinical outcome, we know little about their biology and 
possible means to decrease their metastatic potential (Giuliano 
et al., 2018). Based on the proposed and experimentally demon-
strated increased metastatic potential of CTC clusters (relative to 
single CTCs), it has been suggested that their dissociation into single 
cells might be a valid therapeutic strategy to decrease their aggres-
sivity (Aceto et al., 2014; Hong, Fang, & Zhang, 2016). Studies that 
directly targeted cell–cell connections and adhesion within clusters 
by downregulating the expression of plakoglobin (a protein involved 
in desmosomes and adherens junctions), inhibiting heparanase or 
administering a thrombolytic agent (Aceto et al., 2014; Choi et al., 
2015; Lu, Zeng, Gu, & Ma, 2015; Wei et al., 2018) showed prom-
ise, but concerns regarding the side effects of such treatments have 
been raised (Choi, Yoon, & Yun, 2016; Mirshahi et al., 2016).

Nevertheless, considering the clinical significance of CTC clus-
ters, it is important to develop strategies that specifically target 
them as a means to prevent and reduce the negative effects of me-
tastasis (Harryman et al., 2016). However, research on the potential 

F I G U R E  1   Examples of (a) CTC 
clusters isolated from patients with 
different types of cancer, showing distinct 
morphologies (shape and density) and 
cell numbers (adapted from Chen et al., 
2017); (b) clusters from two lung cancer 
cell lines—a non-small-cell (H2122) and a 
small cell (H187), showing differences in 
cluster density; and (c) virtual clusters in 
our model at the start of the simulation
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of CTC clusters as therapeutic targets is hampered by the fact that 
their detection, isolation and propagation remain challenging (Alix-
Panabières, Bartkowiak, & Pantel, 2016; Au et al., 2017; Hamilton, 
Burghuber, & Zeillinger, 2015). To mitigate these challenges, we 
have recently been proposed that available established cell lines that 
grow as clusters in suspension can be used as in vitro “surrogates” to 
explore the biology of CTC clusters and develop prospective thera-
peutic strategies against them (Jong, Chan, & Nedelcu, 2019; May, 
Crawford, & Nedelcu, 2018).

Here, we suggest a complementary approach using mechanistic 
agent-based models (ABMs) and an evolutionary/ecological per-
spective to investigate the effect of different microenvironmental 
challenges (e.g. resource availability, environmental threats—such 
as drugs or immune predation) on the resilience (cell survival) and 
stability of CTC clusters. The goal of this approach is to make pre-
dictions as to the combination of factors and parameter values 
that can reduce cell fitness and directly decrease the size of CTC 
clusters or induce their dissociation into smaller clusters or single 
CTCs, as a strategy that could lower the metastatic potential of 
CTC clusters. Furthermore, given the variability of CTC clusters in 
terms of both size and density (Figure 1a), we consider the effect 
of microenvironmental challenges on clusters of different sizes and 
densities and how such differences can affect the metastatic po-
tential and response to therapies of CTC clusters. These predic-
tions can then be tested both in vitro and in vivo using available cell 
lines that grow as clusters of various sizes and densities (Figure 1b). 
Combining these two approaches could help direct the develop-
ment of new therapeutic strategies to increase survival prognosis 
in cancer patients by specifically targeting CTC clusters and their 
role in metastasis.

2  | METHODS

2.1 | The Model

Our model is a mechanistic agent-based model (Railsback, Steven, & 
Grimm, 2012) designed to help understand the dynamics of circulat-
ing tumour cell cluster populations in various biologically relevant 
environments characterized by several factors that can vary in their 
parameter values. The goal of the model is to (a) understand how 
cluster size and cell survival are affected by different combinations 
of environmental and biological parameters, and (b) identify the best 
strategies that can decrease the size (i.e. number of cells) of CTC 
clusters directly or indirectly—by maximizing cluster disruption and 
dissociation in smaller clusters.

Specifically, this model investigates the complex, potentially 
nonlinear dynamics emerging from interactions between two types 
of agents: (a) cells in clusters exposed to a specific environment 
and (b) patches where clusters reside. Agents do not move; rather, 
agents experience changing resource levels in their environmental 
patches, which is assumed to be analogous to agents experiencing 

new environments (in different body areas) with different resource 
levels. Each cellular agent has a metabolic parameter—which is an 
individual cell property affecting the way cells can get energy from 
surrounding resources, and an energy budget that allows cells to 
survive under optimal conditions (cells do not reproduce). Cellular 
agents spend additional energy when faced with potential environ-
mental threats (immune system, drugs, etc.) and can acquire new en-
ergy from the resources available on patches. Both cells and patches 
are characterized by several specific properties and behaviours 
(Figure 2a). The model also investigates the specific spatial config-
urations (i.e. network topologies) resulting from cell–patch interac-
tions over time. The environment is a torus of 33 × 33 patches (i.e. 
1,089 patches), and the relative size of cells is 0.5 on both dimen-
sions (x-axis and y-axis), which means that a cell is 0.25 the size of a 
patch. A detailed protocol following the well-established standard 
of ODD (Overview, Design concepts and Details) for agent-based 
models (26) and a table including the list of the model's parameters, 
value range and initial values (Table S1) are presented in Section 1 
of Supporting information. The model is implemented in NetLogo v. 
6.0.1 and freely available on the GitHub webpage (Wilensky, 1999); 
https://github.com/mcamp enni/abm_cell_clust ers/.

