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Human MSCs promotes colorectal cancer
epithelial–mesenchymal transition and progression
via CCL5/β-catenin/Slug pathway

Ke Chen1,4, Qianqian Liu1,4, Lai Ling Tsang2, Qiao Ye1, Hsiao Chang Chan2,3, Yunwei Sun*,1 and Xiaohua Jiang*,2,3

Mesenchymal stem cells (MSCs) extensively interact with cancer cells and other stroma cells in the tumor microenvironment.
However, the role of MSCs in colorectal cancer (CRC) progression and metastasis is controversial. This study was designed to
identify the role of inflammation-activated-MSCs in CRC development. Our results show that tumor necrosis factor (TNF)-α-
preactivated-hMSCs significantly promote the progression of colon cancer cells by enhancing cell proliferation,
epithelial–mesenchymal transition, migration, and invasion. TNF-α-primed-hMSCs secrete high level of CCL5, which interacts
with its receptor CCR1 expressed in colon cancer cells. Interestingly, the stimulation of colon cancer cell progression by
TNF-α-primed hMSCs is associated with the upregulation of β-catenin signaling pathway. Blocking β-catenin pathway significantly
decreases the TNF-α-primed-conditioned medium or CCL5-mediated cancer cell progression by decreasing the enhancement of
Slug, suggesting that the CCL5/β-catenin/Slug pathway plays a critical role in hMSC-mediated cancer progression. Furthermore,
in vivo model in nude mice confirms the ability of hMSCs to promote the proliferation and progression of colon cancer cells, and
the upregulation of CCl5/β-catenin/Slug pathway. Taken together, the present study has demonstrated a novel pathway involving
CCl5/CCR1/β-catenin/Slug, via which hMSCs promotes CRC development.
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Colorectal cancer (CRC) is the third most common cancer and
the third leading cause of cancer-related death worldwide.1

Metastatic spread is one of the hallmarks of CRC and is the
major cause of patient death.2 Indeed, the 5-year survival rate
of patients dramatically declines from ~90% in early stage
non-metastatic tumors to ~ 5% in cases with distant
metastasis.3 Beyond the intrinsic genetic lesions that affect
the CRC cells, a dynamic interaction occurs between cancer
cells and the host stromal microenvironment to support
cancerous growth and dissemination.4 The CRC stroma,
which is comprised of immune cells, fibroblasts, extracellular
matrix constituents, growth factors, and cytokines/chemo-
kines, plays an essential role in tumor progression and
metastasis, and referred to as a “ reactive stroma”.5,6

MSCs are one of the major components of the tumor
stroma, which are believed to be the precursors of tumor-
associated fibroblasts.7–10 Tumor-resident MSCs are often
constantly exposed to immune cells and inflammatory
cytokines/chemokines in the tumor microenvironment.5 In
turn, they may acquire functions that are distinct from normal
tissue MSCs, which subsequently modulate the tumor
microenvironment and ultimately affect tumor progression.11

Previous studies on the role of MSCs in CRC development
have yielded conflicting results, some reports showed that
MSCs inhibited tumor growth whereas others demonstrated
that MSCs promoted the initiation and development of

CRC.12–17 For instances, it was reported that MSCs inhibited
AOM-induced tumor initiation by preventing the initiating cells
from sustaining DNA insults and subsequent G1 arrest in
mice.13 In contrast, De Boeck et al. demonstrated that MSCs
promoted the invasion, survival, and tumorigenicity of CRC
cells both in vitro and in vivo through paracrine neuregulin
1/HER3 signaling.15 The seemingly contradictory findings
indicate that the role of MSCs in CRC development might be
stage-dependent and microenvironment-dependent. On the
other hand, the detailed mechanisms through which MSCs
acquire their tumor suppressing/promoting function during
CRC development are largely unknown.
CCL5/RANTES is one of the C–C chemokines secreted by

various cell types including platelets, immune cells, fibro-
blasts, endothelial, and epithelial cells, which interacts with the
G-protein-coupled receptors CCR1, CCR3, and CCR5.18

Although CCL5 has been originally identified as an inducer
that recruits leukocytes to sites of inflammation,19 accumulat-
ing evidence has clearly shown that CCL5 is highly expressed
in various tumors. CCL5 has been demonstrated to promote
tumor development and metastasis by inducing tumor
cell proliferation, angiogenesis, or expression of matrix
metalloproteinases.20–23 Of note, recent studies have shown
that CCL5 plays a critical role in CRC development.22,24,25

Patients with high CCL5 levels have been observed to have
poorer prognosis and higher resistance to anti-cancer drugs
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than patients with low CCL5 levels.22,26 In addition, CCL5
increases the in vitro growth and the migratory responses of
CRC cells from both human and mouse origins.24 More
interestingly, CCL5 has been demonstrated to be an important
factor responsible for immune escape in cancer by increasing
the accumulation of myeloid-derived suppressor cells and
T-regulatory cells during the development of CRC,27,28

indicating that CCL5 is important for mediating regulatory
effects in CRC development through the interaction of stroma
cells and cancer cells. On the other hand, it has been reported
recently that MSCs secret CCL5, which is critical for
maintaining theMSCs identity andmulti-potency.29 In addition,

