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Abstract 

Background:  Metabolic reprograming have been associated with cancer occurrence and progression within the 
tumor immune microenvironment. However, the prognostic potential of metabolism-related genes in colorectal 
cancer (CRC) has not been comprehensively studied. Here, we investigated metabolic transcript-related CRC subtypes 
and relevant immune landscapes, and developed a metabolic risk score (MRS) for survival prediction.

Methods:  Metabolism-related genes were collected from the Molecular Signatures Database and metabolic sub-
types were identified using an unsupervised clustering algorithm based on the expression profiles of survival-related 
metabolic genes in GSE39582. The ssGSEA and ESTIMATE methods were applied to estimate the immune infiltration 
among subtypes. The MRS model was developed using LASSO Cox regression in the GSE39582 dataset and indepen-
dently validated in the TCGA CRC and GSE17537 datasets.

Results:  We identified two metabolism-related subtypes (cluster-A and cluster-B) of CRC based on the expression 
profiles of 539 survival-related metabolic genes with distinct immune profiles and notably different prognoses. The 
cluster-B subtype had a shorter OS and RFS than the cluster-A subtype. Eighteen metabolism-related genes that were 
mostly involved in lipid metabolism pathways were used to build the MRS in GSE39582. Patients with higher MRS had 
worse prognosis than those with lower MRS (HR 3.45, P < 0.001). The prognostic role of MRS was validated in the TCGA 
CRC (HR 2.12, P = 0.00017) and GSE17537 datasets (HR 2.67, P = 0.039). Time-dependent receiver operating charac-
teristic curve and stratified analyses revealed the robust predictive ability of the MRS in each dataset. Multivariate Cox 
regression analysis indicted that the MRS could predict OS independent of TNM stage and age.
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Background
Colorectal cancer (CRC) is one of the most common 
malignancies, ranking as the second leading cause of can-
cer-related death worldwide [1]. In the past few decades, 
the occurrence and mortality of CRC have decreased 
steadily due to advanced screening programs comprising 
fecal occult blood testing, direct colonic visualization, and 
noninvasive imaging techniques [1, 2]. However, the 5-year 
survival rate of CRC remains dismal [1, 3]. Currently, the 
tumor–node–metastasis (TNM) system is widely used for 
risk assessment and therapy decision making in clinical 
settings [4]. However, the relapse and death risks may vary 
vastly even in patients with the same clinicopathological 
features due to the high level of molecular heterogene-
ity [4, 5]. Hence, novel prognostic factors to identify CRC 
patients’ risk more accurately are urgently needed.

Cellular metabolism is an essential biochemical pro-
cess used to meet the basic need for cell survival and 
proliferation. Emerging studies suggest that metabolic 
reprogramming promotes tumor growth and progres-
sion [6–8]. On the one hand, cancer cells can outcompete 
adjacent normal cells for nutrients, including glucose, 
amino acids, and glutamine, to maintain high rates of cell 
division [9]. On the other hand, cancer cells can produce 
immunosuppressive metabolites through cross-talk with 
stromal and immune cells within the tumor microenvi-
ronment, thereby inducing immune dysfunction and 
tumor progression [6, 10, 11]. In addition to findings on 
metabolomics, which is defined as the comprehensive 
analysis of all small molecule metabolites in a biological 
system [12], recently, increasing number of studies have 
recently focused on the relationship between metabolism 
and survival at the transcriptional level. For example, 
both Peng et al. and Sinkala et al. conducted pan-cancer 
research to characterize tumor subtypes based on the 
expression patterns of metabolic pathway-related genes 
and showed distinct survival among the subtypes [13, 
14]. Moreover, metabolic gene set-based prognostic sig-
natures have been proposed in head and neck carcinoma 
[15, 16] and neuroblastoma [17]. However, studies focus-
ing on subtype characterization and risk signatures based 
on metabolism-related genes in CRC remain limited.