2.1.1 | Agents’ properties and behaviours

Below we provide brief descriptions of the parameters and the 
equations used in the model. Additional information and detailed 
justifications for the specific equations are presented in Section 2 of 
Supporting information.

Cell properties
Cells are defined by a set of properties:

• “Surface” is a property that reflects the cell surface area in con-
tact with the environment (see Equation 1); it affects the amount 
of resources the cell has access to and how much the cell is af-
fected by the “Vulnerability” property.

where x is the current cell agent, t is time, and links is the number of 
links the current cell agent has with other cell agents.

• “Vulnerability” determines how susceptible cells are to environ-
mental threats; it is a nonlinear (sigmoid) function of the “Surface” 
property (see Equation 2 for details).

(1)surfacext =
1

linksxt + 1

(2)
vulnerabilityxt =

1

(1 + e
−(((surfacext

∗a)−1)∗b)
)

https://github.com/mcampenni/abm_cell_clusters/
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where x is the current cell agent, t is time, surface is the current sur-
face of the cell agent exposed to the environment, and a and b are 
constants.

• “Energy” is a property describing the energy budget that each 
cell is equipped with at the beginning of each run of simula-
tion, and it is constantly updated at each step of the simula-
tion. “Energy” increases when a cell acquires resources and 
decreases when a cell is affected by threat in a local patch (see 
Equation 3).

• “Metabolic” is a property that models the metabolic rate of each 
cell.

• “Nlinks” reflects the number of physical links that each cell has to 
other cells in a cluster (i.e. the number of other cells the current 
cell is linked to); cells are considered linked if the spatial distance 
between each other is below a simple threshold value.

• “Anoikis” is a property that determines the tendency of cells to 
commit suicide when they become physically isolated from other 
cells.

Cell behaviours
The behaviour of each cell is governed by “Eat”—which allows cells 
to collect energy from resources in the patch in which they currently 
reside.

where x is the current cell agent, t is time, y is the current patch, meta-
bolic is an invariant property of the cell agent, and surface is a property 
of the cell agent updated considering the current number of other cell 
agents the current cell agent is linked with; threat is the invariant threat 
effect of the current patch y, and vulnerability is the current vulnerabil-
ity of cell agent x.

Patch properties
Patches are defined by two properties: “Threat”—a property that 
models the effect that the patch has on the energy level of any local 
cell; and “Resource”—a property that models the current availabil-
ity of resources on the patch. “Resource” varies over time, as it can 

(3)
energyxt+1 = energyxt + (resourceyt+1 ∗ metabolicx ∗ surfacext+1 )

− (threaty ∗ vulnerabilityxt+1 )

F I G U R E  2   A schematic representation of the (a) properties and behaviours expressed by the two agents (cells and patches) in the model, 
and (b) flow chart of the simulation showing specific behavioural modules of cells and patches. For (a), cell properties are shown in blue 
hexagons (anoikis, energy, metabolic, Nlinks, surface and vulnerability), with their downstream effects linked via black arrows to white 
boxes. Patch properties are shown in orange hexagons (danger and resource). Agent behaviours are shown in purple notched boxes, with 
their downstream consequences linked via black arrows. Decision events are shown in yellow diamonds, with their subsequent decisions and 
effects linked via green or red dotted lines. Properties that are subject to fluctuations during the model are indicated with branching black 
lines (resource balance and energy change). For (b), agent status updates are indicated in green boxes, generalized agent actions are shown in 
white boxes, saved states are shown in blue boxes, termination events are shown in red boxes, and decision events with branching outcomes 
are shown in yellow diamonds, as in (a). Both the patch and cell behavioural modules are run concurrently as the simulation proceeds through 
each cycle, and the overall simulation terminates either when it reaches a maximum predetermined cycle number or when all cells are dead



     |  1639CAMPENNI Et Al.

decrease due to degradation or increase due to diffusion from adja-
cent patches (see Equation 4 for details).

where resourceyt+1 is the amount of resource available at time t + 1 on 
the current patch y, d is a parameter of resource degradation over time, 
and f is a diffusion function incrementing the amount of resource avail-
able at time t on the patch y by a proportion k of the amount of re-
source available at time t on the eight neighbouring patches.

Patch behaviour
The behaviour of each patch is governed by “Diffuse-resource”—a 
behaviour that provides new resources for cells to consume.

2.1.2 | Process overview and scheduling

The model consists of several submodels (Figure 2b), which 
include: (a) initialization of the environment to determine the 
initial availability of resources and local threat in patches; (b) 
initialization of the cells and their properties; (c) the behaviour 
of cells, which consists of: collecting resources, checking the 
effects of the local threat level and checking if a critical thresh-
old is reached to trigger cell death; and (d) finally, updating, for 
each patch, the availability of resources diffused at a regular 
intervals from surrounding patches. There is no input from ex-
ternal sources used in the model. At the onset, a particular en-
vironment is initialized in a 2-dimensional grid of patches, and 
a cluster of cells is generated based on a specific size (N = 20, 
40, 80, 100 cells) and density (low, medium and high) centred 
around the middle of the grid. Then, the particular initial spatial 
configuration of the cluster (i.e. the network topology) is saved, 
as clusters do not migrate around the grid individually. The 
initial network topologies are not specified. Rather, the initiali-
zation procedures create a cluster of cells taking into consid-
eration a given set of parameters about group size and cluster 
density. In other words, each initial cluster of cells is basically a 
random network of cells with varying number of connections to 
other surrounding cells. The specific network topology emerg-
ing at the end of each simulation is the result of the response of 
the system to a specific combination of environmental resource 
availability and threats.

