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ABSTRACT We report an improved de novo draft genome sequence of the human-
pathogenic strain Nocardia terpenica IFM 0706T. The resequencing unveiled that the
genome size is larger than anticipated, reducing significantly the number of contigs
and building a basis for comparison with the closely related strain N. terpenica IFM
0406.

Strain IFM 0706T (�JCM13033T�DSM44935T�NBRC100888T) was isolated in the
1990s from a nocardiosis patient and was originally identified as a Nocardia

brasiliensis strain. Together with the strain N. brasiliensis IFM 0406 (1), it was recognized
as a new species and reclassified as Nocardia terpenica, with IFM 0706 representing the
corresponding type strain of this new species (2). Recently, IFM 0706T was shown to
produce the antibiotic nocavionin (3).

Within the course of our genome-driven investigations of Nocardia strains (4–6), we
noted that a genome sequence of IFM 0706T was available under its synonymous
designation N. terpenica NBRC 100888T (GenBank accession number BAGI00000000.1).
However, an annotation was missing, and the genome is highly fragmented. In addi-
tion, in comparison with closely related strains (4, 7), we hypothesized that the genome
size of 8.63 Mbp might be too small. In order to close the significant genomic gaps and
to increase the genomic resolution focused on secondary metabolism, we resequenced
the genome of strain IFM 0706T.

For genomic DNA isolation, a ZR Quick-DNA fungal/bacterial DNA miniprep kit
(Zymo Research, Irvine, CA, USA) was used according to the manufacturer’s protocol,
except that the vortexing step was reduced from 15 to 5 min and conducted at
maximum speed. The DNA was sheared using a Covaris g-TUBE, and the genomic library
was prepared according to the standard PacBio 6-kb multiplex protocol, followed by size
selection with the BluePippin size selection system (Sage Science, Inc.). The library was
sequenced on a PacBio Sequel instrument using v3.0 chemistry, including Sequel Polymer-
ase v3.0 and one single-molecule real-time (SMRT) cell v3, resulting in 321,329 reads with
a median read length of 4,523 bp. No quality filtering was conducted; however, subreads
shorter than 50 bp were discarded. The remaining PacBio long reads were assembled using
SMRTLink v7.0.1 and HGAP4 (8, 9). All software settings were kept at their default, except
for the HGAP4 genome size estimate parameter, which was set to 9 Mbp. Overall, the reads
were assembled to a 9,269,950-nucleotide draft genome at 142-fold coverage. The resulting
sequence consists of 5 contigs with a G�C content of 68.52%. Gene functional annotation
using PGAP v4.11 (10) identified 8,402 coding genes.

In summary, the resequencing of strain IFM 0706T enabled us to increase the
quantity (from 8.63 Mbp to 9.27 Mbp) and quality of genomic information, to signifi-
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cantly reduce the number of contigs (from 4,460 down to 5), to correct the G�C
content (from 68.30 to 68.52%), and to provide the annotation.

Sequence alignment of IFM 0706T with its closely related strain N. terpenica IFM 0406
(GenBank accession number LWGR00000000.1), employing Mauve snapshot_2015-02-25
(using the progressiveMauve algorithm) (11, 12), showed six large blocks of correspon-
dence, confirming the overall relatedness of the two genomes, with the exception of
multiple deletion/insertion segments (Fig. 1). In comparison to IFM 0406, the genome
of IFM 0706T contains an additional 95,215 bases (1.03%) and lacks 114,674 bases
(1.24%). Further genomic indices were determined as follows: the average nucleotide
identity (using autoMLST [13]), digital DNA-DNA hybridization, and difference in G�C
content (Genome-to-Genome Distance Calculator v2.1, applying formula 2 [14]) be-
tween the strains were 100% (Mash distance, 0.0002), 99.50%, and 0.01% (68.51 versus
68.52%), respectively. This corroborated the similarities between the strains and con-
firmed that they belong to the same species. These findings are also reflected in the
biosynthetic potential of both strains to produce secondary metabolites. Bioinformatics
analysis using antiSMASH v5.1 (15) revealed that IFM 0706T shares largely the same type
of biosynthetic gene clusters (BGCs) with IFM 0406. In addition to 35 orphan BGCs,
these include the BGCs for brasilinolide (16), terpenibactin (6), nocavionin (3), and
brasilicardin A (1, 5).

Data availability. This whole-genome sequencing project has been deposited at
DDBJ/ENA/GenBank under the accession number JABMCZ000000000. The correspond-
ing raw sequencing data set has been registered in the NCBI SRA database under the
accession number SRR11861893.
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