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Abstract

Heritability measures the proportion of trait variation that is due to genetic inheritance. 

Measurement of heritability is of importance to the nature-versus-nurture debate. However, 

existing estimates of heritability could be biased by environmental effects. Here we introduce 

relatedness disequilibrium regression (RDR), a novel method for estimating heritability. RDR 

avoids most sources of environmental bias by exploiting variation in relatedness due to random 

Mendelian segregation. We use a sample of 54,888 Icelanders with both parents genotyped to 

estimate the heritability of 14 traits, including height (55.4%, S.E. 4.4%) and educational 

attainment (17.0%, S.E. 9.4%). Our results suggest that some other estimates of heritability could 

be inflated by environmental effects.
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Introduction

Heritability measures the proportion of trait variation in a population that is due to genetic 

inheritance. Estimation of the relative importance of genetic inheritance (nature) versus 

environment (including nurture) has generated much controversy1. Historically, most 

estimates of heritability for human traits have come from twin studies2,3. Some more recent 

methods propose to estimate heritability by modelling the effects of genome-wide single 

nucleotide polymorphisms (SNPs)4. We refer to these methods as GREML-SNP methods, 

referencing inference on genomic relatedness (GR), estimated from SNPs, using restricted 

maximum likelihood (REML). In order to reduce the influence of non-additive genetic 

effects and environmental effects, samples are pruned so that no pair is related above some 

low threshold4, typically 0.025 or 0.05.

Instead of modelling the effects of SNPs, heritability can be estimated by examining how 

phenotypic similarity changes with relatedness. Relatedness is measured by the fraction of 

the genome a pair shares in segments inherited from a common ancestor, called IBD 

(identical-by-descent) segments. (We note that what we call ‘relatedness’ here has 

sometimes been termed ‘realised relatedness’ to distinguish it from expected relatedness 

given a pedigree5). Sharing of an IBD segment implies sharing of all genetic variants in that 

segment, except for mutations that occurred since the last common ancestor of the segment. 

This implies that IBD based methods can capture nearly all of the heritability of a trait. In 

contrast, GREML-SNP methods can only capture the fraction of the heritability explained 

by genotyped SNPs4. Another advantage of IBD based methods over GREML-SNP 

methods is that they do not make assumptions about the distribution of SNP effect sizes. 

Violation of these assumptions has been shown to introduce bias to GREML-SNP estimates 

of heritability4,6.

An IBD based method, which we call the ‘Kinship’ method, examines how phenotypic 

similarity increases with relatedness for all pairs from a population sample7. When close 

relatives have more similar environments than distant relatives, the Kinship method will 

overestimate heritability, as it is unable to distinguish between similarity due to genetic 

effects and environmental effects. To reduce environmental bias, modelling of environmental 

effects shared between close relatives has been suggested8,9. However, environmental 

similarity may increase with relatedness across much of the relatedness spectrum: siblings 

may have more similar environments than cousins, and so on, down to distant relatives. In 

this case, modelling environmental covariance between close relatives alone will not remove 

environmental bias from the Kinship method. While an extension to the Kinship method has 

been developed that models spatially distributed environmental effects10, most 

environmental effects do not follow a simple, spatial distribution.

A different IBD based method, which we call ‘Sib-Regression’, restricts the analysis to 

sibling pairs5. There are two copies of each piece of DNA in each parent. Whether a sibling 

inherits one or the other copy of a piece of DNA from a parent is like the outcome of a fair 

coin toss. The coin toss represents the outcome of random Mendelian segregation of DNA in 

the parent during meiosis. Whether both siblings inherit the same copy of a piece of DNA is 

like whether two independent tosses of a fair coin both come out the same. Therefore, the 
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siblings inherit the same copy of DNA from a parent half of the time on average. Most of the 

variation around the average relatedness is due to random segregations in the parents of the 

siblings. The random segregations are independent of almost all environmental effects. Sib-

Regression therefore avoids most sources of environmental bias. However, Sib-Regression 

requires hundreds of thousands of genotyped sibling pairs to obtain precise heritability 

estimates, whereas existing applications have used ~20,000 sibling pairs or less5,11.

Here we introduce a novel method for estimating heritability, relatedness disequilibrium 

regression (RDR). RDR looks at how much more or less related a pair is than would be 

expected from the relatedness of the parents. This deviation we call ‘relatedness 

disequilibrium’. Relatedness disequilibrium is due to random Mendelian segregations in the 

parents during meiosis, so is independent of almost all environmental effects. Unlike Sib-

Regression, RDR can use any pair of individuals, provided there is genetic information on 

the parents of the pair. By using all pairs from a large sample with both parents genotyped, 

RDR can obtain precise estimates of heritability with negligible bias due to environment. We 

apply RDR to estimate heritability for 14 quantitative traits in Iceland.

Results

Defining heritability through random segregation

We first distinguish direct genetic effects and indirect genetic effects: a direct genetic effect 

is the effect of genetic material in a body on that body, whereas an indirect genetic effect is 

the effect on another body (Supplementary Note)12–14. For example, if parenting affects the 

educational attainment of offspring, then there could be indirect genetic effects from parent 

to offspring, which we term ‘parental genetic nurturing effects’14. Any allele inherited by 

the phenotyped individual (proband) was also present in one of its parents, implying the 

allele can have both direct and parental genetic nurturing effects on the proband. However, 

parental genetic nurturing effects, and other indirect genetic effects, are environmental 

effects from the perspective of the individual whose trait is affected. The heritability of the 

trait is thus defined as the fraction of trait variation in the population that is explained by 

direct genetic effects alone.

To separate variation due to direct genetic effects (heritability) from variation explained by 

the environment, we use random segregation during meiosis. This approach is analogous to 

the transmission disequilibrium test (TDT) for a direct genetic effect of an allele on a 

phenotype15–17. Proband genotype is determined by the genotypes of the proband’s parents 

and random segregations. The TDT looks for an association between the phenotype and the 

variation in proband genotype caused by random segregations in the parents. This separates 

association due to direct genetic effects from association due to environment. Similarly, by 

using random segregation, phenotypic variation can be decomposed into variation due to 

direct genetic effects alone and other components. Assuming direct genetic effects are 

additive and there is no gene-by-environment interaction, the decomposition is 

(Supplementary Note):

Var Y = vg + ve ∼ g + cg, e + Var ϵ ; (1)
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where νg is the variance explained by direct genetic effects, and h2 = νg/Var(Y) is the 

heritability; νe~g is the variance of the part of the environmental component of the 

phenotype that is correlated with parental genotype, which includes the variance explained 

by (additive) parental genetic nurturing effects; cg,e is the covariance between direct genetic 

effects and environmental effects; and Var(ϵ) is the variance of the component of the 

phenotype that is uncorrelated with both proband genotype and parental genotype.