A typical run of the model starts with the degradation of local 
resources and the update of cells’ properties (e.g. energy budget, 
surface in contact with the environment) based on their patch 
characteristics. Then, cells check whether there is a local threat 
affecting their energy or not (threat affects cells in accordance 
with the actual surface they expose to the environment), which 
determines whether they die or not. Cells die as soon as they reach 
the critical energetic threshold of zero, or due to the induction of 
anoikis (when there are no other cells in a given distance). Surviving 
cells have access to environmental resources in accordance with 

the actual surface they expose to the environment. After a fixed 
period of time, new resources are available to cells. The run ends 
when the model reaches a given time “t” or when all cells have 
died. At the end of the run, information about state variables (N, 
density, availability of resources, patches’ threat, median energy 
of cells, median availability of resources and the median metabolic 
rate of cells) is saved. Moreover, the particular spatial configura-
tion of the remaining clusters (i.e. the network topology) is saved.

2.2 | Data analyses

For each combination of the parameters, we considered median val-
ues over all runs and used those values to calculate the survival ratio 
and stability index; data are presented as boxplots. Survival ratio 
(SR) is defined as the number of surviving cells at the end of the 
simulation (Nfinal) relative to the number of cells at the beginning of 
the specific simulation run.

Stability index (SI) represents the proportion of surviving cells 
normalized by the number of components (i.e. the number of uncon-
nected subnetworks: a single isolated node is itself a component, 
and a network that is itself connected has exactly one component, 
consisting of the whole network).

Or

These two measures are similar with respect to the type of 
information they take into consideration, but they differ in their 
meaning. While the survival ratio provides a measure of the resil-
ience of the system/cluster in terms of the survival of cells over 
the simulated process, the stability index is a measure of the sur-
vival of cells normalized by the specific topological configuration 
of the considered cluster. Thus, clusters with the same Ninital and 
Nfinal that exhibit different final different topological configura-
tions will be characterized by the same survival ratio, but differ-
ent stability indexes (see examples in Figure 3). The difference 
between SR and SI is indicative of the degree of fragmentation; 
the more different SR and SI are, the higher the dissociation of 
the cluster.

To evaluate possible correlations and interplay between different 
parameters, we ran separate analyses considering one of the param-
eters as independent variable, the measures we defined (i.e. survival 
ratio, stability index) as dependent variables and other parameters 

(4)

resourceyt+1 = resourceyt − (resourceyt ∗d)+ f(resourceyt ,resourceneighborst ,k)

SR =

Nfinal

Ninitial

SI =

(

Nfinal

Ninitial

)

components

SI =
SR

components
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as parameters defining particular experimental settings (see Results 
for details). Analyses were performed using R version 3.5.3 (2019-
03-11) and Tidyverse, which is a collection of R packages designed 
for data science (R Core Team, 2019; Wickham, 2017).

3  | RESULTS

3.1 | Overview

The goal of our mechanistic agent-based model is twofold: (a) to inves-
tigate the response of clusters of various densities and sizes to differ-
ent environmental conditions, and (b) to find the combination of factors 
(i.e. various levels of environmental threats and resources) that is most 
effective at decreasing the survival of cells (and thus cluster size) in 
clusters with various initial sizes and densities. We have run the model 
varying four different parameters: cluster density, cluster size, threat 
intensity and availability of resources; for each specific combination of 
these parameters, we have run the model 1,000 times (i.e. runs or rep-
licates) totalling 720,000 simulations. Below we present the most rel-
evant findings for a subset of the parameter values used (see Section 3 
of the Supporting information for additional data). The data presented 

here reflect the models’ results at the equilibrium, that is at the end of 
the simulations when the model reached the steady state. The analyses 
of the dynamics of the system (i.e. how models’ outputs change over 
time) are included in Section 4 of the Supporting information.

To allow biologically relevant comparisons among results using 
various combinations of parameters and values, we expressed the 
outcome of all simulations in two ways. First, we calculated the sur-
vival ratios, that is the number of surviving cells at the end of the sim-
ulation relative to the initial number of cells in a cluster (see Methods). 
Higher values (i.e. higher survival ratios) are indicative of more resil-
ient clusters. For clusters subjected to different environmental chal-
lenges (high threats or low resource levels), higher values are also 
indicative of better persistence in those conditions. Second, because 
at the end of the run the surviving cells might be distributed among 
more than one cluster (due to the fragmentation of the initial clusters 
as internal cells die), we also calculated a stability index, specifically, 
the proportion of survival cells normalized by the number of cluster 
fragments (see Methods). For clusters with the same survival ratio, a 
higher stability index is indicative of clusters with lower propensity 
to dissociate (see example in Figure 3). From a biological perspective, 
a higher stability index implies increased stability or resistance to 
treatment, which could reflect in overall higher metastatic potential.

