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Abstract: The role of platelet TLR4 in transfusion reactions remains unclear. This study analyzed
platelet TLR4 and certain damage-associated molecular patterns (DAMPs) and evaluated how ABO
compatibility affected TLR4 expression after a simulated ex vivo transfusion. A blood bank was
the source of donor red blood cells. Blood from patients undergoing cardiac surgery was processed
to generate a washed platelet suspension to which the donor blood was added in concentrations 1,
5, and 10% (v/v). Blood-mixing experiments were performed on four groups: a 0.9% saline control
group (n = 31); a matched-blood-type mixing group (group M, n = 20); an uncross-matched ABO-
specific mixing group (group S, n = 20); and an ABO-incompatible blood mixing group (group I,
n = 20). TLR4 expression in the platelets was determined after blood mixing. We evaluated levels of
TLR4-binding DAMPs (HMGB1, S100A8, S100A9, and SAA), lipopolysaccharide-binding protein,
and endpoint proteins in the TLR4 signaling pathway. In the M, S, and I groups, 1, 5, and 10%
blood mixtures significantly increased TLR4 expression (all p < 0.001) in a concentration-dependent
manner. Groups M, S, and I were not discovered to have significantly differing TLR4 expression
(p = 0.148). HMGB1, S100A8, and S100A9 levels were elevated in response to blood mixing, but
SAA, lipopolysaccharide-binding protein, TNF-α, IL-1β, and IL-6 levels were not. Blood mixing
may elicit innate immune responses by upregulating platelet TLR4 and DAMPs unassociated with
ABO compatibility, suggesting that innate immunity through TLR4-mediated signaling may induce
transfusion reactions.

Keywords: toll-like receptor 4; innate immunity; platelet; blood mixing; transfusion reaction

1. Introduction

Blood transfusions are critical interventions, particularly for patients undergoing
hemorrhagic shock. However, despite significant advancements in the safety of blood
transfusions, such procedures are still associated with major risks. During blood trans-
fusions, the mechanisms of immune reactions, specifically innate immune reactions, are
unclear. Related reactions can result from transfusion with cross-matched blood, uncross-
matched type-specific blood, or ABO-incompatible blood [1]. Immune reactions to blood
transfusions involve complex interactions among various soluble factors and immune cells,
including platelets [1].

Platelets have a major role in thrombosis and hemostasis and are known to have
a mediating effect on the body’s innate immune response [2]. They upregulate Toll-like
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receptor 4 (TLR4), serve as sentinels in the immune system, and are essential for stimulating
adaptive immune responses [2–7]. We hypothesized that blood transfusion could induce
platelet-mediated innate immune reactions caused by the interaction between TLR4 and
damage-associated molecular patterns (DAMPs) [8]. Thus, we aim to evaluate the levels
of TLR4, lipopolysaccharide (LPS)-binding protein, and certain DAMPs, such as S100
calcium-binding protein A8 (calgranulin A, S100A8, and MRP8), high mobility group box 1
(HMGB1), serum amyloid A (SAA), and S100 calcium-binding protein A9 (S100A9, MRP14,
and calgranulin B), in a simulated cross-reaction ex vivo. Furthermore, proinflammatory
cytokines downstream of TLR4 signaling, such as proinflammatory cytokines (IL-6, TNF-α,
and IL-1β), were evaluated [8]. This study might be valuable since it is the leading study to
evaluate the relationship between transfusion and innate immunity through TLR4 bind
with DAMPs then test signal transduction.