CCL5/CCR1 axis is pivotal for the communication between
MSCs and their target tissues.30,31 Altogether, these findings
make us to hypothesize that CCL5may play a role inmediating
a synergistic crosstalk between MSCs and cancer cells to
sustain CRC growth and metastasis.
Weundertook thepresent study to determine the role of human

MSCs on CRC development both in vitro and in vivo. Our results
show that tumor necrosis factor (TNF)-α preactivated-hMSCs
secrete high levels of CCL5 and promote CRC progression. The
tumor-promoting effect of MSCs is attributed to the activation of
epithelial–mesenchymal transition (EMT) process, which is
mediated by CCL5/CCR1/β-catenin/Slug pathway.

Figure 1 TNF-α aggravates the promotive effect of hMSCs on colon cancer cell proliferation. (a) Conditioned media from hMSCs promotes the proliferation of CRC cell lines.
HT29, Lovo, Caco2, and IEC-18 cells were cultured in the CM/TCM collected from hMSCs or serum-free media (NC) for 6 days, then cell proliferation was assessed using the
MTT assay. The experimental procedure was repeated for three times, **Po0.01 versus control, ***Po0.001 versus control, #Po0.05 versus hMSCs; (b) Effects of
hMSC-CM/TCM on morphological change of HT29 and Lovo cells after cocultured with untreated hMSCs or TNF-α-treated-hMSCs for 4 days (scale bar, 500 μm)
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Results

TNF-α aggravates the promotive effect of hMSCs on
colon cancer cell proliferation. As tumor-resident MSCs
are often constantly exposed to inflammatory cytokines, we
reasoned that they might acquire distinctive functions on
cancer development compared to normal tissue MSCs. To
test this hypothesis, we first examined the effect of conditional
medium collected from inactivated or TNF-α-activated
hMSCs (conditional media (CM)/TCM) on colon cancer cell
growth. Human colon cancer cell lines (HT29, Lovo, SW1116,
and Caco2) or normal intestinal epithelial cell line IEC-18
were cultured with hMSC-derived CM/TCM or serum-free
media (NC) for consecutive 6 days, and their proliferative
capacity was determined by MTT assay. Our results showed
that while CM significantly promoted cell proliferation in
HT29, Lovo and SW1116, the effect of TCM was much more
pronounced at day 6 after treatment. In contrast, neither CM
nor TCM had any promotive effect on well-differentiated colon
cancer cell line Caco2 or normal intestinal epithelial cell line
IEC-18 (Figure 1a). These results indicate that hMSCs
promote cell growth in lower-differentiated colon cancer cells,
and this effect is more prominent with TNF-α pretreatment.

Preactivated-hMSCs promote metastatic phenotype of
colon cancer cells. In colon cancer, acquisition of a
mesenchymal-like phenotype, that is reminiscent of an
EMT, is associated with pro-metastatic properties including
increased migration, invasion, and cancer stem cell
characteristics.32 To further understand whether hMSCs
contribute to EMT process and colon cancer progression,
we cocultured HT29 or Lovo cells with untreated hMSCs or
TNF-α-pretreated hMSCs via transwell for 4 days, and
determined their morphological and molecular changes
related to EMT. Our results showed that after co-incubation
with hMSCs, both HT29 and Lovo acquired a pronounced
transition from a typical round/oval and clustered morphology
to a more elongated and scattered morphology, which is
indicative of EMT process. Of note, this morphological
change was more evident in preactivated-hMSCs group
(Figure 1b). Next, we examined the expression of key
transcription factors governing EMT process (Zeb1, Snail,
and Slug) and mesenchymal marker Vimentin (Vim) in HT29
cocultured with CM or TCM. Our real-time PCR results
showed that while CM slightly increased the mRNA expres-
sion of EMT markers, TCM dramatically upregulated the
expression levels of key transcription factors, especially Snail