F I G U R E  3   Hypothetical scenario 
displaying several responses of a 20-celled 
cluster (Ni—initial number of cells) to 
high- and low-resource environments, and 
resulting in outcomes with various final 
total number of cells (Nf), survival ratios 
(SR) and stability indexes (SI)
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Results sections below highlight a subset of analyses that address 
the impact of initial cluster size and density on cluster resilience and 
stability in (a) optimal environments, (b) low-threat environments 
with variable levels of resources, (c) rich environments with variable 
threat levels and (d) environments with variable levels of both re-
sources and threat. Both survival ratios and stability indexes were 
calculated for different combinations of parameters (see Section 3 
of Supporting information for additional analyses).

3.2 | The impact of density and size on cluster 
resilience and stability in optimal environments

The first set of simulations addressed the resilience and stability of 
clusters of various densities and sizes in environments with very low 
threat and very high resource availability. We found that both clus-
ter density (high, medium, low) and initial size (N = 20, 40, 80, 100) 
influenced survival ratios and stability indexes, but in different ways 
(Figure 4).

Survival ratios were strongly affected by cluster density and size. 
High-density (HD) clusters were more resilient than medium-density 
(MD) and low-density (LD) clusters, for all size classes; and differ-
ences in density impacted most the SR of smaller clusters (Figure 4a). 
Furthermore, the initial size of the cluster had no impact on the re-
silience of HD clusters (i.e. survival ratios are very similar for all size 
classes); however, it did impact the survival ratios of MD and LD 
clusters, with large clusters being more resilient than small clusters 
of the same density (Figure 4a).

In contrast to SRs, stability indexes were only affected by cluster 
density. The initial cluster size did not have an impact on the sta-
bility index of either HD or MD and LD clusters; clusters of same 
density but of different sizes had similar stability indexes (Figure 4b). 
However, density had a strong impact on the SI, with HD clusters 
having much higher stability indexes than MD and LD clusters, for all 
size classes (Figure 4b). Overall, these analyses indicate that cluster 
stability is strongly dependent on density but not size.

Comparisons between survival ratios and stability indexes reveal 
some interesting differences among clusters (Figure 4a and b). While 
for HD clusters, the two measures are rather similar (suggesting 
a low degree of fragmentation), for MD and LD clusters, SIs were 
much lower than SRs (suggesting a high degree of dissociation; see 
Figure 3 for examples). Furthermore, among MD and LD clusters, the 
difference between SRs and SIs (and thus the degree of fragmenta-
tion) is higher in larger clusters. For instance, the SRs of 100-cell and 
20-cell MD clusters are ca. 0.75 and 0.50, respectively, while the 
stability index is around 0.25 for both cluster sizes. Higher degrees 
of fragmentations in larger clusters (relative to smaller cluster) are 
to be expected as—all else being equal, the larger the cluster, the 
higher the possible number of fragments. This is because the highest 
number of fragments for any cluster equals N/2 (2 is the smallest 
size possible of a fragment, as single cells are expected to undergo 
anoikis). However, similar stability indexes for clusters of different 
sizes indicate proportional propensities to dissociate.

3.3 | The effect of resource availability on cluster 
persistence and stability

In the second set of simulations, we investigated the SRs and SIs of 
clusters of various densities and sizes subjected to different levels 
of resources (very low, low, medium, high, very high), in environ-
ments with very low threat levels. Although resource availability 
affected the survival of all clusters, the effect was dependent on 
cluster density and size. Overall, HD clusters were more resilient 
than MD and LD clusters, irrespective of cluster size and resource 
availability, and differences in density were most relevant to smaller 
clusters (Figure 5a). In terms of size, the response of HD clusters was 
least affected by initial size (i.e. for a specific resource level, SRs are 
similar among clusters of different sizes), while size did affect the re-
sponse of MD and LD clusters, with larger clusters being more resil-
ient than smaller clusters of the same density (although differences 
between large and small clusters were less evident at low resource 
levels) (Figure 5b).

Comparisons between SRs (Figure 5b) and SIs (Figure 5c) re-
vealed again interesting differences among clusters of different 
densities. The SRs and SIs are similar for HD clusters (for all size 
classes and resource levels), indicating that they incurred low lev-
els of fragmentation. On the other hand, SIs are much lower than 
SRs for MD and LD clusters, suggestive of high degrees of dissoci-
ation for these clusters, for all class sizes and resource levels. Thus, 
for MD and LD clusters, although larger clusters and/or higher 
resource availability can result in an overall higher proportion of 
surviving cells, the dissociation of clusters can drastically impact 
the final composition of the populations. Furthermore, similar SIs 
for clusters of the same density but of different sizes and at differ-
ent resource levels (Figure 5c) indicate that dissociation levels are 
not affected by cluster size or resource levels; they are an intrinsic 
property of clusters of a specific density (i.e. they are only affected 
by density; as in Figure 4d).