2. Material and Methods
2.1. Reagents and Flow Cytometry

The antibodies employed were anti-TLR4-PE antibody (BD Biosciences, Franklin
Lakes, NJ, USA), a monoclonal antibody targeting TLR4 expressed on the platelet cell
surface; and anti-CD41a-FITC (BD Biosciences), which is a platelet-specific monoclonal
antibody that, without needing to be activated, recognizes the platelet GPIIb/IIIa complex.
Nonspecific binding was investigated using IgG1 κ-FITC and IgG1 κ-PE antibodies (BD
Biosciences). Platelets were stimulated using thrombin (Sigma, St. Louis, MO, USA). In our
laboratory, we prepared the pH 7.4 platelet wash buffer (20 mM HEPES, 145 mM NaCl, and
9 mM Na2EDTA) and pH 7.4 HEPES-buffered Tyrode’s solution (10 mM HEPES, 1.61 mM
KCl, 0.42 mM Na2HPO4, 11.9 mM NaHCO3, 136.89 mM NaCl, 1.05 mM MgCl2, and
5.6 mM glucose).

2.2. Blood Sampling

Approval for this research was granted by the Tri-Service General Hospital Insti-
tutional Review Board (TSGHIRB 1-102-05-014, TSGHIRB 1-107-05-015), and before en-
rollment, all participants provided written informed consent. Rh-negative patients were
excluded from this study. Red blood cells (unwashed) with a 55–60% hematocrit result
were obtained from our hospital blood bank and stored at 2–4 ◦C. We obtained blood
samples from an arterial catheter before anesthesia induction in individuals scheduled to
undergo cardiac surgery. Each sample was treated with an anticoagulant, which consisted
of a 1:9 volume of 3.8% sodium citrate solution. Blood transfusions were simulated ex vivo
through blood mixing. Patients were divided into four groups in terms of blood mixing
reactions: a 0.9% saline control group, a matched-blood-type mixing group (group M), an
uncross-matched ABO-specific mixing group (group S), and an ABO-incompatible mixing
group (group I).

The primary outcome measures were TLR4 expression differences among three groups
(I, S, and M) and the influence of blood mixing on platelet TLR4 expression. The secondary
outcome measures were the influence of blood mixing on the levels of LPS-binding protein
and DAMPs, including HMGB1, SAA, S100A8, and S100A9. Furthermore, the levels of
molecules downstream of TLR4 signaling were evaluated in each of the three groups (I, S,
and M) [8].

2.3. Flow Cytometry Analysis of TLR4 Expression

Whole blood underwent centrifugation at 37 ◦C for 10 min at 200× g. We collected the
upper phase (plasma) carefully, and we disposed of the interphase (buffy coat chiefly com-
prising leukocytes and some platelets) and lower phase (red cells). Subsequently, the upper
phase was subjected to centrifugation (10 min at 2000× g), and buffer was employed to
gently resuspend the resultant pellet for washing platelets. For preparing washed platelets,
we subjected the suspension to centrifugation (10 min at 2000× g) and resuspended the
platelets in HEPES-buffered Tyrode’s solution. Subsequently, the suspension was altered
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so that the final number of platelets was 150,000/µL to 450,000/µL. Thereafter, the washed
platelets without or with 0.9% saline added at 1, 5, or 10% (v/v) were used as controls.
For blood mixing reactions, donor red blood cells were immediately mixed with the washed
platelets at 1, 5, or 10% (v/v) and incubated at 37 ◦C for 5 min.

2.4. Quantification of TLR4 Expression in Washed Platelets

We investigated platelet TLR4 expression in mixed samples in the presence of throm-
bin (final concentration: 0.2 U/mL) by incubating the samples at an ambient temperature
of 23–26 ◦C for 5 min. Thrombin is generated during tissue injury, such as that sustained
during cardiac surgery [9]. It is a key component of the blood coagulation cascade and a
potent platelet stimulator. Thrombin is commonly used in sample preparation protocols
for platelet analysis. To quantify the TLR4 expression, sample staining was conducted
using a saturating concentration of anti-CD41a-FITC and anti-TLR4-PE monoclonal an-
tibodies, and the samples were incubated for 20 min in a dark environment at 22–26 ◦C.
Subsequently, before they underwent flow cytometry analysis, the samples were fixed using
paraformaldehyde (1%) for 30 min at a temperature of 4 ◦C. PE-labeled IgG1κ and FITC-
labeled IgG1κ functioned as background controls. We performed identification of each
platelet by using side scattering (granularity features) and anti-CD41a-FITC immunoflu-
orescence on a logarithmic-scaled dot plot. This article presents the results as the mean
fluorescence intensity (MFI) of TLR4-PE expression, and for each sample, we gathered
reads from 10,000 platelets.