Figure 2 hMSCs promote metastatic phenotype of colon cancer cells. (a) After incubation with CM or TCM, the expression levels of EMT-related genes in HT29 were
evaluated by quantitative PCR. Data are presented as the means±S.D. n= 3. NS, no significance. *Po0.05, ***Po0.001 versus control; (b) Western blot analysis showed that
CM and TCM decreased the expression of E-cadherin, whereas TCM increased the expression of Slug; (c) Invasion ability of HT29 treated with CM or TCM was evaluated by 3D
spheroid invasion assay (scale bar, 500 μm). Invasion ratio= ((area D5− area D0))/(area D0). The experiment was repeated three times, **Po0.01 versus control group;
(d) Cell migration was determined by transwell assay in SW1116. 1 × 104 SW1116 cells were seeded in the upper chamber whereas CM or TCM were administrated in the lower
chamber. The experiment was repeated three times. ***Po0.001 versus control group; (e) wound healing assay was used to determine cell migration. Quantification data was
presented as mean±S.D. from three independent experiments, ***Po0.001 versus control group
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and Slug in HT29 (Figure 2a). Consistently, our western blot
results demonstrated that TCM significantly decreased the
expression of E-cadherin, but increased the expression of
Slug in HT29 (Figure 2b). To further examine the effect of
hMSCs on EMT-associated phenotypes, we proceeded to
evaluate the migratory and invasive abilities of colon cancer
cells treated with CM or TCM. Since HT29 cells showed
limited migratory ability in transwell assay, a 3D spheroid
invasion analysis was applied. While HT29 spheroids
embedded in Matrigel did not develop invasive properties,
TCM treatment dramatically induced HT29 invasion into the
surrounding matrix (Figure 2c). Moreover, a more invasive
colon cancer cell line SW1116 was used for the wound
healing and transwell migration assay. As shown in
Figures 2d and e, while both CM and TCM promoted the
migratory ability of SW1116 in transwell migration assay, only
TCM significantly stimulated migration in would healing
assay. In addition, TCM-induced EMT markers more sig-
nificantly in SW1116 (Supplementary Figure 1). Taken
together, these results indicate that preactivated-hMSCs
promote an EMT phenotype with enhanced metastatic
capability in colon cancer cells.

CCL5 plays an important role in hMSC-mediated colon
cancer progression. Given that only activated-hMSCs
promote colon cancer progression but not inactivated
hMSCs, we focused on TNF-α preactivated-hMSCs in the
following mechanistic study. As CCL5 has been implicated in
the interaction between stromal cells and colon cancer
cells,27 we first compared the expression levels of CCL5 in
the CM or TCM derived from hMSCs. As shown in Figure 3a,
the CCL5 secretion had a 14.7-fold increase in TNF-α-
stimulated hMSCs compared to unstimulated hMSCs as
determined by enzyme-linked immunosorbent assay
(ELISA). To validate the causative role of paracrine CCL5 in
colon cancer progression, we took loss of function approach
by using ccl5 siRNAs. For ccl5 knockdown experiments,
hMSCs were transfected with ccl5 siRNA or control siRNA,
and then treated with TNF-α. We were able to significantly
reduce the mRNA expression and secretion of CCL5 in
untreated and TNF-α pretreated hMSCs (Supplementary
Figures 2a and b). We then collected TCM from either control
siRNA-treated or ccl5siRNA-treated hMSCs and determined
the migratory capacity of SW1116 toward the TCM. Strikingly,
ccl5 siRNA transfection completely abolished the stimulatory
effect of TCM on SW1116 migration (Figure 3b), indicating
that paracrine secretion of CCL5 is essential for the effect of
TCM. To further determine which receptor on colon cancer
cells is responsible for the paracrine effect of CCL5 secreted
by hMSCs, we examined the mRNA expression levels of
ccr1, ccr3, and ccr5 in SW1116. Interestingly, while all three
CCL5 receptors could be detected in SW1116, only ccr1 was
found to be significantly upregulated with TCM treatment,
which is in parallel with CCL5 upregulation (Figure 3c). The
effects of CCR1 on the migration and EMTwere assessed by
using CCR1 specific inhibitor BX471 in SW1116 cells. To do
this, SW1116 was pretreated with BX471 and added in the
upper chamber, whereas TCM or CCL5 were administrated in
the lower chamber. Our results showed that BX471 sig-
nificantly attenuated the migratory capability of SW1116

toward TCM or CCL5 (Figure 3d). In addition, suppression of
CCR1 also alleviated CCL5-stimulated EMT, as supported
by the upregulation of E-cadherin, and down-regulation of
Vimentin, Slug and Snail (Figure 3e). Collectively, these
results indicate that CCL5/CCR1 axis plays an important role
in preactivated-hMSC-mediated colon cancer progression.

CCL5 activates β-catenin/Slug pathway in colon cancer
cells. Till now, the relationship between paracrine effect of
CCL5 and inherent EMT signaling in cancer cells has been
poorly characterized. Given that Slug is the most upregulated
EMT-related transcriptional factor in response to TCM
(Figures 2a and b), we sought to test the hypothesis that
Slug might be involved in CCL5-mediated colon cancer
progression. We first knocked down Slug by siRNA in
SW1116, and then determined the effect of Slug suppression
on cell migration induced by TCM or CCL5. The results
showed that Slug was effectively knocked down in SW1116
cells as supported by the expression of both mRNA and
protein levels of Slug was dramatically downregulated
(Figures 4a and b). Interestingly, knockdown of Slug
significantly alleviated the promoting effect of TCM or CCL5
on SW1116 migration (Figure 4c). To illustrate a direct effect
of CCL5 on Slug expression, we knocked down CCL5
expression in hMSCs by ccl5siRNA and examined the
expression of Slug in SW1116 after TCM stimulation. Our
result showed that ccl5 siRNA markedly decreased the TCM-
induced upregulation of Slug in SW1116 cells (Figure 4d),
suggesting that hMSC-induced upregulation of Slug in colon
cancer cells is attributed to CCL5 secretion.
Wnt/β-catenin pathway has been reported to regulate Slug