3.4 | The effect of environmental threats on cluster 
persistence and stability

To investigate the response to environmental threats, clusters 
of different densities and sizes were subjected to various levels 
of threat (0.1–0.8) at very high resource levels. As expected, the 
survival ratios of clusters were dependent on the level of envi-
ronmental threat, with higher levels of threat resulting in lower 
SRs. However, the response was also dependent on the density 
and size of the cluster. Specifically, HD clusters were most resist-
ant to threat, irrespective of their size and threat level, and dif-
ferences in density impacted most the response of small clusters 
(Figure 6a). In terms of size, the response of HD clusters was not 
impacted by initial size (for a specific threat level, SRs are similar 
among clusters of different sizes), but for MD and LD clusters, 
larger clusters were generally more resistant than smaller clusters 
(Figure 6b).
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Similar to what we observed for the effect of resource availabil-
ity on cluster stability, the SRs and SIs are similar for HD clusters—
indicating that they incurred low levels of fragmentation, while SIs 
are much lower than SRs for MD and LD clusters—suggestive of 
high degrees of dissociation for these clusters (Figures 6b vs 5c). 
However, in contrast to resource availability, threat intensity ap-
pears to have an effect on the dissociation of the MD clusters, as 
SIs seem to be decreasing as threat intensity increases (Figure 6c).

3.5 | The combined effect of environmental 
threats and resource availability on cluster survival

In the last set of simulations, we have compared the survival ratios 
of clusters subjected to various levels of threat or resource avail-
abilities alone with those of clusters experiencing various combina-
tions of both factors. Overall, we found that simultaneously applying 

threat and reduced resource availability can lower cluster survival 
ratios more than each of the factors individually (see Figure S4 in 
Supporting information). This is extremely important for HD clus-
ters, which tend to be more resilient and more stable than MD and 
LD clusters, irrespective of size (e.g. Figures 4a and b, and 5a). For 
instance, for a small size HD cluster of 20 cells, a medium threat 
level of 0.4 in a high-resource environment can only reduce its sur-
vival ratio to ca. 0.75. However, the same threat level applied at low 
resource availability can reduce its survival ratio down to ca. 0.50 
(Figure 7a). Similarly, for a 100-cell HD cluster, the same combina-
tion of threat (0.4) and low resource levels can decrease its survival 
ratio to ca. 0.40, compared to only ca. 0.70 when subjected to threat 
alone at high resource levels (Figure 7b). Conversely, resource dep-
rivation alone (very low resource levels) has a weak effect on the 
SRs of both 20- and 100-cell clusters (SR between 0.9 and 1), but it 
can fully eliminate both cluster types when combined with medium 
threat levels (0.5) (Figure 7).

F I G U R E  4   The impact of cluster density and size on the survival ratios, stability index and network structures of high-, medium- and 
low-density clusters in very high-resource environments with low threat levels. Data on survival ratios—(a) and stability index—(b) of high-, 
medium- and low-density clusters of 20, 40, 80 and 100 cells are presented as boxplots, where the box includes the first, second (i.e. 
median) and third quartile of the data; bars show minimum and maximum values, and outliers are represented as dots. Solid lines link the 
median values of each boxplot (corresponding to a value on the x-axis) for the different box-plotted data points. Network structures in panel 
C are representative examples of the final configurations of single runs for 100-cell clusters of high, medium and low density; networks were 
displayed using the Fruchterman–Reingold force-directed algorithm, which distributes nodes in space using attraction and repulsion forces 
(Fruchterman & Reingold, 1991). Blue and grey nodes represent surviving and dead cells at the time the networks were sampled. Nodes that 
correspond to cells separated by a distance equal or <1 patch (i.e. the two cells are in a radius of 1 patch) are linked by a red line; nodes that 
correspond to cells farther apart—as in medium- and low-density clusters, are not connected. The length of a connection is proportional 
to the strength of the degree of the nodes (i.e. the number of connections with other nodes), not to the actual distance between cells in a 
cluster

(a)

(c)

(b)
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4  | DISCUSSION

The model we presented here was designed to investigate the re-
sponse of cell clusters of various sizes and densities to environments 
with various levels of resources and threat intensities, with the goal 
of identifying the set of conditions that would maximize cluster 
size reduction directly (through cell loss) and/or indirectly (through 
cluster dissociation). In theory, cluster dissociation could result in 

improved dispersal through increasing the number of clusters. But 
the decreased size of the fragments will negatively affect the likeli-
hood of these clusters to survive and establish new tumours. Indeed, 
although large clusters are less frequent compared with small clus-
ters (e.g. Bocci, Jolly, & Onuchic, 2019), studies (including longitudinal 
analyses; i.e. enumeration of CTC and CTC clusters at baseline and 
follow-ups) have shown that the presence of larger-size CTC (>3 cells) 
confers the highest risk of death (Wang et al., 2017). Changes in the 

F I G U R E  5   The effect of resource 
availability on the survival ratios (a and b) 
and stability index (c) of high-, medium- 
and low-density clusters of 20, 40, 80 and 
100 cells; see Figure 4 for explanation of 
the plots
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size and density of the CTC clusters in response to therapy have been 
recently reported. For instance, it has been shown that chemother-
apy reduced not only the number but also the size of CTC clusters in 
a patient with ovarian cancer (Meunier et al., 2019). Also, success-
ful therapy was correlated with loose cluster formation, while tight 
clusters correlated with therapy resistance (Balakrishnan et al., 2019).

