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Propranolol is the first-line treatment for infants suffering from infantile hemangioma.
Recently, some authors raised the question of potential neurologic side effects of
propranolol due to its lipophilic nature and thus its ability to passively cross the blood-
brain barrier (BBB) and accumulate into the brain. Hydrophilic beta-blockers, such as
atenolol and nadolol, where therefore introduced in clinical practice. In addition to their
classical mode of action in the brain, circulating factors may modulate the release of
reactive oxygen/nitrogen species (ROS/RNS) from endothelial cells that compose the
BBB without entering the brain. Due to their high capacity to diffuse across membranes,
ROS/RNS can reach neurons and modify their activity. The aim of this study was to
investigate other mechanisms of actions in which these molecules may display a central
effect without actually crossing the BBB. We first performed an oral treatment in mice to
measure the accumulation of propranolol, atenolol and nadolol in different brain regions
in vivo. We then evaluated the ability of these molecules to induce the release of nitric
oxide (NO) and hydrogen peroxide (H2O2) ex vivo in the hypothalamus. As expected,
propranolol is able to cross the BBB and is found in brain tissue in higher amounts than
atenolol and nadolol. However, all of these beta-blockers are able to induce the secretion
of signaling molecules (i.e., NO and/or H2O2) in the hypothalamus, independently of their
ability to cross the BBB, deciphering a new potential deleterious impact of hydrophilic
beta-blockers in the brain.
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INTRODUCTION

Since its discovery in 1960 by J. W. Black, the non-selective beta-blocker propranolol has been
widely used in the treatment of hypertension, tachycardia and other cardiac disorders. More
recently, propranolol has been introduced as first-line therapy for infantile hemangiomas, the most
common soft-tissue tumors of childhood (Leaute-Labreze et al., 2015).

As propranolol is a lipophilic molecule, its use in infants raised the question of its
ability to passively cross the blood-brain barrier (BBB) and directly activate adrenoreceptors
on neuronal cells, and to subsequently impact the neurologic development of the child.
Even if many reports have documented that propranolol treatment during infancy does
not alter further brain development when compared to child and adolescents from
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the general population examined several years after cessation of
treatment (Moyakine et al., 2016, 2017; Gonzalez-Llorente et al.,
2017; Mahon et al., 2018), other beta-blockers with hydrophilic
properties have been here or there introduced in the treatment of
infantile hemangiomas. The most commonly used molecules are
nadolol and atenolol, which display hydrophilic properties and
are therefore suggested to be unable to cross the BBB (Neil-Dwyer
et al., 1981; Dahlof and Dimenas, 1990) and thus potentially
decrease the risk to induce deleterious central effects (de Graaf
et al., 2013; Pope et al., 2013; Tasani et al., 2017; Alexopoulos
et al., 2018). However, these assumptions are based on biophysical
characteristics of these molecules, and data regarding long-term
safety are clearly lacking.

Alternative mechanisms in which some molecules are able
to induce signaling pathways in the brain without crossing
the blood-brain barrier have been described. One mechanism,
that requires diffusible factors between two partners, implies
central neurons and endothelial cells located in vascular wall.
Indeed, brain endothelial cells have the capacity to produce
second messengers such as nitric oxide (NO) to control
the release of neurotransmitters (Knauf et al., 2001). This
is especially the case in the mediobasal hypothalamus that
includes the median eminence, a circumventricular organ where
the BBB is physiologically absent (Rodriguez et al., 2005,
2010; Horsburgh and Massoud, 2013). For example, circulating
hormones like estrogen (Prevot et al., 1999) or apelin (Duparc
et al., 2011) induce endothelial NO release, with consequences
on physiological functions, such as ovulation and glucose
homeostasis, respectively. Hydrogen peroxide (H2O2) is another
way to induce a signaling pathway in this brain region. As
previously described for NO signaling, high dose of apelin can
modify the release of hypothalamic H2O2 that could participate
to an over-activation of the sympathetic system leading to the
development of a type 2 diabetic state (Drougard et al., 2014).
Thus, some molecules can modulate the activity of neuronal cells
despite the absence of passage through the BBB and of direct
activation of specific receptors on these cells.