RDR covariance model

The variance decomposition (1) leads to a decomposition of the covariance matrix of a 

vector of observations of a phenotype, Y. Under certain assumptions (Supplementary Note):

Cov Y = vgR + ve ∼ gRpar + cg, eRo,par + Cov ϵ , (2)

where [R]ij is the relatedness of individual i and individual j, [Rpar]ij is the relatedness of the 

parents of i and the parents of j; [Ro,par]ij is the relatedness of i and the parents of j and j and 

the parents of i (Online Methods). In general, Cov(ϵ) is unknown and can be similar to R. 

For example, family environment effects that are independent of genetics will cause closely 

related pairs to be more similar than distantly related pairs. Furthermore, pairs that are more 

related than the average are more likely to be from the same region and thereby have more 

similar environments10.

To fit the RDR covariance model, we make the simplifying assumption that Cov(ϵ) = σ2I. 

Importantly, violation of the assumption that Cov(ϵ) = σ2I does not introduce bias to RDR 

estimates of heritability, as we outline below.

Environmental bias properties of RDR

By using random segregation, both RDR and the TDT separate direct genetic effects from 

environmental effects. The TDT achieves this by conditioning on parental genotype, whereas 

RDR achieves this by conditioning on parental relatedness. The expectation of offspring 

genotype given its parents’ genotypes is one half of the sum of the parents’ genotypes, and 

any variation around this expectation comes from random segregation. Similarly, the 

expectation of offspring relatedness, [R]ij, given parental relatedness, [Rpar]ij, is [Rpar]ij/2, 

and any variation around this expectation comes from random segregation (Figure 1, 

Supplementary Figure 1, and Supplementary Note). (Note that this relationship does not 

hold for pairs where one is the direct ancestor of the other, such as parent-offspring pairs.)

By fitting R and Rpar jointly, RDR uses the variation in [R]ij around its expectation, 

[Rpar]ij/2, to estimate heritability. We call this variation relatedness disequilibrium. For a 

pair, relatedness disequilibrium is caused by random segregations in the parents of the pair, 

so is independent of sharing of all environmental effects apart from indirect genetic effects 

between the pair. This insight forms the basis of a mathematical proof that heritability 

estimates from RDR converge to the true heritability, when the sample excludes pairs that 

have indirect genetic effects on each other and excludes pairs where one is the direct 

ancestor of the other (Supplementary Note). If indirect genetic effects are restricted to close 
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relatives, the bias is likely to be small for RDR because close relatives comprise only a small 

fraction of the pairs in a large population sample. The bias due to indirect genetic effects 

could be much larger for methods that rely on close relatives, such as Sib-Regression and 

twin studies.

Pairs where one is the direct ancestor of the other can introduce bias because they have an 

atypical relationship between [R]ij and [Rpar]ij (Figure 1). However, they will comprise a 

small fraction of the total pairs in a large population sample, even if multiple generations are 

genotyped. For our sample, around 30% also have a parent or grandparent in our sample, but 

parent-offspring and grandparent-grandchild pairs comprise only 0.0014% of all pairs. In 

simulations, we could not detect bias due to inclusion of parent-offspring and grandparent-

grandchild pairs (Online Methods and Supplementary Table 1), so we did not remove 

individuals from our sample that also have a parent or grandparent in our sample.

Simulation of RDR heritability estimation

We tested RDR for simulated traits in our sample and compared RDR to Sib-Regression, the 

Kinship method, and the Kinship method allowing for an effect of shared family 

environment, which we call the ‘Kinship F.E.’ method. We determined whether pairs shared 

a family environment by whether they shared a mother according to the deCODE Genealogy 

Database. The modelling of the environment in the Kinship F.E. model is similar to a 

recently proposed extension of the Kinship model8. We randomly selected 10,000 SNPs to 

act as causal SNPs for our simulations (Online Methods). The SNPs had a minimum minor 

allele frequency (MAF) of 0.5% and median MAF of 22.8%. We simulated traits in a 

random subsample of 10,000 individuals with both parents genotyped for all the methods 

other than Sib-Regression, where we used all 54,888 individuals with both parents 

genotyped.

We first confirmed that heritability estimates for all the methods were approximately 

unbiased for traits determined by additive, direct genetic effects and random noise 

(‘additive’ trait, Table 1, Supplementary Tables 2 and 3).

We simulated a trait where individuals who shared a mother shared a random environmental 

effect. We found that the Kinship method greatly overestimated the heritability of this trait 

(‘maternal environment’ trait, Table 1). However, the Kinship F.E. estimates of heritability 

were approximately unbiased. Both Sib-Regression and RDR estimates were approximately 

unbiased.

The results for the ‘maternal environment’ trait show that modelling a family environment 

effect can remove bias from the Kinship method in certain circumstances. However, when 

indirect genetic effects from relatives are present, modelling the family environment is 

ineffective at removing bias. To show this, we simulated a trait determined by direct genetic 

effects, parental genetic nurturing effects, and random noise (‘genetic nurturing’ trait, Table 

1). For the simulated trait, the genetic nurturing effect of each SNP was a fixed fraction of its 

direct effect, generating a substantial covariance term, cg,e. The variance components as a 

percentage of the phenotypic variance were: νg = 40%, νe~g = 10%, and cg,e ≈ 28%, 

bringing the total variance explained by parent and offspring genotype to ~78%.
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We found that the Kinship method greatly overestimated the heritability of the ‘genetic 

nurturing’ trait. Modelling of the family environment only slightly reduced the bias, with the 

Kinship F.E. estimates of heritability over twice the true value. The reason for this is that 

parental genetic nurturing effects induce correlations between all pairs with non-zero 

parental relatedness, not just those that share a family environment. This leads to an increase 

in environmental similarity with relatedness across the relatedness spectrum.

We simulated a trait affected by population stratification. For this trait, each region of 

Iceland had a different mean trait value (Supplementary Note). We found that the Kinship 

and Kinship F.E. estimates of heritability were upwardly biased when adjusting for 20 

genetic principal components (‘regional’ trait, Table 1). Adjusting for 100 principal 

components, the mean Kinship F.E. heritability estimate was 57.6% (S.E. 0.21%), still 

considerably larger than the true heritability, 40%. In contrast, RDR estimates were 

approximately unbiased. This is because relatedness disequilibrium is caused by random 

segregations so is uncorrelated with regional co-localization.