In this work, we used the GSE39582 dataset to classify 
CRC patients based on metabolism-related gene expres-
sion profiles. Then, we compared the prognosis and 
immune landscape and elucidated the underlying pathway 

enrichment between subtypes. Furthermore, we attempted 
to establish a metabolic risk score (MRS) in the GSE39582 
dataset and validated it in the GSE17537 and The Cancer 
Genome Atlas (TCGA) CRC datasets. The associations of 
clinical immune features with MRS were further explored. 
Consequently, a prognostic nomogram integrating the 
MRS and clinical risk factors was developed and showed 
decent predictive performance in estimating mortality risk.

Methods
Data sources and preprocessing
We downloaded the raw CEL files of the GSE39582 [18] 
and GSE17537 datasets from Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) and 
normalized using the robust multiarray averaging method 
by the “affy” R package [19]. Moreover, we retrieved 
the RNA sequencing (RNA-seq) profiles and clinical 
information of CRC patients from the TCGA database 
(https://​portal.​gdc.​cancer.​gov/) and transformed the raw 
count data to transcripts per kilobase million (TPM) 
values to make the samples more comparable [20]. To 
obtain reliable conclusions from the downstream analy-
sis, we excluded samples with a follow-up time less than 
3 months in GSE39582 and TCGA datasets, and eventu-
ally included 1142 patients in the study, of which 540, 548, 
and 54 patients were from the GSE39582, TCGA CRC 
and GSE17537 datasets, respectively (Additional file  1: 
Table  S1; Additional file  2: Table  S2; Additional file  3: 
Table  S3). The TNM stages for GSE39582 and TCGA 
datasets were redefined according to the America Joint 
Committee on Cancer (AJCC) 8th classification system 
and the following criteria: first, samples with any uncer-
tain pathological T, N, and M stages were classified as 
samples with unknown stages; second, samples that 
showed clear T, N, and M stages separately but lacked an 
available summarized stage were reclassified.

Identification of metabolism‑related subtypes
A comprehensive list of 2923 metabolism-related genes 
involved in 117 metabolic pathways were retrieved from 
the Molecular Signatures Database (MSigDB) and were 
used to screen out survival-related metabolic genes with 
log-rank P-value < 0.05. Further, the expression profiles of 
539 survival-related metabolic genes were employed to 
performed k-means unsupervised clustering by the “Con-
sensusClusterPlus” package with 1000 repetitions [21, 22].

Conclusions:  Our study provides novel insight into metabolic heterogeneity and its relationship with immune land-
scape in CRC. The MRS was identified as a robust prognostic marker and may facilitate individualized therapy for CRC 
patients.

Keywords:  Colorectal cancer, Metabolic risk signature, Nomogram, Metabolism-related subtypes
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Estimation of immune infiltration and immune‑related 
pathway activity
To quantify the immune infiltration for each sample, sin-
gle sample gene set enrichment analysis (ssGSEA) was 
applied via the “GSVA” package based on 28 immune 
cell gene sets and 17 immune-related pathways that 
retrieved from previous study [23, 24] (Additional file 4: 
Table S4; Additional file 5: Table S5). Additionally, ESTI-
MATE algorithm was used to compute the stromal score, 
immune score, ESTIMATE score, and tumor purity for 
each tumor sample [25].

Differentially expressed gene (DEG) and pathway 
enrichment analyses
The gene expression divergence between subtypes was 
explored using the “limma” R package. The genes with 
fold change > 2 and Benjamini–Hochberg-adjusted 
P < 0.05 were considered DEGs. We also conducted Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene 
Ontology (GO) enrichment analyses using the “cluster-
Profiler” package to elucidate underlying subtype-related 
functional pathways. Moreover, the C2 gene set (“c2.
cp.kegg. v7.1. symbols”) was used to perform gene set 
enrichment analysis (GSEA) between subtypes through 
Java GSEA software with random sample permutations 
of 1000 and the results were visualized by the “enrich-
plot” R package.