transcription,33 and is critical for EMT process and colon
cancer progression. Hence, it is plausible that Wnt/β-catenin
pathway mediates the crosstalk between hMSCs and Slug-
mediated EMT process in colon cancer cells. Interestingly, our
real-time RT-PCR data revealed that exposure of SW1116
cells to either CM/TCM or CCL5 led to a dramatic increase in
the expression of β-catenin (Figure 5a). Similar results were
found in western blot analysis showing that the expression of
nuclear β-catenin was significantly increased in SW1116 in
response to TCM or CCL5 (Figures 5b and c). In addition, our
luciferase assay showed that TCM treatment significantly
activated β-catenin transcriptional activity in SW1116 cells
(Supplementary Figure 3). To further investigate the functional
impact of Wnt/β-catenin pathway on hMSC-mediated colon
cancer progression, SW1116 was treated with DKK1, an
antagonistic inhibitor of the Wnt/β-catenin signaling pathway.
Then, the effects of TCM or CCL5 on cell migration and Slug
expression were assessed in SW1116. Our result showed that
inhibition of Wnt/β-catenin pathway significantly decreased
TCM- or CCL5-mediated migration in SW1116 cells
(Figure 5d). In corroboration with this result, DKK1 also
dramatically abrogated the induction of Slug caused by TCM
andCCL5 (Figures 5e and f). Altogether, these results indicate
that CCL5/β-catenin/Slug pathway mediates the promotive
effect of preactivated-hMSCs on colon cancer progression.

hMSCs promote colon cancer development and EMT
in vivo. Having established that hMSCs promote colon
cancer cell EMT and progression in vitro, we further tested
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Figure 3 CCL5/CCR1 axis mediates hMSC-enhanced metastatic phenotype. (a) The concentration of CCL5 in CM or TCM was determined by ELISA assay from three
independent experiments. ***Po0.001 versus control group; (b) after 24 h of scrambled or ccl5 siRNA treatment, hMSCs were treated with 10 ng/ml TNF-α for 24 h and
collected for TCM. SW1116 cells were plated in the upper chamber and evaluated their migratory ability toward TCM by transwell assay. Quantification was presented as
mean±S.D. from three independent experiments. *Po0.05; ** Po0.01, NS, no significance; (c) real-time PCR analysis of ccr expression in SW1116 cells treated with CM or
TCM for 24 h. Data are presented as the means± S.D. n= 3. *Po0.05; **Po0.01; (d) The effect of CCR1 antagonist BX471 on TCM- or CCL5-induced migration was
determined by transwell assay. 2 μM BX471 was added into SW1116 cells and seeded in the upper chamber, TCM or 20 ng/ml CCL5 were added in the lower chamber.
Quantification was presented as mean± S.D. from three independent experiments.*Po0.05,**Po0.01; (e) 2 μM BX471 was added simultaneously with 20 ng/ml CCL5 into
SW1116, the expression of EMT markers was determined by real-time PCR. Data are presented as the means± S.D., n= 3. *Po0.05, **Po0.01, ***Po0.001
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whether hMSCs promoted colon cancer development in vivo.
Balb/C nude mice were subcutaneously injected with HT29
cells only or HT29 cells with hMSCs to establish a murine
xenograft model of CRC. The primary tumor mass of tumor-
bearing mice was monitored until killing. Our results showed
that mice implanted with HT29 and hMSCs (n=4) exhibited a
significantly increased tumor burden compared with mice
(n=5) implanted with HT29 only (Figure 6a). To understand
the effect of hMSCs on tumor growth, the subcutaneous
tumor sections were stained for PCNA, which is a nuclear
protein associated with proliferation at the experimental
endpoint. As shown in Figure 6b, immunohistochemical
analysis of xenograft tumors revealed that tumors with
co-injection displayed higher frequency of mitotic figures. To
evaluate the role of hMSCs in EMT process in vivo, we
stained the tumor sections with epithelial marker E-cadherin
and mesenchymal marker Vimentin. Our results showed that
the expression of E-cadherin was significantly decreased
whereas the expression of Vimentin was increased in HT29
+hMSCs group (Figure 6c). Furthermore, in line with the
in vitro data, tumors with co-injection exhibited a much

enhanced expression of β-catenin and Slug compared with
the tumors injected with HT29 only (Figure 6c). Of note, the
expression of ccl5 mRNA was also significantly increased in
tumors injected with both HT29 and hMSCs (Figure 6d).
Thus, consistent with the in vitro results, our in vivo data
supports the notion that hMSCs promote CRC EMT and
development.

Discussion

MSCs is one of the major components in the CRC stroma,
which is directly involved in cancer development as demon-
strated in mouse models.6,15,16 However, the exact role of
MSCs in the development of CRC is not clear. In this study, we
show that TNF-α preactivated-hMSCs exert a much stronger
tumor-promoting effect than inactivated hMSCs via CCL5/β-
catenin/Slug pathway in CRC development. Therefore, this
study reveals a novel mechanism through which MSCs
promote colon cancer progression, and emphasizes the
importance of inflammatory cytokines/chemokines in the
crosstalk between MSCs and cancer cells.