Because the aim of the model is to help develop strategies to 
reduce the size of real CTC clusters, we have used agent proper-
ties, parameters and parameter values that are biologically relevant. 
However, we are not implying that the values we used should be 
directly applied (or assumed to correspond exactly) to biological 
contexts. Rather, the interpretation of the model will be focused on 

F I G U R E  6   The effect of threat 
intensity on the survival ratio (a and b) 
stability index (c) of high-, medium- and 
low-density clusters of 40, 80 and 100 
cells; see Figure 4 for explanation of the 
plots
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general trends and findings that can be tested in vitro and/or vivo. 
We are also aware that, for simplicity, a number of other potentially 
relevant aspects (such as flow or fluid dynamics and the presence of 
noncancer cells in clusters) have not been incorporated in the cur-
rent model. Below we discuss the main findings of our model and 
their relevance to therapy. We also highlight the general significance 
and future applications of agent-based models to improving our un-
derstanding of the behaviour of CTC clusters and the development 
of strategies to decrease their metastatic potential. Finally, we con-
sider ways to test the predictions of our model and suggest future 
directions.

4.1 | Main findings of the model and therapeutic 
implications

Understanding the behaviour of CTC clusters of different densities/
sizes and the effect of resource availability and drug levels on their 
resilience and stability has significant clinical and therapeutic signifi-
cance. If differences in CTC cluster size and density correlate with 
clusters’ metastatic potentials, these two parameters can have impor-
tant prognostic values. Furthermore, understanding the differential 
response to resource availability and threat levels of clusters of vari-
ous densities and sizes will allow the development and administration 
of more individualized therapies directed at decreasing the metastatic 
potential of specific CTC cluster types with fewer side effects.

4.1.1 | Both size and density might affect the 
metastatic potential of CTC clusters

Early experimental studies in mice found a link between the size of 
cell clusters released from tumours and their metastatic potential 
(Liotta et al., 1976), and more recent studies correlated the size of 
CTC clusters with poor prognosis (Wang et al., 2017). Our simula-
tions indicate that for MD and LD clusters (but not HD clusters), 
larger clusters are indeed more resilient (and thus, possibly more 

aggressive) than smaller clusters of the same density. However, in 
addition to size, the resilience of clusters is also strongly affected 
by their density. Specifically, under optimal conditions (i.e. high re-
source and low threat levels), HD clusters are more resilient than 
MD and LD clusters, for all size classes (likely due to increased cell–
cell contact area, which lowers the propensity of cells to undergo 
anoikis).

Information on differences in density among CTC clusters is cur-
rently limited. However, available images of isolated CTC clusters 
suggest that such differences do exist (Figure 1a). Furthermore, al-
though it is not clear how variable cluster densities are, and whether 
different types of cancer or individuals exhibit specific CTC cluster 
densities, a recent study observed predominantly dense/tight clus-
ters in breast and lung cancer patients, but more loose clusters in 
patients with oesophageal and bladder cancers (Balakrishnan et al., 
2019). Likewise, although it also remains to be determined whether 
the density of CTC clusters does correlate with their metastatic po-
tential, the same study found that the presence of tight clusters was 
associated with shorter patient survival (Balakrishnan et al., 2019). 
To further support such a correlation, two cell lines derived from 
cancers with different aggressivity levels appear to form clusters of 
different densities: compact clusters in a very aggressive small cell 
lung cancer line (H187), and less dense clusters in a less aggressive 
non-small-cell lung cancer line (H2122) (Figure 1b).

Our simulations also showed an important interaction between 
cluster size and density. Specifically, while size has a strong impact 
on the resilience of low- and medium-density clusters (with larger 
clusters being more resilient than smaller clusters of the same den-
sity size), size has little or no impact on the resilience of high-density 
clusters (both small and large HD clusters are quite resilient). The 
latter finding implies that the dissociation of large HD clusters into 
smaller clusters might be, by itself, less efficient in decreasing their 
metastatic potential. Also, when compared to small clusters, the 
resilience of large clusters is less impacted by their density. These 
effects are likely related to the propensity of MD and LD clusters 
to dissociate easier, as well as to the increased likelihood of smaller 
clusters to dissociate into single cells that will undergo anoikis.

F I G U R E  7   Combined effects of resource availability and threat intensity for (a) 20-cell HD clusters and (b) 100-cell HD clusters; see 
Figure 4 for explanation of the plots
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4.1.2 | Stability might be as important as resilience 
when assessing the metastatic potential of 
CTC clusters

As cluster size is thought to correlate with aggressivity, strategies 
that can reduce their size directly or indirectly (by inducing their dis-
sociation into smaller clusters and—ultimately, single CTCs) could 
contribute to decreasing their metastatic potential. Our model 
showed that density can greatly impact the stability of clusters of 
all sizes. Specifically, HD clusters are much more stable and diffi-
cult to dissociate than MD and LD clusters, regardless of their initial 
size. This resilience to dissociation is likely linked to their overall high 
survival ratios (irrespective of size) and increased survival relative to 
same-size clusters of lower density. Note that in our model, cluster 
dissociation is strictly dependent on cell death (i.e. fragmentation is 
strictly due to the death of internal cells). The potential of cell death 
to result in cluster fragmentation (as well as a positive correlation be-
tween cell death and fragmentation rates) has been previously dem-
onstrated in experimentally evolved multicellular clusters/flakes in 
yeast (Ratcliff, Denison, Borrello, & Travisano, 2012).