Construction and validation of the MRS
To construct the MRS, we first applied univariate Cox 
regression analysis to detect the survival-related genes 
out of 2923 metabolism-related genes with log-rank 
P < 0.01. Then, the survival-related metabolic genes were 
further narrowed down by the least absolute shrinkage 
and selection operator (LASSO) penalty method, with 
optimal parameter λ tuned by ten-fold cross-valida-
tion. The candidate genes were divided into high or low 
expression groups based on the optimal cutoff values cal-
culated by the “survminer” package, and their prognos-
tic values were confirmed by survival analyses. Then, the 
MRS was calculated for each patient using the following 
formula:

where expression value represents the normalized value 
of the selected genes that were normalized by log 2 and 
z-score transformations. The coefficients of the selected 
genes, their involved metabolic pathways, and the details 
of the formula are presented in Additional file 7: Table S7. 
We divided the patients in each dataset into high- and 
low-MRS groups based on the cohort-specific median 
value and compared the difference in survival rates via 

MRS =

∑

LASSO coefficient
(

gene
)

∗ expression value
(

gene
)

the Kaplan–Meier survival curve. A time-dependent 
receiver operating characteristic (ROC) curve was drawn 
to evaluate the sensitivity and specificity of the MRS in 
each dataset.

Correlations of the MRS with clinical characteristics 
and immune infiltration
The differences in the MRS in term of various clinical 
parameters were compared via the Mann–Whitney U test 
for two groups or the Kruskal–Wallis test for more than 
two groups. We also estimated the differences in the infil-
tration levels of 28 immune cells between the high- and 
low-MRS groups via the same method. The associations of 
the MRS with key immune cell types such as activated CD4 
T cells, activated CD8 T cells, myeloid-derived suppressor 
cells (MDSCs), immature dendritic cells, and T follicular 
helper cells were further confirmed by the Spearman cor-
relation test.

Establishment and validation of a prognostic nomogram
Univariate and multivariate Cox regression analyses were 
applied to evaluate the independent prognostic value of 
the MRS. Then, a prognostic nomogram was constructed 
by integrating the MRS and the clinical factors identified 
by multivariate regression analysis. Calibration curves for 
3-year and 5-year survival were generated to evaluate the 
deviation between the nomogram and the ideal model. 
ROC curves were generated and the areas under the curves 
(AUCs) were computed to assess the predictive capac-
ity of the nomogram integrating age, TNM stage, and the 
established MRS. The prognostic value of the nomogram 
was also compared with that of the MRS as a continuous 
variable by the concordance index (C-index) and presented 
by the restricted mean survival (RMS) curve [26]. RMS 
represents the life expectancy at 10  years (120  months) 
of patients with different risk scores. The RMS time ratio 
between the low- and high-risk groups was computed for 
the nomogram and MRS separately [27]. A higher RMS 
time ratio represents a larger prognostic difference. A deci-
sion-curve analysis (DCA) plot was used to measure the 
standardized net benefit of the nomogram.

Statistical analysis
All statistical analyses were performed by R software 
(version 3.62). The primary endpoint analyzed in this 
study was overall survival (OS), which defined as the 
interval between the date of diagnosis and the date of 
death, and the secondary endpoint was relapse-free sur-
vival (RFS), which was defined as the interval between 
the date of surgery and the date of the first relapse. The 
individualized consensus molecular subtype (CMS) 
for each sample was assessed by the “CMScaller” pack-
age [28] with a default false discovery rate (FDR) of 0.05 



Page 4 of 15Lin et al. J Transl Med          (2021) 19:279 

(Additional file 8: Figure S1). ROC curves were generated 
with the “survivalROC” package. C-indexes were calcu-
lated with the “survcomp” package and compared with 
“compareC” package [26]. The RMS curve and RMS time 
ratio were estimated with the “survival” and “survRM2” 
packages [27]. The nomogram was developed with the 
“rms” package. All statistical tests were two-sided, and 
a P-value < 0.05 was considered significant unless other-
wise specified.