Figure 4 CCL5 activates Slug in colon cancer cells. (a) After Scrambled or Slug siRNA treatment, the SW1116 cells were exposed to TCM or 20 ng/ml for 24 h. The
expression of Slug was determined by real-time PCR analysis in SW1116. Data are presented as the means± S.D. n= 3. *Po0.05, ***Po0.001; (b) The expression of Slug
was determined by western blot analysis in SW1116 treated with TCM or 20 ng/ml CCL5 for 24 h. Data are presented as the means±S.D. n= 3. **Po0.01, ***Po0.001.
Representative blot was shown below; (c) After 24 hours of Scrambled or Slug siRNA treatment, SW1116 cells were seeded in the upper chamber and examined their migratory
capability to TCM or CCL5. Quantification was presented as mean±S.D. from three independent experiments. *Po0.05; **Po0.01; (d) After 24 h of Scrambled or ccl5 siRNA
treatment, hMSCs were treated with 10 ng/ml TNF-α for 24 h and collected for TCM. SW1116 cells were treated with TCM for 24 h and examined for Slug expression by real-time
PCR. Data are presented as the means±S.D. n= 3. *Po0.05, ***Po0.001
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It has beenwell established that inflammation plays a critical
role in every stage of tumor progression, and inflammatory
cytokines in the tumor microenvironment are crucial in
modulating the functions of various types of tumor stromal
cells including MSCs.34,35 In fact, as a master regulator of
tumor-associated inflammation, TNF-α plays a major role in
the enhancement of tumor progression by its modulation of
multiple tumor-related cell types.36,37 In the present study, we

treated human BM-MSCs with TNF-α to mimic tumor-
associated MSCs and investigated the influence of TNF-α-
activated MSCs on CRC cell lines. We demonstrated that
TNF-α preactivated hMSCs more significantly increased the
cell growth and metastatic capacity of CRC cells than
untreated hMSCs did, as demonstrated by in vitro MTT,
migration and invasion assays (Figures 1a and 2c–e).
Importantly, only preactivated-hMSCs could activate the key

Figure 5 CCL5 activates β-catenin pathway. (a) The expression of β-catenin was determined by real-time PCR in SW1116 cells treated with CM/TCM or 20 ng/ml CCL5 for
24 hours. *Po0.05, ***Po0.001 versus control group; (b,c) The nuclear expression of β-catenin was determined by western blot in SW1116 cells treated with CM/TCM (b) or
20 ng/ml CCL5 (c) for 24 hours. **Po0.01, ***Po0.001 versus control group. Representative blots were shown in above; (d) The effect of Wnt/β-catenin inhibitor DKK1 on
TCM- or CCL5-induced migration was determined by transwell assay. 2 μM DKK1 was added into SW1116 cells and seeded in the upper chamber, TCM or 20 ng/ml CCL5 were
added in the lower chamber. Quantification was presented as mean±S.D. from three independent experiments. *Po0.05, ***Po0.001; (e,f) 2 μM DKK1 was added
simultaneously with 20 ng/ml CCL5 or TCM into SW1116, the expression of Slug was determined by real-time PCR (e) or western blot (f). Data are presented as the means±
S.D., n= 3. *Po0.05, **Po0.01, ***Po0.001. Representative blot was shown in below f
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EMT transcription factors, but not untreated hMSCs
(Figures 2a and b). In line with this result, co-incubation with
TNF-α-pretreated hMSCs facilitated colon cancer cells to lose

their epithelial characteristics and gain mesenchymal proper-
ties (Figure 1b). This shift is important since EMT is an integral
component of CRC progression which confers motility and
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migration to cancer cells toward an invasive and metastatic
phenotype.38,39 Emerging evidence has indicated that the
tumor microenvironment is a potent factor that may facilitate
and even initiate EMT.40 On the other hand, Ren G et al.,11

showed that when BM-MSCs were treated with various
inflammatory cytokines IFNγ, TNFα, IL-1, IL-6, and GM-CSF,
only TNF-α-treated BM-MSCs displayed a profile of cytokine/
chemokine production resembling that of tumor-associated
MSCs. In support of these previous findings, the present study
clearly shows that TNF-α-treated BM-MSCs promote colon
cancer cell EMT and progression. It is plausible that during
tumorigenesis, BM-MSCs are substantially recruited to the
tumor microenvironment and are continuously exposed to the
local inflammatory factors, such as TNF-α. This inflammatory
milieu illustrates the BM-MSCs to fulfill distinctive features,
such as the overexpression of cytokines/chemokines, which
eventually activate EMT program in colon cancer cells.
The role of CCL5 and its receptors in cancer development