The aim of the present study was to investigate
whether propranolol, atenolol and nadolol induce the
secretion of signaling molecules (i.e., NO and H2O2) in the
hypothalamus, independently of their ability to directly stimulate
adrenoreceptors on neuronal cells.

METHODS

Animals and Mass Spectrometry
Analyses
All procedures are performed in accordance with the Directive
2010/63/UE recommendations and with French Veterinary
Authorities agreement. Ex vivo design and procedures were
approved by Ethical Committee (under protocol CEEA-122
2014-53). Eight weeks-old C57BL/6J male mice (n = 10/group,
mean body weight = 25 g) were orally treated with either
propranolol (3 mg/kg/day), atenolol (2 mg/kg/day) or nadolol
(1 mg/kg/day) during 7 days, once a day for vehicle, nadolol and
atenolol groups (at 8.00 am) and twice a day for propranolol

group (at 8.00 am and 6.00 pm). Dose and administration
scheme were selected to mimic therapeutic use of these molecules
in infants suffering from infantile hemangioma. Mice were
euthanized 1 h after the last gavage. Cortex, hypothalamus,
cerebellum and brainstem were collected and immediately frozen
in liquid nitrogen.

The concentrations of propranolol, atenolol and nadolol were
determined after solid phase extraction followed by LC/ESI-
MS/MS detection. Tissues were diluted in 9 ml of ultrapure water
for 1 g of brain and homogenized by sonication over crushed
ice. Atenolol-D7 and propranolol-D7 were used as internal
standards. Dynamic concentration range was comprised between
1 and 8000 ng/ml for each compound. The chromatographic
peaks for tested compound and internal standards were identified
according to their retention times and MRM ion transitions and
integrated by analytical software (MassLynx version 4.1, Waters).

Nitric Oxide and Hydrogen Peroxyde
ex vivo Amperometric Measurements
Calibration of the electrochemical sensor was performed as
previously published (Duparc et al., 2011; Drougard et al.,
2014; Fournel et al., 2017; Abot et al., 2018). After dissection,
hypothalamus was washed in Krebs-Ringer bicarbonate/glucose
buffer (pH 7.4) in an atmosphere of 95%O2–5%CO2 and then
immersed in Eppendorf tubes containing the same medium.
Spontaneous NO or H2O2 release was measured at 37◦C for
10 min by using either a NO-specific (ISO-NOPF, World
Precision Instruments) or a H2O2-specific (ISO-HPO, World
Precision Instruments) amperometric probe implanted in the
hypothalamus. Ten micro liter saline solution (vehicle) was
injected directly in the survival medium. After 10 min of
record, 10 µl beta-blocker solution at increasing concentration
was injected (final concentrations: 50 and 250 ng/ml). These
concentrations were chosen to mimic plasma concentration
of these molecules after an oral therapeutic dose in humans
(i.e., approximately 50 ng/ml for propranolol and nadolol, and
250 ng/ml for atenolol). The concentration of NO or H2O2
gas in solution was measured in real-time (TBR1025, World
Precision Instruments). DataTrax2 software (World Precision
Instruments) performed data acquisition. Data are expressed as
delta variation of NO or H2O2 release from basal.

Statistical Analyses
All statistical analyses were performed using GraphPad Prism
5.0 for Windows (GraphPad Software Inc., San Diego, CA,
United States). Two-way ANOVA and Bonferroni’s post hoc
tests when used when appropriate. All values are presented as
mean ± SEM. Statistical significance was set at p < 0.05.