In some cases, IBD based methods such as RDR will not capture the phenotypic variance 

explained by recent mutations, which are rare in the population. To measure how well RDR 

captures variance from rare variants, we simulated a trait determined by additive, direct 

effects of SNPs with MAFs between 1% and 0.1%, with median MAF 0.26% 

(Supplementary Note). RDR captured ~88% of the variance explained by the rare SNPs.

We found that RDR estimates were insensitive to non-additive genetic effects. The mean 

RDR estimates were close to the true narrow-sense heritability (40%) for traits influenced by 

both pairwise interactions between SNPs and dominance effects (Table 1). In contrast, the 

mean Sib-Regression estimates were close to the sum of the variance explained by additive 

and non-additive genetic effects (Table 1).

RDR estimates of heritability for 14 human traits

We estimated the variance components of the RDR covariance model for 14 quantitative 

traits (Online Methods, Table 2, Supplementary Table 4, and Supplementary Figure 2). For 

the exact same probands that RDR was applied to, heritability estimates were obtained from 

the Kinship and Kinship F.E. methods (Online Methods, Table 2, Figure 2). For 11 of the 14 

traits, the Kinship F.E. estimate, hkinFE
2 , is bigger than the RDR estimate, hRDR

2  (average 

hkinFE
2 − hRDR

2 = 12.1 %). We found that hkinFE
2  was statistically significantly higher than hRDR

2

(p<0.05, one sided test assuming hkinFE
2  and hRDR

2  are independent, so p-values represent an 

upper bound) for educational attainment hkinFE
2 − hRDR

2 = 35.4 % , p < 2.2 × 10−4 , height 

hkinFE
2 − hRDR

2 = 22.6 % , p < 1.3 × 10−6 , body mass index (BMI) 

hkinFE
2 − hRDR

2 = 17.8 % , p < 4.3 × 10−3 , and age at first child in women 

hkinFE
2 − hRDR

2 = 10.9 % , p < 0.043 . We found no evidence that differences between hkinFE
2

and hRDR
2  were driven by atypical properties of the sample with both parents genotyped or 
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by differences in mean trait values between the regions of Iceland (Supplementary Note and 

Supplementary Table 5).

Using Icelandic data, but without limiting to probands with parents genotyped, Sib-

Regression estimates of heritability, denoted by hsib
2 , were computed (Online Methods, Table 

2 and Figure 2). RDR estimates were more precise than Sib-Regression estimates for every 

trait, and, on average, the estimated standard errors for hsib
2  were 2.5 times larger than those 

for hRDR
2 , implying the effective sample size for RDR is around 6.25 times higher than for 

Sib-Regression. If a difference between RDR and Sib-Regression exists, it could be a 

consequence of indirect genetic effects between siblings18, epistasis, dominance, and/or rare 

variants. However, the lack of precision in Sib-Regression estimates implies that the power 

to detect differences is low, and we did not find any statistically significant differences.

There are not enough monozygotic twins in the Icelandic data to obtain precise twin 

estimates of heritability. To compare RDR results with twin studies from a similar 

population, we took estimates from the Swedish Twin Registry19 denoted by htwin
2 , which 

were available for nine of the fourteen traits (Online Methods, Table 2, Figure 2, and 

Supplementary Table 6). The difference htwin
2 − hRDR

2  was above zero and statistically 

significant (p<0.05) for all nine traits, with an average difference of 33.2%. For Sib-

Regression, the average difference htwin
2 − hsib

2  was 26.4%. The fact that both RDR and Sib-

Regression estimates are substantially lower than twin studies estimates could be due to 

differences in heritability between our sample and the samples of twins and/or 

overestimation of heritability by twin studies.

GREML-SNP estimates are biased by genetic nurturing

SNP based methods, such as GREML-SNP, will generally capture a smaller fraction of the 

full heritability of a trait than IBD based methods, such as RDR, making direct comparison 

of environmental bias difficult. We therefore introduce RDR-SNP, which uses SNPs to 

estimate the three relatedness matrices of the RDR covariance model (Online Methods). In 

other words, R, Rpar, and Ro,par are replaced by estimates from a set of SNPs: Rsnp, Rpar
snp, and 

Ro,par
snp . The only difference between RDR-SNP and GREML-SNP is that RDR-SNP also fits 

Rpar
snp and Ro,par

snp  in addition to Rsnp.

In order to compare RDR-SNP to typical GREML-SNP analysis, we simulated traits in a 

subset of the UK Biobank20 where genotype data on both parents was available (n=973). As 

in typical GREML-SNP analysis, we pruned the sample so that no pair of individuals had 

relatedness greater than 0.05, leaving 937 individuals (Supplementary Note).

We randomly sampled 11,771 SNPs to act as causal SNPs, and we calculated Rsnp, Rpar
snp, and 

Ro,par
snp  from this set (Supplementary Note). We simulated a trait determined only by additive, 

direct effects of SNPs and random noise. Both GREML-SNP and RDR-SNP estimated the 
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true heritability, 20%, without detectable bias: mean estimate 19.76% (0.15% S.E.) for 

GREML-SNP and 19.70% (0.30% S.E.) for RDR-SNP.

Alleles transmitted to offspring are also present in the parents, so have both direct and 

parental genetic nurturing effects. Let δ be the direct effect of a SNP, and let η be the 

parental genetic nurturing effect. The effect of the transmitted allele is therefore (δ + η). 

GREML-SNP uses only transmitted alleles, so is unable to separate the variance from the 

direct effect alone, proportional to δ2, from the variance explained by the combined direct 

and parental genetic nurturing effects, proportional to (δ + η)2. We investigated this 

theoretically (Supplementary Note) and by simulating a trait with both direct and genetic 

nurturing effects. We set the genetic nurturing effect of each variant to be one third of its 

direct effect, similar to the estimated ratio for educational attainment in Iceland14. The 

direct effects explained 20% of the phenotypic variance, implying that the total variance 

explained by transmitted alleles is (1 + 1
3 )

2
× 20 % ≈ 35.56 % , much larger than the 

heritability, 20%.

The mean GREML-SNP heritability estimate was 35.15% (0.16% S.E.), very close to the 

total variance explained by combined direct and indirect effects of transmitted alleles, 

35.56%, and in close agreement with our theoretical analysis (Supplementary Note). In 

contrast, RDR-SNP estimated heritability without detectable bias: mean estimate 19.70% 

(S.E. 0.30%).