has been recognized recently.23 CCL5/CCR axis has been
reported to be over-activated in various cancers and involved
in multiple steps of cancer progression, including proliferation,
migration, invasion, angiogenesis, and metastatic coloniza-
tion. Moreover, elevated CCL5 levels have been reported to be
a biomarker for cancer and for predicting the prognosis and the
development of therapeutic strategies.41 Regardless of these
observations, the exact functions of CCL5/CCR axis in tumor
biology are still unclear. We demonstrated in this study that
TNF-α-pretreated hMSCs secreted high levels of CCL5
(Figure 3a), through which communicated with CRC cells
and enhanced cancer EMT and progression. Ccl5 antisense
treatment in hMSCs completely abolished the stimulatory
effect of TCM on SW1116 migration (Figure 3b), supporting
the notion that CCL5 secreted by primed-hMSCs is essential
for the paracrine effect of hMSCs on colon cancer progres-
sion. While CCL5 can bind to CCR1, CCR3, and CCR5, we
revealed that the paracrine CCL5-induced cell migration in
colon cancer cells was mainly mediated by CCR1, given that
CCR1 antagonist completely abolished the increased migra-
tion in colon cancer cells in response to CCL5 (Figure 3d). In
addition, CCR1 antagonist dramatically ameliorated CCL5-
induced upregulation of EMT markers (Figure 3e). Taken
together, CCL5/CCR1 axis appears to be crucial in mediating
a crosstalk between MSCs and cancer cells to induce colon
cancer cell EMTand metastasis. Of note, CCL5 also concurs
with the interaction between breast cancer cells and MSCs. It
was reported that breast cancer cells stimulated
CCL5 secretion by MSCs, and CCL5 in turn induced tumor
cell migration and promotes invasion and metastasis.42 While
human and mouse MSCs routinely express low levels of
selected chemokines and receptors,43,44 we show that
TNF-α-pretreated hMSCs is sufficient to drive the paracrine

CCL5-mediated activation of EMT program and metastasis in
cancer cells.
One of the major findings in this study is that we have

identified a novel signaling pathway mediating the paracrine
effect of CCL5 on colon cancer cell progression. Our results
show that TNF-α-pretreated hMSCs promote colon cancer
EMTandmetastasis via β-catenin/Slug pathway. Slug belongs
to the Snail family and is a well-known EMT-inducing
transcription factor/E-cadherin transcriptional repressor.45

Increasing evidence has revealed that Slug is elevated in a
number of cancers and that its expression is correlated with
invasiveness, metastasis, and poor prognosis. In colon
cancer, Slug has been implicated in cancer cell EMTand tumor
progression.46,47 In this study, SW1116 cells treated with TCM
or CCL5 dramatically increased Slug expression (Figures 4a
and b). Selective inhibition of Slug by siRNA significantly
reversed the effects of TCM or CCL5 on cell migration
(Figure 4c). Furthermore, ccl5 siRNA treatment in hMSCs
markedly alleviated the induction of Slug expression by TCM
(Figure 4d). These results indicate that phenotypic transition
of colon cancer cells by TNF-α-pretreated hMSCs involves
CCL5-mediated upregulation of Slug. Canonical Wnt-
mediated β-catenin activation induces various target genes
that regulate cancer cell growth and metastasis. This pathway
is particularly important in the intestine where mutations in
genes involved in β-catenin degradation occur in over 90% of
sporadic CRC.48 Thus, it is plausible that environmental
signals play an important role in the malignant progression of
CRC by activating Wnt/β-catenin pathway. For the first time,
we demonstrated that CCL5 directly induced nuclear
accumulation and activation of β-catenin in colon cancer cells
(Figures 5a, b and Supplementary Figure 3). If the tumor-
promoting effects of hMSCs are largely due to the
CCL5/β-catenin pathway, the effects observed with TCM
treatment should be reversed by Wnt/β-catenin suppression.
To test this, we treated SW1116 cells with Wnt/β-catenin
antagonist DKK1, and found that DKK1 dramatically reversed
TCM-or CCL5-induced cell migration and upregulation of Slug
expression in SW1116 cells (Figures 5c–e), indicating that
upregulation of Wnt/β-catenin pathway is the major mechan-
ism leading to the observed increased malignancies induced
by hMSCs.
The tumor-promoting effects of hMSCs were demonstrated

in vivo in a mouse model of CRC, as co-injection of HT29 with
hMSCs markedly increased tumor burden (Figures 6a and b).
Immunohistochemical staining revealed the manifestation of
EMT in the co-injection group, as the expression of E-cadherin
was significantly decreased whereas the expression of
Vimentin was increased in the mice co-injected with hMSCs
(Figure 6c). Moreover, consistent with the in vitro results, the
ccl5/β-catenin/Slug pathway was over-activated in the tumors