2.5. ELISA Analysis

We assessed the levels of LPS-binding protein and of certain DAMPs that may interact
with TLR4 after blood mixing. Donor red blood cells were immediately added to whole
blood from recipients at 1, 5, or 10% (v/v) and incubated for 30 min at 37 ◦C. The mixed
blood then underwent centrifugation (10 min, 37 ◦C, 100× g). We carefully gathered the
upper phase (plasma), but we disposed of the interphase (buffy coat chiefly comprising
leukocytes and some platelets) and lower phase (red cells). The plasma was analyzed using
ELISA kits (in accordance with manufacturer instructions) to determine the concentrations
of HMGB1 (Aviva Systems Biology, San Diego, CA, USA), S100A8 (Circulex, MBL, Nagano,
Japan), S100A9 (Circulex, MBL), SAA (Abnova Co., Taipei, Taiwan), and LPS-binding
protein (Aviva Systems Biology).

2.6. Multiplex Immunoassays

The amounts of proinflammatory cytokines IL-6, TNF-α, and IL-1β in the plasma
samples were determined using the ProcartaPlex Multiplex Immunoassay (Affymetrix
eBioscience, Thermo Fisher Scientific, Waltham, MA, USA) by following the manufac-
turer’s instructions.

2.7. Statistical Analysis

One-way ANOVA was performed for a comparison of the four groups’ demographic
variables (control, I, M, and S groups). Furthermore, ANOVA was performed to compare
the levels of TLR4, LPS-binding protein, DAMPs (e.g., HMGB1, S100A8, S100A9, and SAA),
and TLR4-regulated cytokines (e.g., IL-6, TNF-α, and IL-1β) in each of three groups (M, S,
and I), with Scheffé’s post hoc test then performed. Two-way ANOVA was employed to
identify differences between three groups (I, M, and S) over various concentrations. All tests
were two-sided, and statistical significance was indicated by p < 0.05. SPSS (version 20;
SPSS, Inc., Chicago, IL, USA) was used for all analyses.

3. Results

Demographic characteristics did not differ significantly among the four groups (Table 1).
Regarding platelet TLR4 expression, the flow cytometric analysis findings are displayed
in Supplemental Figure S1 as fluorescence dot plots showing TLR4 expression in isotype
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controls (Supplemental Figure S1A ), unstimulated platelets (Supplemental Figure S1B), and
platelets stimulated using thrombin not mixed with (Supplemental Figure S1C) and mixed
with 10% (Supplemental Figure S1D) donor blood. The histograms for these latter three are
overlaid in Supplemental Figure S1E.

Table 1. Demographic characteristics of recipients in 0.9% saline control and groups M, S, and I.

Groups 0.9% Saline
Control M S I p Value of

Four Groups

Number of cases 31 20 20 20

Age (years) 60.4 ± 12.0 61.2 ± 10.7 60.1 ± 11.7 65.7 ± 13.7 0.424

Height (cm) 165.0 ± 7.9 165.1 ± 8.2 165.1 ± 7.3 165.8 ± 8.2 0.991

Weight (kg) 67.7 ± 11.9 69.1 ± 13.3 66.1 ± 10.8 65.3 ± 9.2 0.724

Body mass index
(kg/m2) 24.9 ± 4.2 25.2 ± 4.1 24.2 ± 3.5 23.8 ± 3.4 0.634

Women/Men 12/19 4/16 6/14 7/13 0.497
Data are presented as the mean ± SD. M, matched blood type mixture; group S, uncross-matched ABO group-
specific mixture; I, ABO incompatibility blood mixture.