Evidence from Icelandic data for bias in GREML-SNP estimates

For typical GREML-SNP analysis, the sample is pruned so that no pair has relatedness 

above a low threshold, usually 0.025 or 0.05. When a large fraction of the sample is related 

to another person in the sample above threshold levels, such as in our Icelandic sample, this 

approach entails a large loss of sample size. A similar approach that avoids a large loss in 

sample size is to regress elements of the sample phenotypic covariance matrix onto Rsnp 

only for those pairs whose relatedness is less than the threshold. We call this approach 

RELT-SNP, with RELT standing for ‘relatedness thresholded’. If the same relatedness 

threshold is applied, GREML-SNP and RELT-SNP estimates from large samples would be 

expected to be very similar under most conditions. By applying RELT-SNP to the simulated 

traits in the UK Biobank, we showed RELT-SNP and GREML-SNP give very similar 

estimates and exhibit the same bias due to parental genetic nurturing effects (Supplementary 

Note).

In the Icelandic sample, we compared RDR-SNP to RELT-SNP with a relatedness threshold 

of 0.05 (Online Methods). We first computed RDR-SNP and RELT-SNP estimates for the 

simulated traits, whose true heritability was 40% (Supplementary Table 7). When using the 

causal variants to calculate Rsnp, Rpar
snp, and Ro,par

snp , both RDR-SNP and RELT-SNP gave 

approximately unbiased estimates of heritability for the ‘additive’, ‘maternal’, ‘epistatic’ and 

‘dominance’ traits. For the ‘genetic nurturing’ trait, the average RELT-SNP estimate was 

74.1% (0.14% S.E.), close to the variance explained by combined direct and genetic 

nurturing effects, ~73.3%. In contrast, RDR-SNP estimates were approximately unbiased (h2 

= 40.1%, 0.07% S.E.). When the causal variants differed from the variants used to calculate 
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the relatedness matrices, a bias was introduced to RDR-SNP, RELT-SNP, and GREML-SNP 

estimates (Supplementary Table 7).

For the real traits, we estimated heritability using relatedness matrices calculated from 

605,966 genome-wide SNPs typically found on Illumina genotyping arrays (Online 

Methods, Table 2 and Supplementary Table 8). We found that hRELT‐SNP
2  was statistically 

significantly higher than hRDR‐SNP
2  (p<0.05, one sided test assuming hRDR‐SNP

2  and 

hRELT‐SNP
2  are independent, so p-values represent an upper bound) for height 

(
hRELT‐SNP
2

hRDR‐SNP
2 = 1.24, p < 0.015), age at first child in women (

hRELT‐SNP
2

hRDR‐SNP
2 = 1.72, p < 7.6 × 10−3),

and educational attainment (years) (
hRELT‐SNP
2

hRDR‐SNP
2 = 1.69, p < 0.027) (Methods).

Discussion

We introduced RDR, a novel heritability estimation method, and used it to estimate 

heritability for 14 quantitative traits in Iceland. Through mathematical investigations and 

simulations, we demonstrated that RDR estimates of heritability have negligible bias due to 

environment. In contrast, GREML-SNP, the Kinship method, and the Kinship F.E. method 

showed substantial bias due to indirect genetic effects from relatives. The GREML-SNP 

simulations show that removing close relatives does not remove bias due to indirect genetic 

effects from relatives. Our results suggest that GREML-SNP estimates could be interpreted 

as estimates of the variance explained by the combined direct and indirect effects of 

transmitted alleles, rather than the heritability.

For educational attainment, there is evidence for a substantial contribution from indirect 

genetic effects from parents and siblings14. This implies that educational attainment 

heritability estimates from GREML-SNP8,21, and the recently proposed extension to the 

Kinship model8, are likely to be upwardly biased. We estimated that GREML-SNP 

estimates of the heritability of educational attainment could be inflated by a factor of around 

1.69. This inflation factor is consistent with genetic nurturing effects around 30% the size of 

direct effects, which is consistent an estimate using a polygenic score14 and within-family 

analyses in other populations22.

RDR, like other methods using IBD segments7,8, may underestimate the heritability due to 

rare variants. However, any underestimation due to rare variants will be less than for 

GREML-SNP methods applied to typical genotyping arrays. By using IBD segments, RDR 

captures substantially more of the variance from rare variants, around 88% for variants with 

MAF between 1% and 0.1%. This implies that the underestimation of heritability by RDR 

will be small unless very rare variants, especially de-novo mutations, explain a large fraction 

of the phenotypic variance. Furthermore, Sib-Regression captures variance from all variants 

other than de-novo mutations not shared by siblings. The fact that Sib-Regression estimates 

are close to RDR estimates on average argues against substantial underestimation of 

heritability by RDR due to very rare variants.
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Heritability estimates from Swedish twin studies were substantially higher than RDR and 

Sib-Regression estimates for almost all traits. Some of the difference between could be due 

to differences in heritability between our Icelandic sample and the Swedish twin samples. 

Other possible explanations are: overestimation of heritability by twin studies and/or very 

rare variants, especially de-novo mutations, explaining a substantial fraction of the 

phenotypic variance.

The RDR method requires parents of probands to be genotyped. Large datasets with this 

property are currently rare, which is the main reason our current study is limited to the 

Icelandic population. However, our results argue that large, genotyped samples including 

close relatives are essential for disentangling nature and nurture. As large population 

samples become more common, large amounts of family data will inevitably be collected. 

We therefore expect RDR and related methods to become more widely applied.

Online Methods

Icelandic Sample

All participating subjects donating biological samples signed informed consents and the 

study was approved by the Data Protection Commission of Iceland (DPC) and the National 

Bioethics Committee of Iceland. Personal identities of the phenotypes and biological 

samples were encrypted by a third party system provided by the Icelandic Data Protection 

Authority.

The Icelandic samples were genotyped using Illumina microarrays as previously 

described24. The whole genomes of 2,636 Icelanders were sequenced using Illumina 

technology to a mean depth of at least 10X (median 20X)24. A total of 35.5 million 

autosomal SNPs and indels were identified using the Genome Analysis Toolkit version 

2.3.9.

The deCODE genealogy database is a comprehensive database that includes information on 

more than 800,000 Icelandic individuals, deceased and living, dating back to the settlement 

of Iceland 1,200 years ago. The database is constructed from a nationwide census, 

conducted regularly from the year 1700, church books and other available information, and 

is particularly complete for the last 200 years. The database includes, when known, 

information on parents of each individual, gender, year of birth and, if applicable, year of 

death.