Figure 6 hMSCs promote CRC development and EMT in vivo BALB/C mice were subcutaneously injected with 1 × 107 HT29 cells mixed with 1x107 hMSCs (n= 4) or alone
(n= 5). (a) The tumors were excised after 2 weeks, and tumor average size and tumor volume in xenograft model were measured. **Po0.01, versus PBS group; (b) H&E
staining and immunohistochemical staining for PCNA (proliferating cell nuclear antigen) of xenograft tumors from either HT29 alone or co-injection group; quantification data are
from at least five high fields. *Po0.05. Scale bar, 50 μm and 100 μm; (c) immunohistochemical staining for EMT markers (E-cadherin and Vimentin), β-catenin and Slug. Scale
bar, 100 μm; (d). The expression of CCL5 is increased in nude mice injected with HT29 and hMSCs. Tumor tissues were collected from mice injected with HT29 alone or HT29
with hMSCs. RNA was extracted and determined for expression of CCL5 by real-time PCR. Data are presented as the means± S.D. n= 3 *Po0.05 versus control
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co-injected with hMSCs (Figures 6c and d). Collectively, these
results suggest that CCL5/CCR1/β-catenin/Slug pathway is
responsible for the tumor-promoting effects of TNF-α-acti-
vated hMSCs on the development of colon cancer.
Furthermore, our findings provide important insights into the
role of MSCs in promoting cancer progression, as well
as the importance of inflammation in this effect. Strategies
that target MSCs-cancer cells crosstalk should provide
a novel avenue of cancer therapy. On the other hand, the
modulation of MSCs by resident inflammation may also
implicate in other chronic diseases, such as inflammatory
bowel disease.

Materials and Methods
Cell lines. Human bone marrow-derived MSCs were purchased from ATCC
(PCS-500-012; Manassas, VA, USA), and cultured in α-modified Eagle’s medium
(MEM) supplemented with 10% FBS and 1% PS in an atmosphere of 5% CO2 at
37 °C. hMSCs were defined by chondrogenic, osteogenic, and adipogenic
differentiation in vitro according to standard conditions reported previously.49

Human colon cancer cell lines HT29, SW1116, Caco2, Lovo and normal rat
intestinal epithelial cell line IEC-18 were purchased from ATCC or Shanghai
Institutes for Biological Sciences (Shanghai, China) and cultured in MEM or
RMPI-1640 supplemented with 10% fetal bovine serum, 1% penicillin, 1%
streptomycin at 37 °C in 5% CO2. All cell culture medium and antibiotics were
obtained from Life Technologies (Carlsbad, CA, USA).

Collection of conditional media and coculture. hMSCs (p4-p10) were
seeded in 75 cm2 flask and cultured to 80% confluence. After washed with PBS for
three times, serum-free medium with or without 10 ng/ml TNF-α was added. After
24 h, medium without TNF-α pretreatment was collected, filtered, and stored at
− 80 °C as CM. Alternatively, cells with TNF-α pretreatment were washed with PBS
for three times, and cultured for another 24 h in fresh serum-free medium. After
24 h, medium was collected, filtered, and stored at − 80 °C as TCM. For coculture
experiment, 0.4 μm Transwell insert (Corning, New York, USA) was applied. MSCs
cultured in serum-free media with or without TNF-α pretreatment were seeded in
the upper chamber, while tumor cells were seeded in the lower chamber. As the
control for CM or TCM treatment, serum-free α-MEM was used for culturing colon
cancer cell lines.

siRNA knockdown. Ccl5 or Slug knockdown was achieved by transfecting
hMSCs or SW11116 with a final concentration of 10 pmol ccl5 or Slug siRNAs.
Scrambled control siRNA was used as control (Ambion, Life Technologies) using
5 μl Lipofectamine 2000 (Life Technologies). Three days after transfection, cells
were harvested for western blot or real-time PCR analysis or functional assays.

Proliferation assay. MTT assay was applied to assess cell proliferation
activity. Colon cancer cell lines were seeded into 96-well plates and allowed to
adhere overnight. After addition of CM or TCM for different time points, MTT reagent
of 20 μl (5 mg/ml, Sigma-Aldrich, St. Louis, MO, USA) was added into each well to
terminate the experiments. OD value at 570/630 nm was recorded in each well
using a microliter plate reader.

Transwell migration assay. Transwell assays were performed as previously
described.50 In brief, cells were trypsinized and seeded into the upper chamber of
transwell (6.5 mm diameter, 8 μm pore size, Corning). 2.5 × 104 colon cancer cells
were seeded in 200 μl serum-free media in each well. In the lower chamber, serum
containing media, CM or growth factors were added as indicated in different
experiments. For negative control, only basal media were added into lower
chamber. Following 24 h incubation, cells remaining on the upper surface of the
filter were removed with a cotton swab. Cells that had migrated to the lower surface
were fixed with 4% PFA for 10 min and stained with 0.5% crystal violet for another
10 min. The average numbers of migrated cells were determined by counting the
cells in three or more random fields under microscope. In some experiment, OD
value at 570 nm was recorded in each well using a microliter plate reader. To
determine the role of CCL5/CCR1/β-catenin signaling in CRC progression, SW1116
were seeded into the upper chambers of transwell together with CCL5 receptor

antagonists BX471 (Sigma, sml0020) or Wnt inhibitor DKK1 (R&D, 5439-DK) and
evaluated for migratory ability.