3.1. Effect of TLR4 Expression after the Addition of 0.9% Saline

We examined the control groups to reveal whether TLR4 expression levels could be
determined in blood-mixing experiments by using a washed platelet mixed with 0.9%
saline (1, 5, and 10% (v/v)). The TLR4 expression levels did not differ significantly following
stimulation with thrombin or the 0.9% saline (1, 5, and 10% (v/v); p = 0.892, Figure 1).
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Figure 1. Effect of TLR4 expression after 0.9% saline was mixed with washed platelets (group
M, n = 10; group S, n = 10; and group I, n = 11). WP, washed platelets; vol, volume; MFI, mean
fluorescence intensity. Data are presented as mean ± SD.

3.2. Effect of TLR4 Expression after the Addition of Donor Red Blood Cells

The 1, 5, and 10% (v/v) blood mixtures protocols induced a significant increase in
TLR4 expression levels in groups I, M, and S (all p < 0.001; Figure 2), and the increase was
concentration dependent. Compared with the control level, TLR4 expression was increased
by 147, 288, and 381% after 1, 5, and 10% blood mixing, respectively (n = 60, p < 0.001;
Figure 2). In group M, TLR4 expression increased by 143, 308, and 399% after 1, 5, and 10%
mixing, respectively, compared with the control level (n = 20, p < 0.001; Figure 2), whereas
the increases in group S were 157, 291, and 380% (n = 20, p < 0.001; Figure 2) and in group
I were 142, 265, and 362%, respectively (n = 20, p < 0.001; Figure 2). However, the three
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experimental groups’ TLR4 expression levels were not significantly different (p = 0.148;
Figure 2).
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Figure 2. Effect of TLR4 expression on groups M, S, and I after the mixing of donor red blood cells
and washed platelets. MFI, mean fluorescence intensity; RBCs, red blood cells; vol, volume; WP,
washed platelets. Data are expressed as mean ± SD. ** p < 0.01, *** p < 0.001.

3.3. Effect of DAMPs and LPS-Binding Protein in Plasma

HMGB1, S100A8, and S100A9 levels were significantly increased after blood mixing
(Figure 3). Compared with the control level, the total HMGB1 levels were significantly
increased by 122, 200, and 272% following 1, 5, and 10% mixing, respectively (p < 0.001;
Figure 3). Total S100A8 levels were 104, 114, and 123% higher (p < 0.001; Figure 3) and total
S100A9 levels 115, 138, and 150% higher, respectively (p = 0.012; Figure 3). However, total
SAA levels were not significantly increased in any of the three experimental groups (I, M,
and S: p = 0.988, 0.588, and 0.999, respectively; Figure 3).
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Figure 3. Effect of DAMPs (HMGB1, S100A8, S100A9, and SAA) in the plasma prepared from mixing
donor red blood cells and recipient whole blood on total blood mixing and groups M, S, and I.
HMGB1, high mobility group box-1; SAA, serum amyloid A; RBCs, red blood cells; vol, volume; WP,
washed platelets. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Effect of Proinflammatory Cytokines Downstream of the TLR4 Signaling Pathway in Plasma

Levels of total LPS-binding protein involved in TLR4 signaling (p = 0.526) and endpoint
proteins, namely total TNF-α, IL-1β, and IL-6 (p = 0.998, 0.806, and 0.87, respectively), were
not elevated after blood mixing (Figure 4).
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4. Discussion