We restricted our analyses to genotyped individuals with both genetic parents genotyped and 

all four grandparents in the deCODE genealogy database. This left 54,888 individuals. See 

the Life Sciences Reporting Summary for a summary of sample restrictions and other 

information.

The individuals and their parents had all been phased and segments shared identical-by-

descent (IBD), both within and between individuals, determined by long-range 

phasing25,26. To reduce bias due to segments incorrectly called as identical-by-descent, we 
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restricted our analyses to segments of length greater than 5 centi-Morgans. Note that sex-

chromosomes were not included.

As a measure of ascertainment bias, we compared years of education between the 

individuals with both parents genotyped and the full set of individuals with education data. 

Mean years of education for those with both parents genotyped was 15.07 compared to 

13.63 for the whole sample with education data. Part of this is due to the fact that those with 

both parents genotyped were born later than average, and mean levels of education have 

increased over time. After regressing out year-of-birth (YOB), YOB2, YOB3, the sample 

with both parents genotyped still had 0.32 years more education on average, compared to a 

standard deviation of 3.39 years. This shows that our results are slightly biased towards 

those with higher socio-economic status, which, for many traits, is expected to increase 

heritability27,28.

Trait measurements

As a measure of educational attainment, we used information on years of schooling, 

available for 63,508 individuals, that originated from questionnaires administered in 

deCODE’s various disease projects and from routine assessments of elderly nursing home 

residents. As the data have been gathered over the years for the purpose of descriptive 

demographics rather than for phenotype use, the questions were originally not standardized 

across projects and many of them have categorical responses. For this study, to make it as 

consistent as is possible when it comes to the educational attainment trait studied in the 

published meta-analysis29, efforts were put into mapping the responses to the questionnaires 

into the UNESCO ISCED classification (see URLs). In particular, the final quantitative 

measure used, before sex and year-of-birth adjustments, ranges from a minimum of 10 years 

to a maximum of 20 years.

Height and body mass index (BMI) information, collected primarily through deCODE’s 

genetic studies on cardiovascular disease, obesity and cancer, were available for 89,615 and 

77,285 adult individuals, respectively30,31. About 20% of the information was self-

reported.

Blood measurements were collected from three of the largest laboratories in Iceland: 

Landspítali - The National University Hospital of Iceland, Reykjavík; The Laboratory in 

Mjódd, Reykjavík; Akureyri Hospital, The Regional Hospital in North Iceland, Akureyri; in 

addition to the Icelandic Heart Association. For many individuals, multiple blood samples 

had been taken at different time points. To aid comparability with other studies that have 

used one time-point only, we took only the first measurement of each individual.

Information on ‘age at first child’ (AAFC) was extracted from the deCODE genealogy 

database. Age at menarche was determined by the answer to the question ‘How old were you 

when your menstruation started?’ as detailed elsewhere32.

URLs
Educational attainment categories: http://uis.unesco.org/en/isced-mappings.
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Apart from educational attainment, traits were quantile-normalised within each sex. 

Educational attainment was not quantile-normalised as the measurements fall into discrete 

categories of years of education. The traits were regressed on year-of-birth (YOB), sex, 

YOB, YOB2, YOB3, and the interactions of sex with YOB2, YOB3. The residuals of this 

regression were then used as the phenotype, Y, when fitting the models described below. To 

ensure our heritability estimates correspond to the adult but not elderly population, we 

further restricted our analysis to those born between 1951 and 1995 for height, and between 

1951 and 1997 for BMI and the traits measured from blood. (Note that for Sib-Regression, 

the year of birth restrictions were not applied to maximise the sample size.)

Identification of siblings

For the Sib-Regression estimator, we obtained the relatedness for all pairs of genotyped 

individuals who share both parents in the genealogy. To ensure we only used true full-

siblings, we clustered the pairs by relatedness into four clusters using k-means clustering: 

unrelated, half-sibling, full-sibling, and monozygotic twins. This left 127,264 full-sibling 

pairs, comprised of 70,317 unique individuals, whose relatedness distribution had a mean of 

0.502 and a standard deviation of 0.0382. To maximise the precision of the Sib-Regression 

estimator, we did not restrict by year-of-birth or by number of parents genotyped, so the 

sample used is different to the sample used for the other estimators.

Calculation of IBD relatedness matrices

To calculate R, Rpar, and, Ro,par, we used formulae based on the genetic covariance in a 

population descending from a finite number of ancestors33 (Supplementary Note):

R ij = 1
2 ∑

k, l = m, p
IBDij

kl − K0 / 1 − K0

where K0 is the mean kinship over all pairs in the population, and IBDij
kl is the proportion of 

the maternally inherited haplotype of i shared identical-by-descent (IBD) with the paternally 

inherited haplotype of j;

Rpar ij
=

Kp i p j + Kp i m j + Km i p j + Km i m j − 4K0
1 − K0

where Kp(i)m(j) is the kinship between the father of i and the mother of j;

Ro,par ij
=

Kip j + Kim j + Km i j + Kp i j − 4K0
1 − K0

where Kim(j) is the kinship between i and the mother of j, etc.
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Calculation of SNP relatedness matrices

To perform RDR-SNP analysis, we calculated relatedness matrices from SNPs 

Rsnp, Rpar
snp, Ro,par

snp  that are analogous to the IBD relatedness matrices used in RDR (R, Rpar, 

and, Ro,par). Consider a sample of n individuals genotyped at l bi-allelic SNPs, where the 

genotype is expressed as the copy number (0,1, or 2) of one of the two alleles. Let G be the 

[n × l] matrix of genotypes standardised to have mean zero and variance 1. The matrix Rsnp 

is equivalent to that used in standard GREML-SNP analysis, and is calculated as Rsnp = l
−1GGT.

To calculate Rpar
snp and Ro,par

snp , we first have to form parental genotypes. Let Gm be the [n × l] 

matrix of genotypes of the mothers of the n individuals in the sample, and let Gp be the [n × 

l] matrix of the genotypes of the fathers. Then Gpar = Gm + Gp is the parental genotype 

matrix, with entries from {0,1,2,3,4}. We normalised the columns of Gpar to have mean zero 

and variance two. The variance is naturally twice that of the offspring genotype in an 

outbred population as each entry is the sum of maternal and paternal genotypes. Then

Rpar
snp = 2l −1GparGpar

T ; Ro,par
snp = 2l −1 GGpar

T + GparG
T .

The matrices are calculated in this way to ensure estimates of vg, ve~g, and cg,e are properly 

calibrated. These equations can be derived from a random effects model (Supplementary 

Note).