RESULTS

Propranolol, Atenolol, and Nadolol
Concentration in the Brain
We have first evaluated the capacity of the three beta-blockers
to reach brain tissues (Figure 1). As previously described,
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FIGURE 1 | Accumulation of propranolol, atenolol, and nadolol in different
brain regions after a chronic oral treatment in mice. Concentration of
propranolol, atenolol, and nadolol measured in the cortex, hypothalamus,
brainstem, and cerebellum after 1 week of daily oral treatment in mice;
n = 10/group; ∗∗∗p < 0,001 vs. atenolol and nadolol.

propranolol is found at a high concentration in the brain
after an oral treatment. In the same experimental conditions,
the concentrations of nadolol and atenolol are lower in
all brain regions, including a neurohemal structure such as
the hypothalamus. This last result suggests that hydrophilic
molecules cannot massively penetrate into the brain whether or
not the BBB is leaky.

Hypothalamic NO Release in Response
to Beta-Blockers
At the dose of 50 ng/ml, propranolol rapidly increased NO
release from hypothalamus from 5 to 10 min (Figure 2A).
Interestingly, atenolol was, at the same dose, also able to
increase NO secretion from 6 to 10 min (Figure 2B), while
delta variation of NO release in response to nadolol treatment
was significantly induced after 9 min (Figure 2C). Taken
together, these results show that, at a low dose, all three
tested beta-blockers are able to induce NO release from
hypothalamus.

When hypothalamus was treated with propranolol at a higher
dose (i.e., 250 ng/ml), no significant variation in NO release
was observed (Figure 2D). Surprisingly, atenolol displayed an
opposite effect at the high dose compared to low dose treatment
by significantly decreasing NO release after 6 min of treatment
(Figure 2E). As observed for propranolol, nadolol treatment at
this same dose did not induce any significant variation of NO
release by the hypothalamus (Figure 2F).

These data indicate that lipophilic propranolol and
hydrophilic atenolol and nadolol are all able to induce NO
release from the hypothalamus at a low dose. Contrasting results
observed at a higher dose suggest that alternative mechanisms
may be activated to counterbalance the effects of massive NO
release in the brain.

Hypothalamic H2O2 Release in Response
to Beta-Blockers
Treatment with a low dose of propranolol (i.e., 50 ng/ml) did
not induce any significant variation of H2O2 release from the
hypothalamus (Figure 2G). Similar results have been observed
upon atenolol treatment (Figure 2H). However, in response to

nadolol at a low dose, delta variation of H2O2 release from basal
significantly increased from 5 min (Figure 2I).

At a higher dose of 250 ng/ml, no significant changes of
H2O2 production were observed in response to propranolol
treatment (Figure 2J), while both atenolol (Figure 2K) and
nadolol (Figure 2L) treatment rapidly increased H2O2 release.

Altogether, these results clearly show that, while propranolol
treatment does not induce H2O2 release from the hypothalamic
explants at any dose, a high dose of atenolol or nadolol rapidly
induce H2O2 release from the hypothalamus. The amplitude
of H2O2 production is particularly high in response to nadolol
treatment, either at a low or high dose.

DISCUSSION

We have shown that, despite the inability of hydrophilic beta-
blockers to cross the BBB and thus to accumulate into the brain,
all three beta-blockers tested in this study, either lipophilic or
hydrophilic, were able to modulate the release of NO and/or
H2O2 in the hypothalamus. As these small molecules can
passively diffuse in brain tissue, they could have an impact on
neuronal activity of central neurons. This could explain some of
the potential deleterious effects of these molecules in the brain
such as sleep disorders (de Graaf et al., 2013; Pope et al., 2013;
Labreze et al., 2015; Leaute-Labreze et al., 2015; Randhawa et al.,
2015; Ji et al., 2016) and in periphery such as hypoglycemia
(Holland et al., 2010; Poterucha et al., 2015).