The complex effects that cluster density and size showed on 
both the resilience and stability of the clusters are likely to have sig-
nificant consequences for the metastatic potential of CTC clusters 
and their responses to therapies. Furthermore, our findings suggest 
that, at least for MD and LD clusters, strategies that might not have 
a strong negative effect on their overall survival ratio could still de-
crease their metastatic potential by inducing cluster dissociation. 
Conversely, strategies that could have a strong negative effect on 
survival ratios might be less effective than strategies that affect less 
the overall proportion of surviving cells, but induce higher cluster 
dissociation. Thus, survival ratios by themselves might not necessar-
ily be the best predictors of the metastatic potential of CTC clusters. 
Consequently, in vitro testing of therapies designed to specifically 
target CTC clusters should take into account both parameters.

4.1.3 | Proposed fasting-based therapies can have 
differential effectiveness on CTC clusters

Several starvation/fasting-based therapies have been proposed to 
be efficient at decreasing tumour burden and mitigating the side ef-
fects of chemotherapy (Lee et al., 2012, Nencioni, Caffa, Cortellino, 
& Longo, 2018, Raffaghello et al., 2008). Although the effect of such 
therapies on CTC clusters has not been investigated, our findings 
suggest that the outcome might be influenced by the density and 
size of CTC clusters. As expected, low resource levels negatively im-
pacted the survival ratios of all clusters. However, our simulations 
showed that resource levels have a differential effect on the survival 
of clusters of different densities and sizes. For instance, HD clusters 
are more resistant than MD and LD clusters in all resource levels 
and for all size classes (likely due to increased anoikis and cluster 
dissociation in lower-density clusters), and among MD and LD clus-
ters, large clusters survived better than small clusters in all resource 

levels (also due to increased likelihood/rate of anoikis in small clus-
ters as the number of connections is lower, especially as clusters 
start dissociating). Thus, HD clusters and large MD and LD clusters 
might still be surviving well even at low resource levels. Note that in 
our model, resources (even at the lowest levels) are not limiting. That 
is, low resource levels by themselves do not trigger death; it is only 
the combination of factors that decrease the energy budget below a 
threshold that can trigger death. Furthermore, the efficiency of re-
ducing resources (as denoted by changes in survival ratio from very 
high to very low resource levels, i.e. the slopes in Figure 5a and b) 
can be impacted by cluster density and size. For instance, lowering 
resource levels is likely to have the strongest effect (in terms of ef-
ficiency in decreasing the survival of a particular of cluster type, i.e. 
within-group comparison) on large LD clusters, due to both higher 
competition for resources and increased anoikis. Conversely, small 
LD clusters are least affected by changes in resource availability; 
thus, fasting-based therapies might be less efficient in cases associ-
ated with small low-density CTC clusters.

4.1.4 | “One size fits all” might not be the best 
strategy in terms of clusters’ responses to drugs

The threat parameter we have implemented in our model can be in-
terpreted as any extrinsic factor that can negatively affect the sur-
vival of clusters, from cytotoxic drugs to the immune system. Since 
CTC clusters are known to be refractory to treatments (Hou et al., 
2012; Kaushik, Yakisich, Way, Azad, & Iyer, 2019; Krebs et al., 2012), 
the development of strategies (chemotherapies or immunothera-
pies) directed at specifically targeting them is of great significance. 
As expected, our model showed that threats are most effective on 
LD clusters, especially those of smaller sizes. However, the model 
can also provide insight into drug–response dynamics, that is the 
relationship between changes in threat intensity and changes in 
survival. For instance, our simulations suggest that increasing the 
intensity of threat is, generally, least effective (in terms of additional 
decrease in SR with increase in threat level, i.e. slopes in Figure 6a 
and b) on HD clusters. Also, LD clusters (especially of small size) tend 
to reach a plateau whereby increases in threat intensity are not as-
sociated with a proportional decrease in survival ratios.

Investigations into the specific responses of clusters of differ-
ent size and density to drug levels can have significant therapeutic 
significance as they can direct more effective treatments (in terms 
of dosage) based on the specifics (density and size) of CTC clusters 
associated with a particular type of cancer or a specific individual. 
For instance, a dosage level that is required to decrease the survival 
of HD and/or large MD and LD clusters might be unnecessary for 
small LD clusters. Such information would avoid unnecessary neg-
ative side effects of therapies based on agents that can also affect 
healthy cells (like most standard chemotherapies). The phenotype 
of CTC clusters (pre- and posttherapy) has recently been proposed 
to guide and select specific drugs for more effective personalized 
treatments (Balakrishnan et al., 2019).
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4.1.5 | Combination therapies can be more effective 
at decreasing the metastatic potential of CTC clusters

Combination therapies (i.e. various combinations of surgery, ra-
diotherapy, chemotherapy, immunotherapy) have been successfully 
used in decreasing tumour burden (Mokhtari et al., 2017). Our model 
shows that combining various levels of resources and threat inten-
sity can also be more effective at decreasing the survival of CTC 
clusters than each factor alone. For instance, while decreasing re-
source availability or increasing the threat level alone can decrease 
the survival of clusters (especially those of smaller size and/or lower 
density), applying both pressures can result in better outcomes, es-
pecially for large and HD clusters. Such additive or synergistic ef-
fects might allow for the development of new therapeutic strategies 
that can achieve improved outcomes by combining different factors 
(resource levels and chemotherapeutic agents; different chemo-
therapies; chemo- and immunotherapy), each of which acting in a 
different way. As CTC clusters are refractory to many chemothera-
pies, such combinations might have the same effect as administering 
higher doses of one specific drug and thus could reduce drug toxicity 
and negative side effects. Agent-based models can direct the devel-
opment of such therapies.