Results
Patient characteristics
We included 1142 patients from the GSE39582, 
GSE17537 and TCGA CRC datasets. Of the 540 patients 
in the GSE39582 dataset, 32 (5.92%), 241(44.63%), 189 
(35.00%), and 56 (10.37%) were in stage I, II, III, and IV 
respectively. Moreover, 233 (43.15%) patients had under-
gone adjuvant chemotherapy and 68 (12.59%) patients 
were diagnosed as dMMR. The proportion of TP53 
mutated, KRAS mutated and BRAF mutated patients 
was 34.7%, 38.15% and 8.33% respectively. The median 
follow-up time was 53 (interquartile range [IQR], 30–81) 
months. Of the 548 patients from the TCGA dataset, 83 
(15.15%), 187 (34.12%), 134 (24.45%), and 72 (13.14%) 
were in stage I, II, III, and IV respectively. Additionally, 
37 (6.75%) patients had received radiotherapy and 70 
(12.77%) were diagnosed as MSI-H. The median follow-
up was 24.18 (IQR, 14.41–36.92) months. Of the patients 
from the GSE17537 dataset, 4 (7.41%), 15 (27.78%), 19 
(35.18%) and 16 (29.63%) were in stage I, II, III, and IV 
respectively. Most patients (46.30%) were diagnosed with 
moderately differentiated carcinoma and the median fol-
low-up was 51.16 (IQR, 32.66–60.03) months. The details 
of the patient’s characteristics were summarized in Addi-
tional file 1: Tables S1; Additional file 2: Table S2; Addi-
tional file 3: Table S3, respectively.

Molecular subtypes based on metabolism‑related genes 
and prognostic differences
We collected 117 metabolism-related pathways compris-
ing 2923 genes from MSigDB. Using an unsupervised 
consensus algorithm, we identified two robust subtypes 
(333 patients in cluster-A and 207 patients in cluster-B) in 
GSE39582 based on 539 metabolism-related genes (log-
rank P-value < 0.05; Additional file 6: Table S6) first deter-
mined by univariable Cox regression analysis (Fig.  1a). 
In addition, we quantified the expression profiles of the 
117 metabolism-related pathways via ssGSEA and found 
that patients in cluster-B were more likely to have C4C6 
subtype and CMS4 subtype (Fig.  1b). Survival analysis 
indicated that cluster-B was associated with worse OS 
than cluster-A (hazard ratio [HR] 2.05, 95% confidence 

interval [CI], 1.53–2.75; P < 0.0001; Fig. 1c). A similar risk 
of RFS was observed in stage II and III patients (HR 1.69, 
95% CI 1.17–2.43; P = 0.0044; Fig. 1d).

Immune profiles of the subtypes
Based on the gene sets of 28 tumor-infiltrating cells and 
17 classical immune-related pathways collected from 
published studies [23, 24], the ssGSEA results showed 
that cluster-B was markedly richer not only in innate 
immune cell infiltration including mast cells, mac-
rophages, and MDSCs, but also, in adaptive immune 
cell infiltration, such as activated B cells, activated CD8 
T cells, activated dendritic cells effector memory CD4 
T cells, and effector memory CD8 T cells than cluster-
A (Fig.  2a). Only activated CD4 T cells and memory 
B cells significantly increased in cluster-A when com-
pared with cluster-B. Intriguingly, cluster-B also showed 
a higher abundance of immune-related pathways than 
cluster-A (Fig.  2a). Additionally, cluster-B was associ-
ated with an evaluated immune score, stromal score, 
EASTIMATE score, and decreased tumor purity while 
cluster-A showed the opposite trends (Fig. 2b–e), which 
confirmed the above findings (Fig. 2a). Given that the T 
cell dysfunction state and immunosuppressive phenotype 
are characterized by high expression levels of immune 
checkpoint-relevant transcripts, such as CTLA-4, 
PDL1 (CD274), HAVCR2 (TIM-3), TNFRSF9 (4-1BB or 
CD137), LAG3, TAGIT and ICOS, and TGF beta encod-
ing genes including TGFB1, TGFB2, and TGFB3 [29, 30], 
we speculated that the worse prognosis of cluster-B was 
driven by immunosuppressive signals. The higher expres-
sion of CTLA-4, CD274, TIGIT, and all TGF beta encod-
ing genes in cluster-B verified our hypothesis (Fig. 2f ).