Despite its ability to accumulate into the brain, propranolol
failed to increase the release of hypothalamic H2O2 that is
usually associated with oxidative stress (Fisher-Wellman and
Neufer, 2012; Angelova and Abramov, 2018). Little is known in
the literature to explain the mode of action of propranolol to
avoid H2O2 release. It has been shown that, in the skin of frog,
propranolol is able to decrease water permeability induced by
arginine vasotocin (AVT) (Ogushi et al., 2010; Saitoh et al., 2014).
In this model, aquaporins are translocated at the membrane in
response to AVT. We can speculate that propranolol, by acting on
aquaporins translocation, could decrease the negative impact of
H2O2, which is known to use aquaporins to cross cell membrane
(Tamma et al., 2018).

The effect of atenolol on hypothalamic NO/H2O2 release
is also unexpected. At low dose, atenolol induces NO release
from hypothalamic explants, but at higher dose of 250 ng/ml,
corresponding to plasma concentration measured after an oral
administration at the therapeutic dose, it decreases NO release
and increases H2O2 secretion. Even if this dual effect seems
surprising, our group has previously demonstrated the existence
of such physiological phenomenon in another physiological
context. Indeed, apelin, an adipokine released by the adipose
tissue, stimulates the release of hypothalamic NO at a low dose
(Duparc et al., 2011), but inhibits NO release and stimulates
H2O2 release at a high dose (Duparc et al., 2011; Drougard
et al., 2014). In our experimental model, this dual effect can be
explained by pharmacological and physiological hypotheses. For
instance, the decrease of NO release could be due to its interaction
with H2O2 to generate hydroxyl radical (Nappi and Vass, 1998).
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FIGURE 2 | Hypothalamic NO and H2O2 release in response to propranolol, atenolol, and nadolol treatment. Ex vivo NO (A–F) and H2O2 (G–L) release from
hypothalamus in response to propranolol (A,D,G,J), atenolol (B,E,H,K), or nadolol (C,F,I,L) at either low dose 50 ng/mL (A–C,G–I) or high dose 250 ng/mL
(D–F,J–L); n = 10/group; ∗p < 0,05, ∗∗p < 0,01, and ∗∗∗p < 0,001 vs. vehicle.

In addition, we observed that nadolol induces both NO
and H2O2 secretion either at a low or high dose. The low
dose reproduces plasma concentration measured after an oral
therapeutic dose of nadolol. This result demonstrates that the
ability to cross the BBB is not mandatory to induce signaling
in the brain, and thus further activation/inactivation of specific
neuronal populations.

Finally, the magnitude of NO/H2O2 release in response
to the different treatments also needs to be considered.
Indeed, while a release in the range of pM to nM induces

physiological effects such as signal transduction and
neurotransmission (either beneficial or detrimental depending
on targeted neurons), a release in the range of nM to
µM induces deleterious effects such as oxidative stress
and DNA damage leading to cellular dysfunction (Bredt,
1999; Mustafa et al., 2009). In this study we show that, at
a concentration mimicking plasma concentration of the
three beta-blockers after a therapeutic dose, propranolol
induced a release of 80 nM of NO and no change in H2O2
production. In contrast, atenolol decreased NO release but
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increased H2O2 production in the range of µM. Nadolol was
responsible of the release of 50 nM of NO and, more importantly,
induced a 5 µM release of H2O2, which is probably leading
to oxidative stress and cellular toxicity. Altogether, these data
indicate that, even if they do not cross the BBB and do not
accumulate in brain tissues, both atenolol and nadolol are able
to induce central toxicity.

Of course, our study is limited by the use of murine ex vivo
models which do not reflect the exact physiological conditions
observed in vivo. A similar approach (i.e., NO/H2O2 real-time
measurements) could be performed in vivo in different brain
regions in mice in response to an oral load of beta-blockers
(Fournel et al., 2017).

To conclude, our study brings new elements to decipher the
mode of action (and the potential related side effects) of beta-
blockers in the brain. The mode of communication through

endothelial cells and production of NO/H2O2 that does not
require the entry of a beta-blocker molecule into the brain has
to be considered when using such molecule.
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