Cell scratch assay. To test cell migration ability, colon cancer cells were
seeded in six-well plates. When the cells reached ~ 90–100% confluence as a
monolayer, 200 μl pipette tips were used to scratch on the surface of cell culture
dish to generate a gap. Then, cells were washed and re-incubated in serum-free
media with or without CM/TCM. Cell migration was monitored under live image
microscope every 1 h. Migrated areas were calculated with Photoshop software.

Spheroid invasion assay. Spheroid invasion was measured by placing
HT29 spheroids in six-well plates as described in previous study.51 In brief, cells
were trypsinized and diluted into 2.5 × 106 cells/ml. Ten microliter drops cell
suspension was deposited onto the lid of culture dish. Then, the lid was inverted
onto the PBS-filled bottom chamber and incubated at 37 °C. After cultured for
4–7 days, formed spheroids were picked out for further analysis. We typically
analyze images using ImageJ software.

Enzyme-linked Immunosorbent Assay. Conditioned medium (CM or
TCM) from MSC culture was collected by centrifuging at 10 000 × g for 10 min to
remove cell debris. The level of CCL5 was measured using the ELISA kit obtained
from R&D Systems (Minneapolis, MN, USA) according to the manufacturer’s
instructions.

Dual-luciferase Report assay. Sub-confluent SW1116 cells were seeded
in 24-well plate and transfected with 0.5 μg β-catenin/TCF4 luciferase reporter
(pTop-luc; Millipore, Billerica, MA, USA) per well with Lipofectamine 2000
(Invitrogen, Life Technologies). After incubation for 12 h, cells were treated with
TCM or 0.1% DMSO. 72 h later, cells were lysed and subjected to luciferase assays
using Dual-Luciferase Reporter Assay System (Promega, cat# E1910) and the LB
96 V MicroLumat Plus (EG&G Berthold Technologies).

Quantitative real-time RT-PCR (qRT-PCR). Total RNA was isolated
using TRIZOL Reagent (Invitrogen, Life Technologies), 1–5 μg total RNA were used
for reverse transcription, first-strand complementary DNA synthesis was performed
using oligd(T)18 and M-MLV enzyme (Promega, Madison, WI, USA). The levels of
mRNA were measured by real-time PCR (Applied Biosystems, 7500, USA) using
SYBR Green Master Mix (Applied Biosystems). Total amount of mRNA was
normalized to endogenous gapdh mRNA. The sequences of the primers were
shown in Supplementary Table 1.

Immuohistochemical Staining. Tumor tissues were fixed in 4% parafor-
maldehyde in PBS at 4 °C for 24 h and then embedded in paraffin. Tissues were cut
into 4μm sections and de-paraffined three times in xylene and rehydrated in
gradient alcohols. Endogenous peroxidase activity was quenched with 3% H2O2 in
methanol for 10 min, and sections were washed in PBS. The de-paraffinized
sections were heated by microwave and boiled for 20 min in 10 mM citrate buffer
(pH 6.0) for antigen retrieval. Sections were blocked with horst serum for 30 min and
then incubated with respective primary antibodies at 4 °C overnight and
horseradishperoxidase-conjugated secondary antibodies (rabbit, mouse, or goat,
Gene Tech) at room temperature for 30 min. Sections were developed with
diaminobenzidine and counterstained with hematoxylin & eosin using standard
protocols. Antibodies used include PCNA (PC10, CST-2586, 1:1000), β-Catenin
(D10A8, CST-8480, 1:100), Slug (C19G7, CST-9585, 1:400), E-Cadherin (24E10,
CST-3195 1:200), and Vimentin (D21H3, CST-5741, 1:100).

Western blot analysis. Protein (20–40 μg) was separated on a 10%
SDS–PAGE gel and transferred onto a nitrocellulose membrane. After blocking with
5% milk for 1 h, the membranes were incubated overnight at 4 °C with primary
antibody, then washed three times with Tris Buffered Saline-Tween 20 followed by
another hour of incubation with the corresponding secondary antibody at room
temperature. Finally, the blot was subjected to chemiluminescent detection with
ECLTM Prime Detection Reagent (Amersham GE Care).

Xenograft mice model. Tumorigenicity was investigated by tumor xenograft
experiments. The athymic female nude mice of 6–8 weeks old were purchased from
Shanghai Laboratory Animal Center (Shanghai, China) and maintained in filter-
topped units. All animal experiments were conducted in accordance with the
guidelines and regulations on animal experimentation of the Chinese University of
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Hong Kong and approved by the Animal Ethnics Committee of the University.
1 × 107 HT29 cells and 1 × 107 hMSCs were suspended in 100 μl PBS and injected
subcutaneously. 1 × 107 HT29 cells with PBS were injected in the contralateral side
as control. Tumor formation in nude mice was monitored over about 2 week period
and tumor volumes were measured.

Statistical analysis. Values were expressed as mean±S.E.M. and analyzed
with the Student’s t-test using GraphPad prism 5 software (GraphPad Software, San
Diego, CA, USA). Differences with P values o0.05 were considered statistically
significant.
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