For the analysis of the real traits, we computed relatedness matrices from SNPs from the 

Illumina Framework SNP set. The Illumina Framework SNP set is a set of 611,173 SNPs 

shared between many of the Illumina genotyping arrays used to genotype the Icelandic 

sample24. We used this set of SNPs in order to make our analysis comparable to 

applications of GREML-SNP to data from typical genotyping arrays. Before computing 

relatedness matrices, we removed SNPs with imputation information below 0.9999 and 

MAF less than 1%, leaving 605,966 SNPs. For the simulated traits, we also computed 

relatedness matrices from only the causal SNPs (Supplementary Note).

Computing Relatedness Disequilibrium Regression (RDR) estimates

The relatedness disequilibrium regression (RDR) covariance model is

Cov Y = vgR + ve ∼ gRpar + cg, eRo,par + σ2I .

We investigated fitting this model by least squares regression of the off-diagonal elements of 

the sample phenotypic covariance matrix on the off-diagonal elements of the relatedness 

matrices:

yi − y y j − y ∼ R i j + Rpar i j
+ Ro,par i j

,
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where yi is the phenotype observation for individual i, and ȳ is the sample phenotype mean. 

We excluded both parent-offspring and grandparent-grandchild pairs from the regression, as 

these pairs violate the relationship between [R]ij and [Rpar]ij required for removal of 

environmental bias from estimation of vg (Figure 1 and Supplementary Note). We also 

investigated fitting the model by unconstrained restricted maximum likelihood in GCTA34, 

under the assumption the trait follows a multivariate normal distribution:

Y ∼ N μ, vgR + ve ∼ gRpar + cg, eRo,par + σ2I .

For the maximum likelihood method, one can only remove individuals, and all the pairs 

including that individual, not arbitrary pairs. Around 30% of the sample with both parents 

genotyped have an ancestor who also has both parents genotyped. We therefore did not 

exclude individuals so that no parent-offspring and no grandparent-grandchild pairs were 

present, as this would have resulted in a large loss of sample size.

In our simulations, we found that RDR estimates from maximum likelihood and RDR 

estimates from least-squares were both approximately unbiased, with no consistent 

advantage in bias evident from fitting the model by least-squares after excluding parent-

offspring and grandparent-grandchild pairs (Supplementary Table 1). However, least-squares 

estimates were considerably less precise than those from maximum likelihood. We therefore 

used maximum likelihood without exclusion of parent-offspring and grandparent-grandchild 

pairs for all analyses in the main text. For the real traits, the results from least-squares were 

consistent with the results from maximum likelihood, but the least-squares estimates were 

considerably less precise (Supplementary Table 5).

To obtain RDR-SNP estimates, we fitted the following model by restricted maximum 

likelihood in GCTA:

Y ∼ N μ, vgRsnp + ve ∼ gRpar
snp + cg, eRo,par

snp + σ2I .

Computing Kinship and Kinship F.E. estimates

To obtain heritability estimates from the Kinship method, we fitted the following model for a 

vector of phenotype observations Y:

Y ∼ N Xkinb, vgR + σ2I .

For the Kinship F.E. model, we added a variance component that modelled shared family 

environment:

Y ∼ N Xkinb, vgR + vcC + σ2I ,

where [C]ij = 1 if i and j shared a mother according to the deCODE genealogy database, 

otherwise [C]ij = 0 For all of the simulated traits other than the ‘regional’ trait, Xkin was a 
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constant. For the ‘regional’ trait, it also included the top 20 genetic principal components. In 

the real trait analysis, Xkin included the top 20 genetic principal components. For both the 

Kinship and Kinship F.E. methods, we estimated model parameters by unconstrained 

restricted maximum likelihood in GCTA34.

Computing RELT-SNP estimates

To compute RELT-SNP estimates, we regressed off-diagonal elements of the phenotypic 

covariance matrix onto elements of Rsnp, excluding elements of Rsnp greater than 0.05. Let 

X be a matrix whose first column has every entry equal to one, and whose other columns are 

covariates and/or positions on genetic principal components. Let b̂ be the least-squares 

estimate of vector of regression coefficients of the phenotype on X. Then we formed the 

sample phenotypic covariance matrix as S = (Y – Xb̂)(Y – Xb̂)T, where Y is the vector of 

phenotype observations. Estimates of vg were computed by regressing off-diagonal elements 

of S, [S]ij, on off-diagonal elements of Rsnp, [Rsnp]ij, excluding pairs where [Rsnp]ij > 0.05.

We describe a computational procedure for computing RELT-SNP estimates and their 

standard errors in the Supplementary Note. This procedure builds on previous work 

expressing the Haseman-Elston regression as a quadratic form35, which takes into account 

the dependence between elements of S. We found our standard error estimates to be accurate 

in simulations, with a mean error of 4.3% across the simulated traits (Supplementary Table 

9). The RELT-SNP estimates and standard errors were computed using custom Python code.

For the ‘regional’ trait, RELT-SNP was upwardly biased (h2 = 45.7%, 0.23% S.E.) but 

became approximately unbiased (h2 = 39.3%, 0.10% S.E.) when the trait was adjusted for 20 

genetic principal components. However, we found that adjustment for 20 genetic principal 

components resulted in a downward bias for the ‘additive’ trait (h2 = 38.7%, 0.09% S.E.). 

We therefore decided to take an approach where we adjusted for principal components only 

for those traits that exhibited substantial stratification. For the results in Table 2, we adjusted 

for 20 principal components only for the traits where the variance explained by the top 20 

principal components exceeded 1%: height, age at first child in men and women, and 

educational attainment. We give results with and without control for principal components 

for all traits in Supplementary Table 8. The choice of 1% was somewhat arbitrary. Arbitrary 

decisions about how many principal components to control for are a disadvantage of 

Kinship, GREML-SNP, and RELT-SNP methods. RDR and RDR-SNP, in contrast, do not 

require such arbitrary decisions, as they separate genetic and environmental effects in a 

principled way.

Computing Sib-Regression estimates

To obtain Sib-Regression estimates5, we fit the regression model

yi − y j
2 ∼ R i j

for all i, j such that i and j are full-siblings. We fit the regression model by least-squares 

using custom R code. The estimate of vg is then minus one half of the estimated regression 
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coefficient. We compared estimating standard errors by the approximate formula given in the 

original Sib-Regression paper5 (equation 17) and estimating standard errors by treating Sib-

Regression as a standard univariate linear regression with uncorrelated observations. For the 

‘additive’ simulated trait, both gave almost exactly the same estimated standard error, which 

underestimated the standard error by approximately 9%. We used standard errors estimated 

from treating Sib-Regression as a standard univariate linear regression with uncorrelated 

observations for all other results.