DEGs and functional annotation of the subtypes
Next, to discover the underlying gene expression differ-
ence between the subtypes, we conducted DEG analy-
sis and identified 178 DEGs, of which 161 genes were 
upregulated and 17 genes were downregulated in clus-
ter-B. The expression levels of the DEGs are displayed in 
Fig. 3a, b. We further conducted a functional analysis of 
the DEGs. KEGG analysis revealed that 161 upregulated 
genes in cluster-B were significantly involved in the focal 
adhesion pathway, ECM–receptor interaction pathway, 
and proteoglycans in cancer pathway (Fig. 3c). GO analy-
sis also indicated their roles in ECM-related processes, 
such as extracellular structure and matrix organization, 
glycosaminoglycan binding, and fibronectin-binding 
(Fig.  3d). We also conducted GSEA for all transcripts 
ranked by the log2 (fold change) between cluster-A and 
cluster-B. Similarly, cluster-B was found to have high 
expression of a gene set related to ECM-related processes 
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and leukocyte transendothelial migration, while cluster-
A was related to cell damage repair programs, such as the 
base excision repair pathway, mismatch repair pathway, 
and nucleotide excision repair pathway (Fig. 3e, f ).

Construction of the MRS in the GSE39582 dataset 
and validation in the TCGA and GSE17537 datasets
To develop a robust risk signature for clinical use, we 
first identified 219 survival-related metabolic genes using 
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Fig. 1  Metabolism-related subtype construction and their prognostic value in the GSE39582 dataset. a Consensus matrix heatmap to cluster 
patients into 2 to 5 clusters, showing the clustering stability after the 1000 times k-means cluster approach. b Heatmap of metabolic pathway 
expression patterns of two clusters. c, d Kaplan–Meier curves of overall survival (c) and relapse-free survival (d) between the two clusters. RFS 
survival analysis was conducted in stage II/III patients. HR hazard ratio, CI confidence interval; P value was measured by the log-rank test

Fig. 2  The different immune profiles between the two molecular subtypes. a Discrepancies of immune cell infiltration and expression of 
immune-related pathways between cluster-A and cluster-B. b–e Distributions of immune score, stromal score, EATIMATE score, and tumor purity 
between cluster-A and cluster-B. The distance of both ends of boxes represents the interquartile range of values and the thick line represents the 
median value. The significance of the Mann–Whitney test is shown by an asterisk (*P < 0.05; **P < 0.01; ***P < 0.001). f Expression variation in gene 
signatures for dysfunctional T cell states and TGF beta-encoding genes between subtypes

(See figure on next page.)
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univariate Cox regression analysis with a rigorous thresh-
old of P < 0.01. Next, we used LASSO penalty regression 
to build the MRS in GSE39582 via the “glmnet” pack-
age (Additional file 10: Figure S3a). We finally identified 
18 genes with nonzero coefficients (Additional file  7: 
Table  S7). Both gene expression heatmaps and survival 
analysis revealed that high expression of LIPG, PSME1, 
METTL2B, DDX52, CS, NHP2, POMT1, OGDHL, 
AMACR, ALOX12B, and ACOX2 was correlated with 
favorable prognosis, whereas high-expressed RPS25, 
CYP2D6, PLA2G4D, INHBB, NPR2, PLCE1, LIPG, and 
ABCD4 was correlated with poor prognosis (Fig.  4a, b 
and Additional file 9: Figure S2; Additional file 11: Figure 
S4a). Then, the patients were scored using the formula 
(detailed in Additional file 7: Table S7) and dichotomized 
into high-MRS and low-MRS groups by the median 
value of the MRS. In the GSE39582 dataset, patients with 
high MRS had shorter OS (HR 3.45, 95% CI 2.49–4.77; 
P < 0.0001; Fig.  4c) than those with low MRS, showing 
that the MRS had a better risk stratification capability 
than the constructed subtype (Fig.  1c). Similar results 
were observed in the TCGA dataset (HR 2.12, 95% CI 
1.42–3.18; P = 0.00017; Fig.  4d) and GSE17537 dataset 
(HR 2.67, 95% CI 1.01–7.03; P = 0.039; Additional file 11: 
Figure S4b). The survival disadvantage of the high-MRS 
group was maintained regardless of TNM stage, treat-
ment with chemotherapy, MMR status or microsatellite 
instability (MSI) status (Additional file 10: Figure S3b–k). 
ROC analysis was used to evaluate the predictive perfor-
mance of the MRS in the training cohort and two exter-
nal cohorts (Fig. 4e, f and Additional file 11: Figure S4c).