This study revealed that after ex vivo blood mixing, TLR4 expression was upregulated
in platelets in groups M, S, and I. Besides its important role in thrombosis and hemosta-
sis, platelet TLR4 makes a major contribution to increasing immune and inflammatory
responses [2]. This may also be true for platelet TLR4-related immune and inflamma-
tory responses after a transfusion [2]. Platelet TLR4 expression influences innate immu-
nity [5,7,8,10,11], leading to an adaptive immune response [3–7] and inflammation [12],
as noted in transfusion reactions. Thus, platelet TLR4 may be a pathophysiological link
between innate immunity and transfusion reactions.
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TLR4 recognizes DAMPs [13], which are associated with host cell components released
after cell damage [5,14,15]. We revealed that levels of certain DAMPs, including HMGB1,
S100A8, and S100A9, were elevated after blood mixing, and this finding was corroborated
by other reports [16–20] on blood transfusions (Figure 3). For example, first, a transfusion
of red blood cells increases vulnerability to lung inflammation through HMGB1 release and
induces lung endothelial cell necroptosis [19]. Second, stored human red blood cells contain
soluble HMGB1, the levels of which are elevated during storage [16]. Third, salvaged
blood analyses identified sustained high levels of certain DAMPs, including S100A8 and
S100A9. Transfusion reactions may result from increased levels of TLR4 and certain DAMPs,
including HMGB1, S100A8, and S100A9, that bind to TLR4 (Figure 3). The upregulation of
TLR4 and certain DAMPs suggests that innate immunity conferred through TLR4-mediated
signaling can induce a transfusion reaction.

Upregulated TLR4 expression and elevated levels of some DAMPs (HMGB1, S100A8,
and S100A9) were observed in response to blood mixing. However, this action did not
involve SAA and LPS-binding protein and did not lead to downstream proinflammatory
cytokine (e.g., IL-6, TNF-α, and IL-1β) release after blood mixing, as shown in Figure 4 [8].
These findings may be explained as follows: First, LPS-binding proteins, which are soluble,
are synthesized by hepatocytes, present in blood [21], and may not be synthesized in
ex vivo studies or detected through ELISA. Second, negative regulators target several
TLR4 signaling levels, and various molecules, such as SIGIRR and RP105, impede the
initiation of this signaling cascade [8]. Other factors target molecules further downstream
of TLR4 signaling through diverse processes [8]. Third, these results may have been
obtained because of the short duration of blood mixing (30 min), during which time
proinflammatory cytokines were not expressed. Therefore, the interaction between platelet
TLR4 and certain DAMPs may not have triggered the proinflammatory cytokine release
signaling pathway. Fourth, ex vivo blood mixing could not provide sufficient context in
which to determine the full range of platelet responses to transfusion in vivo. Although our
results suggest that platelet TLR4 functions as a pathophysiological link between innate
immunity and transfusion, why the levels of proinflammatory cytokines downstream of
the TLR4 signaling pathway were not increased remains an unanswered question.

Groups M, S, and I did not differ significantly in terms of TLR4 level. The major differ-
ence between them was the responses of antibodies recognizing transfusion antigens [22].
In most blood transfusions for humans, red blood cell membranes containing components
of the ABO system are crucial features. These antibodies are implicated in the severest
transfusion reactions. However, platelets do not have ABO systems [22]. Additionally, sur-
face antigens on red blood cells include Duffy, Kell, Kidd, MNS, and P systems, which
are not present on platelets [22]. We revealed no intergroup differences in platelet TLR4
expression, implying that reactions between antigens and antibodies had no role in TLR4
expression induction.

TLR4 ligands recognize DAMPs and pathogen-associated molecular patterns
(PAMPs) [5,14,15,23], such as circulating LPS (endotoxin). PAMPs are associated with
microbial pathogens [24]. PAMP signaling is unlikely to participate proinflammatory
cytokine release signaling pathway for the following two reasons: First, during blood
mixing, PAMPs such as circulating LPS from microbial pathogens were not considered
because no patients had a pathogenic infection. Second, after blood mixing, the levels of
LPS-binding protein, which binds to PAMPs but not DAMPs, were not increased, as shown
in Figure 4 [14,15]. Therefore, blood mixing may initiate platelet TLR4 expression, which
could trigger an innate immune system response that is likely independent of PAMPs.