Simulations using deCODE data

For all traits other than the ‘rare SNPs’ trait, we used imputed genotypes at 611, 173 SNPs 

from the Illumina Framework SNP set (see above). We filtered the SNPs so that the 

minimum imputation information was 0.9999, removing around half of the SNPs. Out of the 

remaining SNPs passing the filter, we randomly sampled 10,000 SNPs to use as the causal 

SNPs in our simulations. In the 10,000 selected SNPs, the median imputation information 

was 1.0000, the minimum minor allele frequency (MAF) was 0.52%, and the median MAF 

was 22.8%. For the ‘rare SNPs’ trait, we randomly sampled SNPs from all imputed SNPs 

with MAF between 1% and 0.1% and with imputation information at least 0.9999 and p-

value for Hardy-Weinberg deviation greater than 0.05. We sampled 100 such SNPs from 

each chromosome, giving 2,200 SNPs in total.

For each type of trait, we simulated 500 independent replicates. We briefly describe the 

simulation of the direct, additive genetic component of each trait, which explained 40% of 

the phenotypic variance. Apart from for the ‘rare SNPs’ trait, we standardised genotypes so 

that each SNP’s genotype vector had sample mean zero and sample variance one. Let G 
represent the matrix of standardised genotypes at the 10,000 causal SNPs. We sampled 

additive effects of SNPs from a normal distribution. Let β~N(0,I) represent the vector of 

SNP effects. The additive genetic component, A, was calculated as A = Gβ, and then scaled 

to explain 40% of the phenotypic variance. For details on simulation of environmental 

components, see the Supplementary Note.

Simulations in the UK Biobank

To select causal SNPs for phenotype simulation, for each chromosome we randomly 

sampled 1,500 SNPs then removed those with MAF less than 5% or more than 0.5% missing 

genotypes. This gave a set of 11,771 SNPs. We mean imputed missing genotypes for both 

parents and offspring. We simulated 10,000 independent replications of each trait. Let l = 

11,771. We standardised offspring genotypes so that the genotypes at each SNP had mean 

zero and variance 1. Let G be the matrix of standardised offspring genotypes. Here, we 

describe simulation of the direct, additive genetic component of the traits – for further 

details, see the Supplementary Note. For each trait, we simulated a normally distributed 

vector of effects for the l SNPs: β~N(0,0.2l−1I). The additive genetic component of the trait, 

A, was then calculated as A = Gβ.

Selection of estimates from twin studies

The Swedish Twin Registry19 is a large sample of twins from a population of similar 

cultural and genetic composition to Iceland, giving the most precise and valid comparison 
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possible based on published data36–40. The exception is for education, where we used a 

meta-analysis of Scandinavian twin studies for increased precision23. For BMI and traits 

measured from blood, unlike our estimates, the Swedish Twin Registry estimates did not 

exclude elderly individuals. This is unlikely to account for the higher estimates in the 

Swedish Twin Registry, as twin correlations and heritability estimates are generally lower in 

the elderly population2.

We took the heritability estimate from the additive-common-environment (ACE) model2,3 

when provided. ACE estimates were not provided for the blood lipid traits, but monozygotic 

and dizygotic twin correlations were39. We used these to obtain the moment based estimate 

of the heritability under the ACE model by the formula: 2(rMZ – rDZ), where rMZ is the 

phenotypic correlation for monozygotic twins, and rDZ is the phenotypic correlation for 

dizygotic twins. We took the weighted average of the same-sex and opposite-sex dizygotic 

twin correlations to estimate rDZ. For creatinine, the ACE estimate was not provided, and 

neither were the twin correlations, so we took the published heritability estimate from the 

ADE model (additive-dominance-environment). The studies used and methods used are 

summarised in Supplementary Table 6. For height, heritability estimates were only provided 

for males and females separately, so we took the average estimate. The standard error was 

not provided. Height and weight estimates were based on self-reported data, whereas our 

estimates were based on approximately 80% measured and 20% self-reported data. This 

would be expected to increase our heritability estimates for height and BMI relative to the 

twin estimates due to a reduction in measurement error. For education, we used a meta-

analysis of twin studies in Scandinavian countries, including Sweden, to give a more precise 

estimate23. We could not find published estimates based on the Swedish Twin Registry for 

the haemoglobin traits and for age at first child, so we excluded them from the comparison.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Relatedness disequilibrium
For all pairs of individuals i,j from 20,000 Icelanders with both parents genotyped, the 

relatedness of i and j, [R]i,j, is compared to the relatedness of the parents of i and the parents 

of j, [Rpar]ij. The number of pairs in each hexagonal bin is indicated by shading. 

Relationships determined by the deCODE Genealogy database are indicated: GP-GC, 

grandparent-grandchild; P-O, parent-offspring; and sibling. The solid diagonal line indicates 

the expectation of [R]ij, which is [Rpar]ij/2, except for pairs where one is a direct ancestor of 

the other (Supplementary Note). The dashed diagonal line indicates the regression line 
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(excluding parent-offspring and grandparent-grandchild pairs), with intercept -1x10-4, 

gradient 0.493, and variance explained 84%. The small deviation of the regression line from 

the theoretical expectation is likely due to some IBD segments shared between parents being 

broken up by recombination, resulting in a small fraction of segments in the offspring being 

too small to detect. Relatedness disequilibrium is the variation in [R]ij around [Rpar]ij/2. 

Relatedness disequilibrium is due to independent, random segregations in the parents, except 

for pairs where one is the direct ancestor of the other.
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Fig. 2. Comparison of heritability estimates from different methods.
Horizontal intervals show +/-1.96 standard errors for the estimates on the x-axis, and vertical 

intervals show +/-1.96 standard errors for the estimates on the y-axis. See Table 2 for 

numerical values. A) Comparison of RDR to ‘Kinship F.E.’. B) Comparison of RDR-SNP to 

RELT-SNP. C) Comparison of RDR to Sib-Regression5 estimates. Intervals for the RDR 

estimates are not shown to better display Sib-Regression intervals. D) Comparison to 

published twin studies estimates from the Swedish Twin Registry19, apart from for 

education, which is from a meta-analysis of Scandinavian twin studies23 (Supplementary 
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Table 6). Trait abbreviations: BMI, body mass index; AFCW, age at first child in women; 

AFCM, age at first child in men; education, educational attainment (years); cholesterol, total 

cholesterol; HDL, high density lipoprotein; glucose, fasting glucose; MCH, mean cell 

haemoglobin; MCHC, mean cell heamoglobin concentration; MCV, mean cell volume.