Association between the MRS and clinical immune 
characteristics
We further investigated whether there were differences 
in the abundance of tumor-infiltrating cells between the 
high- and low-MRS groups. The low-MRS group was 
characterized by a relatively high infiltration of effector 
cells, such as activated CD4 T cells and activated CD8 
T cells, while the high-MRS group was characterized 
by a relatively high infiltration of immune-suppressed 
cells, such as immature dendritic cells, mast cells, mac-
rophages, MDSCs, regulatory T cells and T follicular 
helper cells (Fig. 5A). Moreover, we confirmed that MRS 
as a continuous variable was negatively correlated with 
activated CD4 T cells and activated CD8 T cells but 
positively correlated with immature dendritic cells, mast 
cells, MDSCs, T follicular helper cells using Spearman 
correlation analysis (all P < 0.05) (Additional file 12: Fig-
ure S5g–l).

We next explored the distribution of the MRS in terms 
of clinical variables. Higher MRS was found in patients in 
cluster-B, and in those with advanced TNM stages, the 

C4C6 subtype, proximal colon cancer, and pMMR status 
(all P values < 0.05, Fig. 5b–i), which have been previously 
confirmed to have a poor prognosis [18, 31, 32]. No sig-
nificant difference in MRS were found for BRAF status, 
KRAS status, TP53 status, sex, CIN status, or CIMP sta-
tus (Additional file 12: Figure S5a–f). The characteristic 
changes of individual patients are presented in Fig. 5j.

Combining the MRS and clinical variables to build 
a nomogram
Univariate and multivariate Cox analyses indicated that 
the MRS could independently predict the OS of CRC 
patients (Table  1). Then, we combined the MRS with 
prognostic clinical characteristics to build a nomogram 
to predict 3-year and 5-year OS (Fig. 6a). The calibration 
plot indicated that the constructed nomogram performed 
well when compared with the ideal model in the train-
ing, validation and entire cohorts (Fig. 6b, and Additional 
file  13: Figure S6a; Additional file  14: Figure S7a; Addi-
tional file 15: Figure S8a). We also observed a remarkable 
enhancement in predictive value for the nomogram com-
pared with the MRS alone (nomogram, C-index: 0.75; 
MRS, C-index: 0.71; P = 0.002; Fig.  6c). Similar results 
were also obtained in the validation cohort and the entire 
cohort (Additional file 13: Figure S6b; Additional file 14: 
Figure S7b; Additional file 15: Figure S8b). ROC analysis 
and DCA also confirmed that the predictive capacity of 
the nomogram outperformed that of age, stage, and the 
MRS alone (Fig. 6e, f and Additional file 13: Figure S6c, d, 
Additional file 14: Figure S7c, d, Additional file 15: Figure 
S8c, d).

Discussion
CRC is a heterogeneous disease, with a 5-year survival 
rate ranging from 90% for patients with localized disease 
to 14% for those with distant disease [1]. Although widely 
implemented in clinical practice, the AJCC stage system 
has been revealed by Martin et al. and his colleagues to 
have insufficient information for predicting prognosis 
individually [4].