The rationale for selecting patients undergoing cardiac surgery in this study was
as follows: First, blood transfusion is routinely required during cardiac surgery, and
preparation for such surgery routinely requires cross-match testing of blood at least 1 day
before the surgery. Therefore, cross-matched red blood cells were available, and they were
sent to the operation room from the blood bank before anesthesia, enabling us to obtain
donor cells. The cells were also used for heart–lung machine priming or stored until needed
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for transfusion. Second, patients undergoing cardiac surgery require arterial catheterization
for aggressive hemodynamic monitoring. The arterial catheterization approach used for
recipient blood sampling before anesthesia and skin incision prevents contamination from
anesthetics and tissue damage. The anesthetics and tissue damage may be a confounding
factor affecting platelet function and activation (Supplemental Figure S2). Red blood cells
from groups S and I were also obtained from the blood bank for other major surgeries at
the study hospital.

Our blood mixing procedure is clinically relevant. We mixed, ex vivo, the donor
and recipient blood; this method is similar to the cross-matching approach. Before a
blood transfusion, cross-matching is applied to reveal the compatibility of a donor’s blood
with that of the recipient. The participants of this study had a mean body weight of
66.8 kg; therefore, their total blood volume was around 4620 mL (approximately 7% of body
weight). Our 1–10% blood mixtures thus corresponded to volumes of around 46.8–467.6 mL,
respectively, which are commonly employed when administering transfusions.

This study had two limitations. First, the baseline levels of HMGB1, S100A8, S100A9,
SAA, LPS-binding protein, IL-6, TNF-α, and IL-1β were undetected in the donor red blood
cells. However, these cells were added to the recipient whole blood at various volume
concentrations (1, 5, or 10% (v/v)). The donor red blood cells had 55–60% hematocrit
and these percentages were standardized. Therefore, they contained less plasma than the
recipient whole blood did. Therefore, the plasma volume of our donor red blood cells
was substantially smaller than that of our recipient whole blood. Second, we primarily
used an ex vivo model because we included a group I (ABO-incompatible blood mixing)
protocol, which could be harmful to patients if conducted in vivo. Therefore, in vivo
host innate immune responses were not evaluated. Platelets have direct involvement in
immune defense, and they assist with and regulate various activities of innate immune cells.
Furthermore, platelets modulate immune cell function by attaching themselves to immune
cells or releasing nucleosides, platelet-derived microvesicles, mitochondrial DNA, growth
factors, lipid mediators, chemokines, and cytokines. Platelets and their associated releasates
exert diverse effects on migration, microbicidal activity, differentiation, phagocytosis,
clearance of pathogens, cytokine responses of innate immune cells, and extracellular trap
formation [24].

5. Conclusions

Platelet TLR4 has actions at the crossroads of innate immune responses and thrombosis.
We revealed that allogeneic blood mixing may modulate innate immune responses by
upregulating platelet TLR4 and DAMPs, including HMGB1, S100A8, and S100A9, which
may bind to TLR4, suggesting that platelet TLR4 links between transfusion and innate
immunity in blood-mixing reactions. Given the numerous platelets that circulate in the
blood, potential interactions between platelet TLR4 and DAMPs and an innate immune
response is induced, leading to transfusion reactions, are possible. However, because
TLR4 downstream proinflammatory cytokines were undetected, it remains unclear whether
TLR4 signaling leads to a transfusion reaction under in vivo conditions. TLR4 expression
upregulation was not associated with ABO compatibility. These findings indicate that
TLR4 contributes to transfusion reactions that are unrelated to antibodies against red
blood cell antigens. Whether platelet TLR4 is a novel therapeutic and prophylactic target in
transfusion reactions or a new target for modulating innate immunity requires further study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines10010029/s1. Figure S1: Flow cytometry for platelet TLR4 expression, Figure S2:
Key steps of general anesthesia and cardiac surgery performed.
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