Young et al. Page 23

Nat Genet. Author manuscript; available in PMC 2019 February 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Young et al. Page 24

Table 1
Comparison of heritability estimates for simulated traits.

The mean heritability estimates, expressed as a % of the phenotypic variance, from four different methods 

(RDR, Kinship, Kinship F.E., Sib-Regression) for different simulated traits. The true (narrow-sense) 

heritability of each trait was 40%. We simulated 500 replicates of each trait based on Icelandic genetic data 

from a random subsample of 10,000 individuals with both parents genotyped (Methods) --- apart from for Sib-

Regression, where we used all 54,888 individuals. Ten thousand SNPs with median minor allele frequency 

(MAF) 22.8% were given additive effects for all the traits other than the ‘rare SNPs’ trait, for which 2,200 

SNPs with MAF between 0.1% and 1% (median 0.26%) were used. To the additive genetic component, only 

noise was added for the ‘additive’ trait and the ‘rare SNPs’ trait. For the ‘epistatic’ trait, 10% of the phenotypic 

variance was due to pairwise interactions between SNPs. For the ‘dominance’ trait, 10% of the phenotypic 

variance was due to dominance effects. For the other traits, effects representing different sources of 

environmental confounding were added in addition to noise and the additive genetic component. For the 

‘regional’ trait, each region of Iceland (sysla) was given an effect; for the ‘maternal environment' trait, an 

environmental effect shared between those who share mothers was added; for the ‘genetic nurturing trait’, the 

genotypes of the parents were also given effects to simulate ‘parental genetic nurturing’ effects14. For the 

‘regional’ trait, the Kinship and Kinship F.E. methods also included adjustment for 20 genetic principal 

components.

RDR Kinship Kinship F.E. Sib-Regression

Trait Estimate 
(%)

Standard 
Error (%)

Estimate 
(%)

Standard 
Error (%)

Estimate 
(%)

Standard 
Error (%)

Estimate 
(%)

Standard 
Error (%)

additive 39.3 0.62 40.4 0.15 40.5 0.18 41.2 0.69

genetic 
nurturing

39.4 0.49 92.7 0.09 82.8 0.14 40.4 0.37

maternal 
environment

38.9 0.58 76.3 0.17 39.9 0.18 41.1 0.37

regional 38.3 0.60 59.0 0.17 58.3 0.20 32.1 0.63

rare SNPs 35.0 0.64 39.5 0.15 39.4 0.19 39.7 0.67

epistatic 41.3 0.60 44.2 0.16 43.3 0.19 50.1 0.63

dominance 40.5 0.63 42.7 0.15 41.1 0.19 50.5 0.71
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Table 2
Heritability estimates.

For each trait, the sample size used for the RDR, Kinship F.E., RDR-SNP, and RELT-SNP methods is given 

under ‘n’, and the sample size for Sib-Regression (‘Sib-Reg.’) given under ‘sib-pairs’. Each heritability 

estimate is expressed as a percentage of the phenotypic variance and is followed by its standard error in 

brackets. RDR, Kinship F.E., RDR-SNP, and RELT-SNP estimates are from the exact same Icelandic samples 

with both parents genotyped, and samples were restricted to those born between 1951 and 1997 for BMI and 

traits measured from blood, and samples were restricted to those born between 1951 and 1995 for height. In 

order to maximise sample size, Sib-Regression estimates are from all genotyped Icelandic sibling pairs 

available without year-of-birth restrictions. Twin studies estimates are from the Swedish Twin Registry19, 

apart from for education, which is from a meta-analysis of Scandinavian twin studies23 (Supplementary Table 

6). Trait abbreviations: BMI, body mass index; AFCW, age at first child in women; AFCM, age at first child in 

men; menarche, age at menarche (years); education, educational attainment (years); total chol., total 

cholesterol; HDL, high density lipoprotein; glucose, fasting glucose; MCH, mean cell haemoglobin; MCHC, 

mean cell heamoglobin concentration; MCV, mean cell volume.

RDR Kinship F.E. RDR-SNP RELT-SNP Sib-Regression Twin

Trait n Est. 
(%)

S.E. 
(%)

Est. 
(%)

S.E. 
(%)

Est. 
(%)

S.E. 
(%)

Est. 
(%)

S.E. 
(%)

sib-pairs Est. 
(%)

S.E. 
(%)

Est. 
(%)

S.E. 
(%)

BMI 19,589 28.9 6.3 46.7 2.5 34.2 2.9 36.1 3.4 56,461 38.5 12.0 65 3.8

height 21,802 55.4 4.4 78.0 1.9 44.5 2.3 55.2 4.4 64,847 68.4 9.6 81 -

AFCW 22,367 22.6 6.0 33.5 2.1 11.7 2.6 20.1 2.3 30,582 32.0 17.4 - -

AFCM 17,117 14.9 7.9 16.3 2.6 11.5 3.4 12.3 2.2 21,729 55.3 21.3 - -

menarche 11,242 30.9 10.5 41.9 4.0 26.8 5.0 33.9 4.2 16,621 50.6 23.1 75 6.9

education 12,035 17.0 9.4 52.4 3.7 17.3 4.4 29.2 4.4 32,542 39.7 14.8 43 3.6

total chol. 27,320 30.6 5.0 32.2 1.8 23.5 2.3 24.2 2.2 74,271 15.1 12.9 57 3.8

HDL 24,570 44.8 5.3 45.1 2.1 32.0 2.5 29.7 2.7 67,894 50.5 11.4 69 3.1

triglycerides 24,099 24.2 5.7 29.8 2.0 23.8 2.6 25.8 2.4 62,746 35.8 12.1 61 3.7

glucose 19,500 15.9 7.2 23.6 2.3 15.8 3.1 16.8 2.3 36,469 29.6 18.5 59 4.0

creatinine 38,929 22.9 3.7 22.2 1.3 16.9 1.6 17.2 1.6 98,385 4.0 11.1 59 1.5

MCH 43,917 38.5 3.2 36.8 1.2 29.3 1.5 28.7 1.9 107,711 40.3 10.2 -

MCHC 43,963 14.9 3.3 18.4 1.1 12.5 1.5 13.0 1.2 107,833 15.8 10.5 -

MCV 43,919 39.1 3.1 38.5 1.2 31.1 1.5 29.8 2.0 107,702 35.9 10.2 -
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