4.2 | The utility of mechanistic agent-based models 
for cancer research

A mechanistic model assumes that a complex system can be under-
stood by examining the workings of its individual parts and the man-
ner in which they are coupled. Mechanistic models typically have a 
tangible, physical aspect, in that system components are real, solid 
and visible. Traditionally, "mechanistic models" are those that are 
based on the mathematical description of a mechanical, chemical, 
biological phenomenon or process. Such models can have multiple 
uses in cancer research: (a) they can be used to identify crucial ele-
ments and factors affecting agents’ behaviour; (b) they can be used 
to test theoretical hypotheses about the role and relevance of spe-
cific elements and factors by manipulating the different parameters 
of the model; (c) they can generate a big amount of in silico data that 
can be used to run analyses that otherwise it would be difficult to 
run with biological data (both in vivo and in vitro) because of many 
different reasons (ethical, financial and time–space constraints); and 
(d) they can be integrated with experimental work.

Agent-based models have already been used in cancer research 
to address a variety of scenarios, including preventative vaccination 
(Palladini et al., 2010), hematopoietic cell mutations (Rodriguez-
Brenes, Komarova, & Wodarz, 2014), adaptive therapy (Gallaher, 
Enriquez-Navas, Luddy, Gatenby, & Anderson, 2018), and the de-
velopment of combinational immunotherapies for colorectal cancer 
(Kather et al., 2017, 2018). The model we presented here extends 
these approaches to a recently acknowledged problem of increas-
ing interest in cancer treatment and management. We argue that 
ABM approaches are extremely valuable complements to current 

research efforts to decrease the metastatic potential of CTC clus-
ters and improve prognosis for cancer patients. Although the model 
presented here does not explicitly use an evolutionary framework, 
it lays the ground for future studies that can take into account the 
well-known genetic and phenotypic heterogeneity of cells in a CTC 
cluster and differences in their fitness potential.

4.3 | Testing the predictions and assessing the 
utility of the model

As with all models, the main value of our mechanistic agent-based 
model is that it provides a set of predictions that can be experimen-
tally tested. We have already proposed that established cell lines 
that grow as clusters in suspension (such as the ones in Figure 1b) 
can be used as in vitro surrogates for CTC clusters to investigate 
their biology and direct the development of new therapeutic strate-
gies (May et al., 2018). These cell lines produce clusters of various 
sizes and densities, which can enable the direct testing of the predic-
tions of our model. For instance, the suggested correlation between 
the aggressivity of CTC clusters and their density can be addressed 
by xenografting clusters of different densities in mouse models. 
Similarly, resource (e.g. glucose or glutamine) and drug levels can be 
manipulated (alone or in combination) both in vitro and in vivo, and 
their effect on CTC clusters of different initial sizes and densities can 
be addressed.

The model can be further developed and refined to address 
particular aspects of the biology of CTC clusters and investigate 
specific responses to particular therapies. For example, we as-
sume that cells that are not in close contact with other cells will 
undergo anoikis. Nevertheless, mutations in the anoikis pathway 
or cell plasticity (i.e. induction of the mesenchymal fate) might 
affect this property. The model can also be extended to include 
other parameters, such as drug concentration, drug degradation, 
fluctuations in drugs and resource availability. In addition, ecologi-
cal and evolutionary principles can be applied to the model, which 
will provide a theoretical framework to test the variables and pre-
dictions of the model.

Extending the findings of the model (both theoretical and ex-
perimental) to real applications requires a better understanding of 
the characteristics of CTC clusters as they relate to specific types 
and cancers and patients. The increased interest in the isolation 
and ex vivo proliferation of CTC and CTC clusters (Alix-Panabières 
& Pantel, 2014; Ferreira, Ramani, & Jeffrey, 2016; Meunier et al., 
2019; Pantel & Speicher, 2016) to provide personalized information 
on the genetic make-up of individual patients could also be used to 
address whether correlations between particular cancer types (or 
individuals) and specific characteristics of the corresponding CTC 
clusters (size and density) exist. A recent study that reports a new 
gravity-based microfiltration system to capture CTC and CTC clus-
ters also reveals interesting observations on the prevalence and size 
of CTC clusters in patients with different types of ovarian cancer and 
in different clinical stages (including before and after chemotherapy) 
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(Meunier et al., 2019). For instance, in patients with advanced high-
grade serous carcinoma, clusters varied between 2 and 50 cells (with 
most clusters being of only 2 cells), whereas in patient with endo-
metrioid carcinoma, 57% of clusters were larger than 4 cells (includ-
ing clusters with more than 50 and 100 cells) (Meunier et al., 2019). 
However, even in the absence of such correlations, models such as 
the one we presented here can provide invaluable information that 
can be applied to increase the effectiveness of therapies to specifi-
cally target CTC clusters.
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