Metabolic reprogramming, one of the hallmarks of 
cancer, is closely associated with the growth, inva-
sion, and metastasis of CRC through interactions 
with stromal cells, immune cells, gut microbiota, and 
driver mutations [33]. More importantly, studies sug-
gest that metabolic reprogramming may blunt immune 
responses through T-cell starvation and suppressive 
metabolite secretion [10, 34, 35]. A pan-cancer study 
found that the expression patterns of metabolic path-
way-related genes could reflect the actual metabolic 
activities in patients [14]. Therefore, the exploration 
of metabolism-related subtypes and relevant immune 
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landscapes may reveal metabolic heterogeneity, which 
may help to explain the survival heterogeneity among 
CRC patients. Additionally, the development of a prog-
nostic model based on metabolism-related genes could 
offer novel targets for therapeutic regimens.

Herein, we used a machine learning method to iden-
tify two metabolism-related subtypes (cluster-A and 
cluster-B) with distinct metabolic patterns. Cluster-B 
exhibited overexpression in immune cells and immune 
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relevant pathways, but worse prognosis than cluster-
A. Further analysis revealed that cluster-B also showed 
overexpression of checkpoint genes and TGF beta 
related transcripts, which have been confirmed to have 
immune suppression features [29, 30, 36, 37]. Addition-
ally, we observed a higher stromal score in the cluster-
B group, and emerging evidence suggests that a higher 
stromal population is associated with tumor progression 
by reshaping antitumor immunity and the responsive-
ness to immunotherapy [37, 38]. Cluster-B had a closer 
association with CMS4 subtype, which is characterized 
by stromal invasion and mesenchymal activation. Over-
all, cluster-B exhibited a CMS4-like phenotype, and the 
combination of antimetabolites that target metabolic 
pathways, such as glycosaminoglycan metabolism and 
immunotherapy might potentially reverse the immune 
dysfunction state of patients in this group [34].

Based on the prognostic role of the abovementioned 
metabolism-related genes we discovered, we attempted 
to develop an MRS to estimate the individual mortal-
ity risk of patients. An 18-gene risk signature was con-
structed for prognostic prediction for each patient and 
demonstrated reliable predictive performance in the 
training, validation and entire cohorts. Since the tumor 
microenvironment plays a crucial role in the antitumor 
response [37, 39, 40], we also investigated the abun-
dances of immune cells and stromal cells in the high and 
low MRS groups. As expected, patients in the low MRS 
group had a high infiltration of cytotoxic immune cells 
and relatively low infiltration of immune-suppressed 
cells, which indicated that this group is more likely to 
benefit from immunotherapy than its counterpart. Of 
note, higher MRS was correlated with advanced patho-
logical stage, the C4C6 subtype, pMMR, and proximal 
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colon cancer, and these subgroups have been previously 
found to have undesirable outcomes [18], which fur-
ther supports the prognostic value of the MRS. More 
importantly, multivariate Cox and subgroup analyses 
indicated that the MRS can be used as a supplement to 
clinical risk factors to improve risk prediction. Multiple 
validation methods (i.e., calibration plots, ROC analy-
sis, C-index and decision curve analysis) confirmed 

that the nomogram incorporating that MRS and clini-
cal risk factors had an improved predictive accuracy, 
and may serve as a promising tool in individualized risk 
management.

Most metabolism-related genes included in the MRS 
have been reported to be associated with cancer. Inhibin 
subunit beta B (INHBB), one of the miR-34 targets, was 
found to be related to lymph node metastases and poor 

Table 1  Univariate and multivariate analyses of the GSE39582 dataset

CIMP CpG island methylator phenotype, CIN chromosomal instability, CIT d’identité des tumeurs, MMR mismatch repair, dMMR deficient mismatch repair, pMMR 
proficient mismatch repair, MRS metabolic risk score, NE not entered

Variables Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age (years)

 < 68 Ref. Ref.

 ≥ 68 1.44 (1.06–1.94) 0.02 1.51 (1.09–2.10) 0.01

Adjuvant chemotherapy NE

 No Ref.

 Yes 1.01 (0.75–1.37) 0.95

Sex NE

 Male Ref.

 Female 0.77 (0.57–1.04) 0.09

BRAF status NE

 Wildtype Ref.

 Mutant 1.05 (0.60–1.81) 0.90

KRAS status

 Wildtype Ref. Ref.

 Mutant 1.39 (1.03–1.88) 0.03 1.38 (1.00–1.89) 0.05

TP53 status NE

 Wildtype Ref.

 Mutant 1.18 (0.82–1.68) 0.37

CIMP status NE

 Negative Ref.

 Positive 0.97 (0.63–1.49) 0.90

CIN status NE

 Negative Ref.

 Positive 0.80 (0.54–1.19) 0.26

MMR status

 pMMR Ref. NE

 dMMR 0.79 (0.48–1.30) 0.35

Tumor location NE

 Proximal colon Ref.

 Distal colon 0.91 (0.67–1.23) 0.55

CIT subtype

 C4C6 Ref. Ref.

 Others 0.61 (0.44–0.84) 0.002 0.92 (0.64–1.34) 0.68

TNM stage

 I + II Ref. Ref.

 III + IV 1.98 (1.45–2.70) < 0.001 1.52 (1.10–2.11) 0.01

 MRS 15.89 (9.97–25.33) < 0.001 13.59 (8.12–22.72) < 0.001
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survival in primary CRC [41, 42]. NHP2 ribonucleopro-
tein (NHP2, also termed DKCB2, NHP2P, and NOLA2) 
is a telomere-related gene, and changes in its coding 
sequence may be involved in the pathogenesis of famil-
ial breast cancer [43]. Oxoglutarate dehydrogenase L 
(OGDHL) encodes an oxoglutarate dehydrogenase com-
plex subunit and indirectly participates in the process 
of apoptosis. The inactivation of OGDHL through pro-
moter hypermethylation may result in the downregulated 
expression of the gene in CRC, thereby impairing its 
function of inducing apoptosis [44]. PLA2G4D, a mem-
ber of the phospholipase A2 enzyme family, was defined 
as a recurrently mutated gene that leads to the pathogen-
esis of splenic marginal zone lymphoma [45]. Phospho-
lipase C epsilon 1 (PLCE1), has been found to promote 
angiogenesis and proliferation in esophageal squamous 
cell carcinoma by activating the NF-κB signaling pathway 
and inducing VEGF-C/Bcl-2 expression [46]. PSME1, 
also known as PA28A, has been identified as negatively 
regulated in the Wnt pathway and serves as a preferable 
prognostic marker in CRC [47]. Our results also showed 
similar findings. However, other metabolism-related 
genes included in the MRS have not been associated 
with outcome in cancer, and how they regulate prognosis 
should be explored in vitro and in vivo.

Some limitations must be underscored in the cur-
rent study. First, although we included a total of 1142 
patients from both microarray and RNA-seq platforms, 
which indicates that the conclusion may be highly reli-
able, robust, and immune from platform bias, the MRS 
should be further validated in a prospective study due to 
the retrospective nature of the current study. Moreover, 
our analysis is based on bioinformatic analysis of tumor 
samples collected from public datasets, and additional 
experimental studies and validation of the signatures 
on clinical specimens are needed in further research. 
Last, the mechanisms underlying metabolic regulation 
and CRC prognosis of several metabolism-related genes 
included in the MRS needed to be explored.

Conclusions
In summary, we identified two metabolism-related 
subtypes of CRC, and further evaluated the difference 
in immune networks and signaling pathways under-
lying the subtypes, which provides more insights 
into the relationship between tumor metabolism and 
immunity and more evidence for the combination of 
anti-metabolites and immunotherapy to enhance anti-
tumor immunity. Additionally, the MRS comprising 18 
metabolism-related genes was proposed and demon-
strated to have remarkable predictive value. The prom-
ising prognostic accuracy of the model may facilitate 

individualized prognosis management and personal-
ized therapeutic intervention. Combining clinical char-
acteristics and the risk signature further improved the 
predictive performance in CRC.
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